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We show that the ground state of a dipolar Bose gas in a cylindrically symmetric harmonic trap has a rich
phase diagram, including droplet crystal states in which a set of droplets arrange into a lattice pattern that
breaks the rotational symmetry. An analytic model for small droplet crystals is developed and used to
obtain a zero temperature phase diagram that is numerically validated. We show that in certain regimes a
coherent low-density halo surrounds the droplet crystal, giving rise to a novel phase with localized and
extended features.
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Quantum droplets occur in ultracold atomic gases when
quantum fluctuations (QFs) stabilize the system against
collapse due to attractive two-body interactions. Such
droplets have now been studied using dipolar [1–5] and
spinor [6,7] Bose-Einstein condensates. For the dipolar
system, the long ranged and anisotropic dipole-dipole
interactions (DDIs) cause the droplets to elongate into
filaments and neighboring droplets to repel each other,
potentially stabilizing multidroplet configurations.
In dipolar experiments, droplets are usually produced by

reducing the s-wave scattering length until the condensate
is dominated by DDIs and collapses into one or more
droplets. There is a rich interplay between the trap potential
and the DDIs that can be used to control the behavior of
dipolar gases [8,9], particularly in the production of
droplets: in prolate traps, a single large droplet forms
[3,5], while in an oblate trap (more tightly confined along
the dipole direction), an array of small droplets emerges [1].
It has been shown [10–12] that a single droplet is the
ground state for the oblate trap studied in experiments [1],
but because the condensate-droplet transition is discon-
tinuous (also see [4]) the system is unable to follow the
ground state as the scattering length is ramped and many
small droplets nucleate heating the system. Thus, the
observed multidroplet states have high entropy and the
droplets are not mutually coherent (see [13–15]).
This poses the question as to whether droplet crystals can

occur as the ground state of a dipolar gas in a regime where
phase coherence persists across the droplets. In this case,
the ground state is a supersolid, a phase of matter than has
recently been observed in condensates coupled to optical
fields [16,17]. Here we address this question by exploring
the ground state configurations of an oblately trapped
dipolar condensate. Our key finding is that droplet crystals
can occur as the ground state and low-lying excited states of
the system in parameter regimes accessible to current
experiments (e.g., see Fig. 1). We study the energetics of

the droplet crystal states and develop an analytic model to
describe crystals, with explicit solutions given for up to
seven droplets. This allows us to determine a phase diagram
for the crystal configurations, which we validate against full
numerical calculations of the extended Gross-Pitaevskii
equation (GPE). Finally, we demonstrate the emergence of
haloed states in droplet crystals with sufficiently high
chemical potential. In these states, the droplets coexist
with a low-density orbital that typically extends around the
outside of the crystal. Our results demonstrate that dipolar
gases are an exciting dilute atomic system for studying
supersolidity (cf. [18–20]). We also note recent work
predicting a striped phase of a dipolar condensate in a
cigar-shaped trap potential [15].
Formalism.—The system of interest is a dilute Bose gas

of atoms with a magnetic moment μm polarized along z.
The stationary states of this system are described by the
extended GPE μψ ¼ LGPψ , where

LGPψ ¼
�
−
ℏ2∇2

2m
þ VðxÞ þΦðxÞ þ γQFjψ j3

�
ψ : ð1Þ

Here μ is the chemical potential and

ΦðxÞ ¼
Z

dx0Uðx − x0Þjψðx0Þj2; ð2Þ

with UðrÞ ¼ gsδðrÞ þ ð3gdd=4πr3Þ½1 − 3ðz2=r2Þ�, where
the contact interaction coupling constant is gs ¼
4πℏ2as=m, as is the s-wave scattering length, and the
dipolar interaction coupling constant is gdd ¼ μ0μ

2
m=3.

We define the dipole length add ¼ mgdd=4πℏ2 and
the ratio of dipolar to s-wave lengths ϵdd ¼ gdd=gs. We
include quantum fluctuations in the local density approxi-
mation, where the coefficient of this term is γQF ¼
32
3
gs

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ða3s=πÞ

p
ð1þ 3

2
ϵ2ddÞ [11,12,21]. The atoms are
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confined in a harmonic trapping potential V ¼
ðm=2ÞPα¼x;y;zω

2
αα

2. The extended GPE theory we have

outlined is valid while the diluteness parameter
ffiffiffiffiffiffiffiffiffiffi
na3dd

q
remains small, where n is the number density, so that higher
order quantum correlations are negligible. This theory has
successfully described droplet experiments with Er and Dy
atoms (e.g., see [2,5]), including detailed quantitative
comparisons [3]. Here the densest droplets shown have
na3dd ≲ 0.003.
Here we focus on the case of a cylindrically symmetric

trap with an oblate geometry with respect to the dipole
polarization direction (i.e., ω≡ ωx ¼ ωy, with ω < ωz), as
this configuration is conducive to the droplets subdividing,
driven by the tighter z confinement.
Numerical results.—We numerically represent the field

ψ on a three-dimensional mesh of points and use fast
Fourier transforms to evaluate the kinetic energy and the
convolution in Eq. (2). To improve the accuracy of the Φ

calculation, a cylindrically cutoff DDI potential in k space
is used (e.g., see [22]). We solve for stationary states using
gradient flow [23] and conjugate gradient optimization
[24,25] techniques adapted to the extended GPE and for
constrained total atom numberN ¼ R

dxjψ j2. Solutions are
accepted as converged when the residual max jLGPψ −
μψ j= ffiffiffiffi

N
p

is smaller than 10−4.
In the regimes we study here, the system has a compli-

cated energy landscape with many local minima corre-
sponding to stationary states ψ with different droplet crystal
configurations. Individual solution runs starting from
different initial fields or using different solvers can end
up with qualitatively different stationary states. We find that
these states can be categorized as either a condensate or a
particular type of droplet state. The condensate state is a
low-density solution in which the QF corrections are
negligible, and for sufficiently large N, the density profile
is determined by balancing the two-body interactions
against the trapping potential. The droplet states only occur
for ϵdd > 1 and sufficiently many atoms, and consist of ν
(positive integer) distinct dense filament-shaped droplets
that are elongated in the direction of the dipoles. Examples
of these different types of states are shown in Fig. 1, where
we have denoted the condensate state as ν ¼ 0.
Since the numerical solvers we use can find various

ν-droplet states corresponding to local energy minima, we
are able to follow particular states as the system parameters
change to obtain the solution energy branches (e.g., see
Fig. 2), where the energy is given by

E ¼
Z

dxψ�
�
−
ℏ2∇2

2m
þ VðxÞ þ 1

2
ΦðxÞ þ 2

5
γQFjψ j3

�
ψ :

ð3Þ

We can only follow a given branch over a limited parameter
range until the state becomes dynamically or energetically
unstable and decays to another (lower energy) branch.
Excited stationary states are important since they are robust
to perturbations and can be long-lived. Indeed, excited
multidroplet arrays have been observed to be stable for
≳100 ms [1].
In Fig. 2(a) we show the solution energies for as ¼ 70a0

and ν ≤ 7 as a function of atom number, showing that as N
increases the ground state transitions to crystals with an
increasing number of droplets. Notably, the ground state
changes from ν ¼ 0 to 7 as N varies from 1.4 × 103 to
4 × 104.
We can qualitatively explain the behavior of the energy

branches in Fig. 2(a). For the ν ¼ 0 condensate solution,
E=N increases with N. This is because the effective two-
body interactions are repulsive as the DDI is tuned positive
by the oblate condensate density profile (i.e., oblate density
enhances the repulsive side-by-side interaction of the
dipoles). In contrast, for the droplet solutions, the effective

FIG. 1. Stationary solutions of the extended GPE (1) for a 164Dy
gas with as ¼ 70a0 in a ðω;ωzÞ ¼ 2π × ð60; 300Þ Hz trap, atom
numbers and ν values (see text) as indicated. Density isosurfaces
are at 2 × 1019 m−3 (blue) and 2 × 1020 m−3 (red). Density slices
are at z ¼ 0.
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two-body interactions are attractive due to the prolate shape
of the droplets. Following the single droplet (ν ¼ 1)
solution we see that E=N initially decreases with increasing
N. In this regime, the droplet is small and the trap a plays
negligible role; i.e., it is effectively a self-bound droplet in
free space [26,27]. The size of the droplet increases with N
and eventually the z confinement becomes important. As
this occurs, we observe E=N to level off and then start
increasing. For sufficiently large N it is favorable for the
droplet to divide into two smaller droplets (with N=2 atoms
each) to decrease the z-confinement energy (i.e., when
the ν ¼ 2 curve descends below the ν ¼ 1 curve at
N ≈ 8 × 103) [28]. In the ν ¼ 2 state, the droplets radially
separate to positions where the repulsive DDI between the
droplets is balanced by the radial trap forces. As N (and
hence each droplet size) continues to increase, it becomes
favorable for states with more droplets to be the ground
state. At higher N where large ν values are preferred, the
droplets spread out further in the trap and the energy
difference between higher ν branches tends to be smaller.
We have not tracked ν > 7 solutions in detail, but note
ν ≥ 7 solutions become energetically favorable for the
parameters of Fig. 2(a) when N > 4 × 104. An example
of a larger droplet crystal with N ¼ 2 × 105 and ν ¼ 19 is
shown in Fig. 1.

For a lower value of as (i.e., higher ϵdd), the two-body
interactions are more attractive in the droplet, allowing it to
self-bind and become the ground state at lower atom
number [26] [see Fig. 2(b)]. Also, because the droplets
are smaller and more dense, the transition to higher ν states
occurs at larger N.
Variational model and phase diagram.—We can for-

malize our qualitative discussion of droplet crystal
energetics with a variational model. We define an
ansatz for ν ≥ 1 droplets with total density nðxÞ ¼P

ν
j¼1 jψvarðx − djÞj2, where

ψvarðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
8N=ν

π3=2
Q

ασα

s
e−2

P
α
α2=σ2α ð4Þ

is the droplet orbital taken to be identical for all droplets,
α ¼ fx; y; zg, and dj is the center of mass position for the
jth droplet. Here σ and dj are variational parameters and we
ignore overlap between the droplets. We calculate the
intradroplet dipolar energy using (2), but for the interdrop-
let dipolar energy we treat each droplet as a point dipole of
N=ν atoms. We further assume that external trap confine-
ment is sufficient so that the droplets positions dj lie in the
xy plane (as we find from the extended GPE calculations).
In our ansatz, the energy decouples into the sum of

individual droplet energies that do not depend on dj and
have been evaluated in [12] and a lattice energy

EL ¼ mω2N
2ν

Xν
j¼1

jdjj2 þ
3gddN2

8πν2
Xν
k≠j

1

jdj − dkj3
; ð5Þ

containing terms from the spatial arrangement of the
droplets and the interdroplet dipolar repulsion, which
does not depend on σ. Using the length scale aL ¼
ð3adda4ωN=νÞ1=5 gives EL ¼ mω2a2LĒLN=2ν, where aω ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mω

p
and

ĒL ¼
Xν
j¼1

jd̄jj2 þ
Xν
k≠j

1

jd̄j − d̄kj3
: ð6Þ

For ν ≤ 7, EL is minimized when the droplets are located at
the vertices of a regular polygon, but with one droplet at
the center for ν ¼ 6, 7; i.e., the number of vertices ν0 is
ν for ν < 6 and ν − 1 for ν ¼ 6, 7. The droplet positions
are d̄j ¼ dνd̂j, with polygon radius jdjj ¼ aLdν and
d̂j ¼ f− sin½ð2πj=ν0Þ þ ϕ�; cos½ð2πj=ν0Þ þ ϕ�; 0g, for j ¼
0;…; ν0 and ϕ arbitrary. For ν ¼ 6, 7, d̂ν ¼ 0.
Then ĒL ¼ d2νν0 þ d−3ν sν, where sν ¼

P
ν
j≠k jd̂j − d̂kj−3,

which evaluates to sν ¼ f1
4
; 2ffiffi

3
p ; 1

2
þ 2

ffiffiffi
2

p
; 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð5þ ffiffiffi

5
p Þ

q
;

2½5þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð5þ ffiffiffi

5
p Þ

q
�; 99

4
þ 4ffiffi

3
p g for ν ¼ 2;…; 7. The mini-

mum of ĒL is at dν ¼ ð3sν=2ν0Þ1=5 ∼ 1, giving
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FIG. 2. (a) Energy as a function of total atom number for
as ¼ 70a0 using the GPE solutions obtained the trap
ðω;ωzÞ ¼ 2πð60; 300Þ Hz. Filled circle markers indicate the first
nine states appearing in Fig. 1. (Inset) The predictions of the
variational solution. (b) As above, but for as ¼ 65a0. Horizontal
colored lines indicate the ground state at each N value with
arbitrary scale.
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EL

Nℏω
¼ 5

2 × 33=5
ν0

ν
d2ν

�
Nadd
νaω

�
2=5

: ð7Þ

Our full GPE solutions match these detailed predictions for
the droplet crystal structure for ν ≤ 7 (e.g., see Fig. 1). For
higher ν, the droplets eventually form a triangular lattice
[e.g., Fig. 1(j)], often with some distortion at the edges of
the crystal. For comparison, the total variational energy is
shown in the inset to Fig. 2(a).
In Fig. 3 we present a phase diagram as a function of N

and 1=ϵdd, showing the regions where the condensate and
various droplet crystal configurations (up to ν ¼ 7) are the
ground states. These results show that the variational theory
provides a useful quantitative description of the full
extended GPE solutions over a wide parameter regime.
Haloed droplet crystal states.—As N increases, the

droplet states develop a halo of low-density atoms that
extend outside the droplets [e.g., see Figs. 1(i) and 4(c)].
This occurs when the chemical potential is high enough for
atoms to escape from the effective potential that self-binds
the droplets and spread out over accessible regions of the
effective potential between the droplets. We quantify
the number of atoms participating in the halo by calculating
the normalization of ψ excluding atoms within the high-
density droplets. The results in Figs. 4(a) and 4(b) show
that the halo suddenly forms at a critical number and
chemical potential that increases with ν. In the phase
diagram (Fig. 3), we indicate where halo states occur.

The variational model is not able to represent halo states,
and in the regions of the phase diagram where these
develop, the variational predictions for the phase bounda-
ries are noticeably worse.
Conclusions and outlook.—For the droplet crystals we

have studied here to be a supersolid, they must be phase
coherent [29]. However, when the droplets are well
separated, the tunneling between them is small and the
coherence between droplets will vanish. To quantify this
requires going beyond the classical field description under-
lying the extended GPE. As an approximate treatment, we
can consider a pair of droplets in the crystal and model their
relative coherence as a bosonic Josephson junction. To do
this, we calculate the tunneling matrix element J and
charging energy EC from the stationary solutions [30].
When J > EC (Josephson regime) there will be number
fluctuations in each droplet and the state will be highly
coherent with a well-defined relative phase. When J < EC
(Fock regime), the system prefers a well-defined atom
number in each droplet, the coherence between them
vanishes, and the relative phase is undefined [32]. As an
example, for the central droplet of the ν ¼ 6 state in
Fig. 4(c), we find J=h ¼ 6 × 10−5 Hz and EC=h ¼
0.47 Hz. In this case, where the droplets are 3.6 μm apart,
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FIG. 3. Ground state phase diagram for ν-droplet crystal states
of 164Dy atoms in a ðω;ωzÞ ¼ 2πð60; 300Þ Hz trap. The solid
lines and colored regions show the extended GPE results for
where the ν-droplet states with ν ≤ 6 are the lowest energy state.
The gray region is where the ground state has ν > 6. Transition
lines between states found using the variational model are
indicated by dashed lines. The horizontal lines indicate the
results of Fig. 2 and the filled circles correspond to states in
Figs. 1(a)–1(i). Hatched regions are where Nhalo=N > 1%.
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FIG. 4. (a) Number of atoms in the haloNhalo asN increases and
(b) corresponding chemical potentials. Filled circles indicate the
states in Figs. 1(b)–1(i). Filled square indicates state (c) below. (c),
(d) ν ¼ 6 droplet crystal states with N ¼ 97.7 × 103. Same para-
meters as Fig. 2(a), except for the higher trap frequencies in (d).
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the high relative cost of number fluctuations will sup-
press tunneling, and hence the droplets will be in the
Fock regime and there will be no coherence across the
droplet crystal. The tunneling can be enhanced by bringing
the droplets closer together using tighter radial confine-
ment [15]. As an example, in Fig. 4(d) we show a ν ¼ 6
state with tighter confinement, where the droplet separa-
tion has reduced to 1.5 μm. Here J=h ¼ 2.2 Hz and
EC=h ¼ 0.38 Hz, which is well within the Josephson
regime, so coherence will extend between droplets.
These results suggest the interesting possibility of observ-
ing a Mott insulatorlike transition from a supersolid to
incoherent droplet crystal by slowly reducing the radial trap
confinement. We also note that the state shown in Fig. 4(c)
has a halo, and while the droplets are mutually incoherent,
the halo part of the system will be coherent.
Future work will consider collective excitations of the

droplet crystals (cf. [33]) and efficient experimental strat-
egies for preparing particular crystal configurations.
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