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We report the demonstration of cooling by three-body losses in a Bose gas. We use a harmonically
confined one-dimensional (1D) Bose gas in the quasicondensate regime and, as the atom number decreases
under the effect of three-body losses, the temperature T drops up to a factor of 4. The ratio kBT=ðmc2Þ stays
close to 0.64, wherem is the atomic mass and c the speed of sound in the trap center. The dimensionless 1D
interaction parameter γ, evaluated at the trap center, spans more than 2 orders of magnitudes over the
different sets of data. We present a theoretical analysis for a homogeneous 1D gas in the quasicondensate
regime, which predicts that the ratio kBT=ðmc2Þ converges towards 0.6 under the effect of three-body
losses. More sophisticated theoretical predictions that take into account the longitudinal harmonic
confinement and transverse effects are in agreement within 30% with experimental data.
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The identification and understanding of cooling proc-
esses, both on the theoretical and the experimental side, is
crucial to the development of cold atom physics [1,2]. It can
help to elaborate strategies to enter new regimes and it can
also improve the control over state preparation in experi-
ments where cold atoms are used as quantum simulators of
many body systems. Ultracold atom gases are metastable
systems, their ground state being a solid phase. They are
thus plagued with intrinsic recombination processes, that in
practice limit their lifetime. Such processes are mainly
three-body collisions during which a strongly bound dimer
is formed. It amounts to three-body losses because the
dimer is typically no longer trapped and the remaining atom
escapes because of its large kinetic energy. These losses are
known to produce an undesired heating in cold gases. In the
case of a thermal gas, since they occur predominantly in the
regions of high atomic density, where the potential energy
is low, these losses increase the energy per remaining
particle, leading to an antievaporation process [3]. In Bose-
Einstein condensates (BEC) confined in deep traps, it was
predicted that three-body collisions produce a heating of
the BEC through secondary collisions with high energy
excitations formed by the loss process [4]. This Letter
constitutes a breakthrough since we identify a cooling
associated with three-body losses in a cold Bose gas.
A similar counterintuitive cooling was recently inves-

tigated in [5–8] where the effect of one-body losses in
quasicondensate regime [9] is considered. Although one-
body losses are also central for evaporative cooling, here
the losses are energy independent and the cooling origi-
nates from a very different physics. Those works were
recently extended [11] to any j-body loss process, for Bose
gases in the BEC or quasicondensate regime, in any
dimension d, and for homogeneous gases as well as gases

confined in a smooth potential. These studies focus on the
effect of losses on low energy excitations in the gas, the
phononic modes, which correspond to density waves
propagating in the condensate. On the one hand, the energy
in these modes is reduced by losses since the amplitude of
density modulations is decreased, removing interaction
energy from the mode. On the other hand, the discrete
nature of the loss process comes with accompanying shot
noise which induces density fluctuations, increasing the
energy per mode. It has been shown that the competition
between these processes leads to a stationary value of the
ratio kBT=ðmc2Þwhere m is the atom mass and c the speed
of sound. This value, of the order of one, depends on j, d,
and on the confining potential [11]. For three-body losses
in a 1D quasicondensates (j ¼ 3, d ¼ 1) confined in a
harmonic potential one expects kBT=ðmc2pÞ to converge to
0.70 [11], where cp is evaluated at the peak density.
In contrast to evaporative cooling, this loss-induced cool-
ing does not rely on a thermalization mechanism in the
gas [12].
In this Letter, we show experimentally that three-body

losses induce a cooling and we identify the stationary value
of kBT=ðmc2pÞ associated with the three-body process.
More precisely, investigating the time evolution of a 1D
quasicondensate, we observe a decrease of the temperature
as the atom number decreases under the effect of three-
body losses. Moreover, on the whole observed time
interval, the ratio kBT=ðmc2pÞ stays about constant, at a
value close to 0.64, which indicates that the stationary value
of kBT=ðmc2pÞ imposed by the loss process is reached. We
took several data sets for different parameters. In terms of
the 1D dimensionless parameter γ [13] characterizing the
strength of the interactions [14], our data span more than 2
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orders of magnitude. We compare the experimental data
with numerical calculations based on the results of [11],
which take into account the harmonic longitudinal confine-
ment of the gas and the swelling of the transverse wave
function under the effect of interactions. The experimental
results are close to those predictions. In order to present the
underlying physics, we derive in this Letter the evolution of
the temperature under three-body losses, in the more simple
case of a homogeneous purely 1D quasicondensate.
The experiment uses an atom-chip setup [15] where 87Rb

atoms are magnetically confined using current-carrying
microwires. An elongated atomic cloud is prepared using
radio frequency forced evaporative cooling in a trap of
transverse frequency ω⊥. Depending on the data set,
ω⊥=ð2πÞ varies between 1.5 and 9.2 kHz and the atomic
peak linear densities n vary between 22 and 257 μm−1. The
temperature fulfills kBT < ℏω⊥ and the gas mostly behaves
as a 1D Bose gas [17]. It, moreover, lies in the quasicon-
densate regime [18], characterized by weak correlations
between atoms, as in Bose-Einstein condensates [19], and
in particular small density fluctuations [20]. As long as the
atoms are in the ground state of the transverse potential,
interactions between atoms are well described by a 1D
effective coupling constant g ¼ 2ℏω⊥a, where a ¼ 5.3 nm
is the 3D scattering length [21], and the chemical potential
is given by μ ¼ gn. This is valid only as long as μ ≪ ℏω⊥,
which requires na ≪ 1. In the presented data na takes
values as large as 1.3 and the broadening of the transverse
wave function due to interactions has to be taken into
account for quantitative analysis. In particular, the equation
of state becomes μ ¼ ℏω⊥ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4na

p
− 1Þ [23]. The qua-

sicondensates are confined in the longitudinal direction
with a harmonic potential VðzÞ of trapping frequency
ωz=ð2πÞ ¼ 8.5 Hz, weak enough so that the longitudinal
profile n0ðzÞ is well described by the local density
approximation (LDA), with a local chemical potential
μðzÞ ¼ μp − VðzÞ, where μp is the peak chemical potential.
It extends over 2R where the Thomas-Fermi radius R
fulfills VðRÞ ¼ μp. Once the quasicondensate is prepared,
we increase the frequency of the radio-frequency field, by
several kHz, a value sufficient so that it no longer induces
losses. We then investigate the evolution during the waiting
time t. Five different data set are investigated, differing in
the value of the transverse confinement and the initial
temperature and peak density.
Using absorption images we record the density profile of

the gas, from which we extract the peak density np.
Figure 1 shows the evolution of np with the waiting time
t for the different data sets. The observed nonexponential
decrease of np is neither due to one-body losses (whose rate
is smaller than about 0.14 s−1 in our experiment), nor to
inelastic two-body collisions, negligible for spin polarized
87Rb [24,25]. Its origin is three-body recombinations, as
justified by calculations presented below. In a three-body
recombination, a molecule (a dimer) is formed and its

binding energy is released in the form of kinetic energy of
the molecule and the remaining atom. They both leave the
trap since their energy is typically much larger than the trap
depth, limited by the radio-frequency field. Thus, the effect
of the three-body process is to decrease the gas density
according to dρ=dt ¼ −ρ3gð3Þð0Þκ, where ρ is the three
dimensional atomic density, gð3Þð0Þ is the normalized three-
body correlation function at zero distance, and κ ¼ ð1.8�
0.5Þ × 10−41 m6=s is the three-body loss rate for 87Rb [24].
In a quasicondensate, correlations between atoms are small
and gð3Þð0Þ ≃ 1 [26]. Moreover, integrating dρ=dt over the
transverse shape of the cloud, we obtain a one-dimensional
rate of density decrease dn0ðtÞ=dt ¼ −Kn0ðtÞ3, where
K ¼ ðκ=n30Þ∬ dxdyρðx; yÞ3. Taking into account the trans-
verse broadening of the wave function using the Gaussian
ansatz results of [27], we obtain K ¼ K0=ð1þ 2n0aÞ,
where K0 ¼ κm2ω2⊥=ð3π2ℏ2Þ [28]. Finally, the rate of
variation of the total atom number N is

dN
dt

¼ −
Z

R

−R
dzKðzÞn0ðzÞ3: ð1Þ

At any time, the measured profile is very close to an
equilibrium profile, which indicates the loss rate is small
enough to ensure adiabatic following of n0ðzÞ. Then N and
n0ðzÞ are completely determined by np and Eq. (1) can be
transformed into a differential equation for np. We solve it
numerically for the parameters of the experimental data,
namely the frequency ω⊥ and the initial peak density, using
the LDA to relateN and n0ðzÞ to np. Calculations, shown in
Fig. 1, are in good agreement with the experimental data,
which confirms that losses are largely dominated by three-
body losses. In contrast to [5], where losses are dominated
by engineered large one-body losses, we rely here on
intrinsic collisional properties of the gas.
The temperature of the gas is determined analyzing the

large density ripples that appear after a time of flight tf
[5,29–32]. Interactions are effectively quickly turned off by
the transverse expansion of the gas and the subsequent free
evolution transforms longitudinal phase fluctuations into
density fluctuations. Using an ensemble of images taken in

FIG. 1. Peak density, in log scale, versus the waiting time t, for
the five different data sets. Solid lines are ab initio calculations of
the effect of three-body losses, for initial peak densities equal to
that of the experimental data.
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the same experimental condition, we extract the density
ripple power spectrum

hjρðqÞj2i ¼
�����

Z
dz½nðz; tfÞ − hnðz; tfÞi�eiqz

����
2
�
: ð2Þ

We choose tf small enough so that the density ripples
occurring near the position z are produced by atoms which
were initially in a small portion of the cloud, located near z.
We can thus use, within a LDA, the analytic predictions for
homogeneous gases to compute the expected power spec-
trum of the trapped gas [32]. We take into account the finite
resolution of the imaging system modeling its impulse
response function by a Gaussian of rms width σres. For a
given data set the density ripple power spectrum recorded at
t ¼ 0 is fitted with the temperature T and σres, the latter
depending on the transverse width of the cloud and thus on
ω⊥. We then fit hjρqj2i at larger values of t with T as a
single parameter (see inset Fig. 2). The time evolution of T
is shown in Fig. 2 for the five different data sets investigated
in this Letter. The temperature decreases with t, which
indicates a cooling mechanism associated with the three-
body losses. Note that this thermometry probes phononic
collective modes since the experimentally accessible wave
vectors are much smaller than the inverse healing
length ξ−1 ¼ ffiffiffiffiffiffiffiffiffiffiffi

mgn0
p

=ℏ.
Figure 3 shows the same data, with the temperature

normalized to mc2p, where cp ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
np∂nμjnp=m

q
is the

sound velocity at the center of the cloud, shown versus
the peak density np. While np explores more than one order
of magnitude, remarkably kBT=ðmc2pÞ shows small
dispersion and is close to its mean value 0.64, the standard
deviation being 0.02 [33].
The absolute linear density is, however, not the most

relevant quantity. A 1D gas at thermal equilibrium is
characterized by the dimensionless quantities γ ¼
mg=ðℏ2nÞ and tYY ¼ ℏ2kBT=ðmg2Þ [18]. In particular,
the quantum degeneracy condition corresponds to the line
γ2tYY ≃ 1. Moreover, the crossover between the ideal Bose
gas regime and the quasicondensate regime occurs, within

the region γ ≪ 1, along the line γ3=2tYY ≃ 1. Finally, within
the quasicondensate regime, the line γtYY ≃ 1 separates the
high temperature regime, where the zero distance two- and
three-body correlations functions gð2Þð0Þ and gð3Þð0Þ are
dominated by thermal fluctuations and are larger than 1
from the low temperature regime, where gð2Þð0Þ and gð3Þð0Þ
are dominated by quantum fluctuations and are smaller than
1 [34]. Here, we generalize these 1D parameters to quasi-
1D gases introducing t̃YY ¼ ℏ2kBTn2=ðm3c4Þ and γ̃ ¼
m2c2=ðℏ2n2Þ. For a harmonically confined gas, we refer
in the following to the values of t̃YY and γ̃ evaluated at the
trap center. The evolution of the state of the gas during the
three-body loss process is shown in Fig. 4 in the (t̃YY , γ̃)
space. All data collapse on the line γ̃t̃YY ¼ kBT=ðmc2pÞ ¼
0.7, with a maximum deviation of 36%, while t̃YY explore
more than 2 orders of magnitude.
The physics at the origin of the observed behavior can be

understood by considering the simple case of a pure 1D
homogeneous quasicondensate. We give here a simplified
analysis and refer the reader to [11] for a more complete
study. At first, let us solely consider the effect of three-body
losses, during a time interval dt, in a small cell of the gas of
length Δ. The density is n ¼ n0 þ δn, where n0 is the mean
density and δn ≪ n0 since we consider a quasicondensate.

FIG. 2. Evolution of the temperature for the five data sets (same
color code and symbols as in Fig. 1). Inset: density ripples power
spectrum corresponding to the encircled point, with the fit in solid
line yielding the temperature.

FIG. 3. Evolution of the ratio kBT=ðmc2pÞ, in the course of the
three-body loss process, for the five data sets (same color code
and symbols as in Fig. 1). The temperature decreases with c2p,
which is approximately proportional to np. Solid (respectively,
dashed) lines: asymptotic ratio for a 1D homogeneous (respec-
tively, harmonically confined) gas. Dotted lines: numerical
calculation, that takes into account the transverse swelling, for
two different initial situations close to that of experimental data.

FIG. 4. The data collapse on the line γ̃t̃YY ¼ 0.7. The lower
right corner corresponds to the strongly interacting Tonks-
Girardeau regime. The data sets and color (symbols) codes are
the same as in all other figures.
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The density evolves according to dn ¼ −Kn3dtþ dη,
where dη is a random variable of vanishing mean
value reflecting the stochastic nature of the loss process.
During dt the loss process is close to Poissonian and
hdη2i ¼ 3Kn3dt=Δ ≃ 3Kn30dt=Δ, where the factor 3 comes
from the fact that each loss event amounts to the loss of 3
atoms. To first order in δn, the mean density evolves
according to dn0 ¼ −Kn30dt, and the expansion of dn
yields

dδn ¼ −3Kn20δndtþ dη: ð3Þ
The two terms of the right-hand side correspond to the
two competing effects of losses. The first term, a drift
term, reduces the density fluctuations: it thus decreases
the interaction energy, leading to a cooling. The second
term, a stochastic term due to the discrete nature of the
atom losses, increases the density fluctuations and thus
induces a heating. Going to the continuous limit, one
has hdηðzÞdηðz0Þi ¼ 3Kn30dtδðz − z0Þ.
Let us now consider the intrinsic dynamics of the gas.

Within the Bogoliubov approximation, valid in the quasi-
condensate regime, one identifies independent collective
modes and, up to a constant term, the Hamiltonian of the
gas writes H ¼ P

kHk, where

Hk ¼ Akδn2k þ Bkθ
2
k ð4Þ

is the Hamiltonian of the collective mode of wave vector k
[8]. Here, the conjugate quadratures δnk and θk are the
Fourier components of δn and θ, Bk ¼ ℏ2k2n0=ð2mÞ, and,
as long as phononic modes are considered, Ak ¼ g=2. At
thermal equilibrium the energy is equally distributed
between the quadratures so that hHki=2 ¼ Akhδn2ki ¼
Bkhθ2ki. Let us compute the evolution of hHki under the
effect of losses, assuming the loss rate is small compared to
the mode frequency ωk such that the equipartition holds
for all times. First, the Hamiltonian parameter Bk

changes according to dBk ¼ −Kn20Bkdt. Second, accord-
ing to Eq. (3), the losses modify the distribution on the
quadrature δnk and we obtain dhδn2ki=dt ¼ −6Kn20hδn2ki þ
3Kn30 [35]. Summing this two contributions leads to

dhHki
dt

¼ −
7

2
Kn20hHki þ

3

2
Kn30g: ð5Þ

From this equation, and using dn0=dt ¼ −Kn30, we derive
the evolution of the ratio y ¼ hHki=ðmc2Þ, where c ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
gn0=m

p
is the speed of sound. We find that y converges at

long times towards the stationary value y∞ ¼ 0.6.
Phononic modes typically have large occupation numbers
for values of y of the order of or larger than 1 so that
hHki ≃ kBT, where T is the mode temperature, and
y ¼ kBT=ðmc2Þ.
In the presence of a harmonic longitudinal potential,

calculations which assume that the loss rate is small enough

to neglect nonadiabatic coupling between modes, predict a
stationary value of the ratio kBT=ðmc2pÞ equal to y∞ ¼
0.70ð1Þ [11], a value close to experimental data. For a more
precise comparison of data with theory, we compute the
time evolution of y according to the formula derived in
[11], that takes into account the transverse swelling of the
wave function which occurs in our data at large na. The
results, shown in Fig. 3 for two different initial situations, is
close to experimental data. Even at the beginning of the
observed time evolution, the ratio kBT=ðmc2pÞ in our gases
is close to its asymptotic value. Data are taken only for
gases that were sufficiently cooled by evaporative cooling
to be in the quasicondensate regime, where both our
thermometry and the theoretical description of the effect
of losses are applicable. It occurs that, in our experiment,
when the gas enters the quasicondensate regime the ratio
kBT=ðmc2pÞ is already close to 0.7.
In conclusion, we showed in this Letter that, under a

three-body losses process, the temperature of a quasicon-
densate in the quasi-1D regime decreases in time. The ratio
kBT=ðmc2pÞ stays close to the predicted stationary value,
which results from the competition between the cooling
effect of losses and the heating due to the stochastic nature
of losses. This work raises many different questions. First,
the cooling mechanism presented in this Letter is not
restricted to 1D quasicondensates and it would be interest-
ing to investigate it in other regimes and dimensions, in
particular as one approaches the Tonks regime of 1D gases.
Second, while results presented in this Letter concern only
the phononic modes, it would be interesting to study the
effect of losses on higher energy modes. They might reach
higher temperatures than phononic modes, as predicted for
one-body losses [7], and the stability of such a nonthermal
situation might be particular to the case of 1D gases.
Finally, it is interesting to compare the three-body losses
cooling to the commonly used evaporative cooling mecha-
nism, which occurs via the removal of atoms whose energy
is larger than the trap depth. Its efficiency drops drastically
for temperatures lower than mc2p=kB: the relevant excita-
tions are then phonons, which do not extend beyond the
condensate, and are thus very difficult to “evaporate.” Thus,
obtaining, by means of evaporative cooling, temperatures
lower than the asymptotic temperature imposed by three-
body losses is not guaranteed.
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