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Acoustic waves in a linear time-invariant medium are generally reciprocal; however, reciprocity can
break down in a time-variant system. In this Letter, we report on an experimental demonstration of
nonreciprocity in a dynamic one-dimensional phononic crystal, where the local elastic properties are
dependent on time. The system consists of an array of repelling magnets, and the on-site elastic potentials
of the constitutive elements are modulated by an array of electromagnets. The modulation in time breaks
time-reversal symmetry and opens a directional band gap in the dispersion relation. As shown by
experimental and numerical results, nonreciprocal mechanical systems like the one presented here offer
opportunities to create phononic diodes that can serve for rectification applications.
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Phononic crystals and metamaterials control acoustic
waves through the geometry of their building blocks,
engineered with periodic impedance mismatches and/or
local resonances [1–7]. The majority of current realizations
focuses on designing metamaterials in their spatial dimen-
sions, while the material properties remain unchanged over
time. This design framework restricts the application of
metamaterials in scenarios where a material’s tunability and
adaptivity are required [8,9]. More importantly, in these
time-invariant metamaterials, reciprocity holds as a funda-
mental principle in wave propagation, requiring the trans-
mission of information or energy between any two points
in space to be symmetric for opposite propagating
directions [10].
However, nonreciprocal materials or devices, i.e., diodes,

are usually required for rectification and control of the
associated energy flow. Unlike electric diodes, mechanical
or acoustic diodes are just starting to be explored [11–18].
Achieveing nonreciprocity in mechanical systems through
intrinsic time-reversal symmetry breaking has been dem-
onstrated in strongly nonlinear networks [11,13,14], selec-
tive acoustic circulators [15], and topological mechanical
insulators [16–18]. In nonlinear systems, the nonreciprocal
behavior is a function of the nonlinear potential and may
be tuned by the wave amplitude [19,20]. Recently, theo-
retical proposals [21–24] suggested the use of external,
spatiotemporal modulation of a material’s properties as a
means to achieve nonreciprocity within the linear operating
regime.
Here we demonstrate realization of a dynamic phononic

lattice, in which the elastic properties can vary over time
with spatiotemporal modulation. This time dependence
leads to novel wave propagation behaviors such as non-
reciprocity [21–24], which is very difficult to achieve in
time-invariant systems. Though we focus on elastic waves

in amagnetically coupled lattice, the concept extends to other
types of waves such as thermal diodes [25] and photonic
systems [26]. For instance, nonreciprocal propagation in
photonic systemswas observed in coupled, modulated wave-
guides [27], where modulation leads to irreversible mode
conversion between the twowaveguides.Our systembehaves
as a mechanical diode operating at tunable frequency ranges.
Such a device may serve in acoustic circuits, like circulators,
transducers, and imaging systems to rectify mechanical or
acoustic energy flows [11].
Experimental realizations of modulation-induced non-

reciprocity in a single phononic waveguide require (i) a
dynamic lattice with controllable elastic properties, and
(ii) a dynamic modulation with speed comparable to the
wave propagation velocity. We meet these requirements by
building a mass-spring chain of repelling magnets modu-
lated by externally driven coils. The chain consists of
12 ring magnets (m ¼ 9.8 g) free to slide on a supporting
smooth cylindrical rail, as shown in Fig. 1(a). The first and
last magnets are fixed to the rail (fixed boundary con-
ditions). To dynamically modulate the chain, we introduce
electrical coils around the 8 central ring magnets (masses
3 to 10). The electrical coils are positioned coaxially with
the magnets and rest at the same center positions, x0;n, as
shown in Fig. 1(a). When a current flows through the
electrical coils, they create local magnetic fields that couple
to the ring magnets. When the ring magnets are at rest (x0;n
position), they sit at the apex of the magnetic potential
created by the coils and their coupling forces vanish. When
the ring magnets displace, they experience either restoring
or repelling forces from the coils, depending on the current
direction. The coupling between each pair of ring magnets
and coil is similar to a grounding spring. When the
grounding spring stiffness is modulated spatiotemporally,
time-reversal symmetry is broken leading to the formation
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of a nonreciprocal band gap in the dispersion diagram
[21–24], as shown in Fig. 1(b).
To characterize the mechanical parameters of our system,

we measure the repelling force between neighboring masses
as a function of their displacement (see Supplemental
Material [28]). The resulting force-displacement curve
exhibits a nonlinear force that is characteristic of dipole
repulsion, shown in Fig. 1(c). We also measure the force
between the magnets and the surrounding coils at different
applied currents in Fig. 1(d). To measure the dynamic
response of the system, we drive the 2nd mass with a
sinusoidal force of frequency fdr, and the velocity of mass 11
is monitored with a laser vibrometer (output signal). The
velocity response is measured using a lock-in amplifier as a
function of different fdr for different modulation parameters.
Because of the small vibration amplitude of the driving
signal (≤5 mm), the coupling between masses can be
approximated by a linear response in the red shaded
area of Fig. 1(c). The linearized coupling stiffness
between adjacent magnets obtained from experiments is
kc ≈ 113 N=m. Similarly, the coupling between the

electromagnets and the masses can be linearized in the
dynamic regime of interest in Fig. 1(d). We consider only the
nearest neighbor interactions between masses and mass-coil
pairs, since non-nearest neighbor interactions decay to a
negligible amount (see Supplemental Material [28]).
The spatiotemporal modulation of the system can

be achieved by applying sinusoidal alternating currents
through the coils. Each coil is subjected to a current of the
same frequency, fmod , but with a phase shift of π=2 or
−π=2 between neighbors. The equivalent grounding stiff-
ness for the nth mass thus can be modeled as

kg;n ¼ kg;dc þ kg;ac cos

�
2πfmod t ∓ πx0;n

2a

�

¼ kg;dc þ kg;ac cosð2πfmod t ∓ qmod nÞ; ð1Þ

where kg;dc is the small time-independent grounding stiff-
ness added by the on-site electromagnetic force, kg;ac is the
modulation amplitude of the grounding stiffness, x0;n is the
equilibrium position of each unit, and qmod ¼ �π=2 is

(a) (b)

(c) (d)

FIG. 1. Experimental setup for the nonreciprocal dynamic phononic lattice. (a) Top: Schematic of the experimental setup. Middle:
Discrete mechanical representation of the system with masses and springs. Bottom: Schematic illustration of the modulation concept by
changing the gounding spring stiffness (kg) in a wavelike fashion. (b) Scattering analysis: The red solid curve describes the original
dispersion relation of the unmodulated monatomic lattice. The black dashed and grey dash-dotted curves correspond to Floquet-Bloch
replicas of the original curves obtained by translation along the solid blue arrows �ðωmod ; qmod Þ ¼ �ð15 Hz; π=2Þ. Parity-breaking
crossings (circled) are where Bragg’s condition is satisfied and nonreciprocal wave scattering is anticipated. (c) Force-displacement
curve for neighboring magnetic masses, measurement (solid) and fitted curve (dashed). (d) Measured force-dispacement curves between
the ring magnet and its surrounding coil at different currents. The red shaded regions in both (c) and (d) correspond to the dynamic
operating regime of our experiments.
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the normalized wave number. Equation (1) describes a
traveling wave with wavelength λmod ¼ 4a and speed
vmod ¼ 4afmod. The modulation amplitude measured in
our experiments is kg;ac ¼ 24 N=m, which is 21% of the
coupling stiffness, kc. The constant part of the grounding
stiffness is kg;dc ¼ 2.4 N=m, which is 1 order of magnitude
smaller than the oscillatory component.
In the absence of modulation (kg;ac ¼ 0), the dispersion

relation for an incident small-amplitude plane wave
u0ðn; tÞ ¼ U0 exp½iðqn − ωtÞ� is described by Dðω; qÞ ¼
kg;dc −mω2 þ 4kcsin2ðq=2Þ ¼ 0. Modulating the lattice
harmonically with ðfmod; qmodÞ generates an additional
scattered field usðn; tÞ ¼ Us exp½iðqsn − ωstÞ� whose
mode is shifted by an amount ðωmod; qmodÞ due to spatio-
temporal periodicity: ðωs; qsÞ ¼ ðω0; q0Þ � ðωmod; qmodÞ.
The scattered field is negligible ðUs ≪ U0Þ except when
it is resonant with the incident field, i.e., when the modified
Bragg’s condition Dðωs; qsÞ ¼ Dðω0; q0Þ ¼ 0 is met [22].
Graphically, scattered modes are located at cross-
ings between the original [Dðω; qÞ ¼ 0] and shifted
[Dðωs; qsÞ ¼ 0] dispersion curves. Note that the crossings
are nonsymmetrically distributed in a way that breaks
parity of the dispersion diagram and, ultimately, reciprocity
of wave propagation. Depending on whether q0qs is
positive or negative, the scattered mode propagates either
with or against the incident wave, i.e., is either transmitted
or reflected. In both cases however, its frequency is shifted
away from the incident frequency ω0. This translates into a
one-way dip in the transmission spectrum around ω0.
We first set the modulation frequency to fmod ¼ 15 Hz,

which falls within the pass band of the monoatomic lattice.
For this modulation frequency, three crossings exist at 5,
19, and 33 Hz and nonreciprocal wave characteristics are

anticipated for neighboring driving frequencies, fdr, as
shown in Fig. 2(a). We measure the velocity of the second
to last mass in the array as a function of the driving
frequency fdr in Fig. 2(b). The velocity profiles differ when
the acoustic waves are traveling in the same (red) or
opposite (blue) direction to the modulation wave, at driving
frequencies close to fdr ¼ 19.6 Hz. We define the codirec-
tional or contradirectional bias ratio as r ¼ U−=Uþ, where
U∓ denotes the velocity response amplitude for qmod ¼∓ π=2. At fdr ¼ 19.6 Hz, the measured velocity response
profile in time shows that waves traveling in opposite
directions have different amplitudes and profiles, with a
bias of r ≈ 2.9, shown in Figs. 2(b), 2(c). The time-domain
amplitudes are lower than the amplitudes obtained from the
velocity response functions. This is due to the anharmonic
nature of the response in the modulated lattice. However,
results demonstrate that the signal transfer around fdr ¼
19.6 Hz is strongly enhanced when traveling along the
modulation direction and suppressed in the other direction,
thus exhibiting a nonreciprocal behavior.
We developed a mathematical model to capture the

dynamic characteristics of the modulated lattice. The
system can be described as

mün þ Floss þ kg;nun þ Fcoupl ¼ δ2;nA cosð2πfdrtÞ ð2Þ

for 1 ≤ n ≤ 12. Here,unðtÞ ¼ 0 at the two boundariesn ¼ 1,
12. Floss ¼ b _un þ μsignðunÞ represents dissipative forces
within the chain, with viscous damping coefficient b ¼
0.056 kg=s and Coulomb friction coefficient μ ¼ 0.012 N
(see Supplemental Material [28]). The coupling force term is
Fcoupl ¼ Pða − un þ unþ1Þ − Pða − un−1 þ unÞ, where we

(a) (b)

(c)

(d)

(e)

FIG. 2. Nonreciprocal wave propagation for fmod ¼ 15 Hz. (a) Dispersion diagram of the modulated lattice calculated by Fourier
analysis of simulated velocity fields (color map) and analytically by coupled mode theory (solid black line). (b) Measured velocity
response function. The amplitude ratio at 19.6 Hz is r ¼ 2.9. (c) Measured velocity time series at fdr ¼ 19.6 Hz. The time series for
qmod ¼ −π=2 is shown along the negative time axis for better illustration. (d) and (e) are the simulation results corresponding to (b) and
(c), respectively. The simulated amplitude ratio at 19.6 Hz is r ¼ 1.9 in panel (d).
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use the approximation PðxÞ ¼ c1=ðx − c2Þ2 with c1 ¼
0.9788 mNm2 and c2 ¼ 7.748 mm obtained from a fitting
based on Fig. 1(c). δ2;n is the Kronecker delta, which is 1
for n ¼ 2 and zero everywhere else. The forcing amplitude
A ¼ 0.21 N is obtained as a fitting parameter. At this value
of the forcing amplitude, the response of the system is
well approximated by the linearized equations of motion
(the contribution from nonlinearity is discussed in the
Supplemental Material [28]). The experimental and numeri-
cal velocity response functions for a nonmodulated lattice
agree well (see Supplemental Material [28]). When the
modulation is turned on, the velocity profiles obtained in
experiments and simulations show a similar nonreciprocal
response in Figs. 2(d) and 2(e). However, the nonreciprocal
behavior at fdr ¼ 19.6 Hz is less pronounced in simulations
than in measurements (r ≈ 1.9).
We computed dispersion curves from space-time Fourier

analysis of the velocity field and compared them with the
ones obtained with the plane-wave expansion method in
Fig. 2(a). The observed nonreciprocal wave characteristics,
at fdr ¼ 19.6 Hz, agree well with the dispersion character-
istics. The dispersion curves in Figs. 1(b) and 2(a) predict
nonreciprocal behavior also near 5 and 33 Hz. However, the
experimental velocities are too small at these frequencies to
capture the effect. Note that the analyses (numerical and
theoretical) on an infinite lossless lattice [Fig. 2(a)] pre-
dicted the same frequency range for nonreciprocal wave
propagation as the experiments [Fig. 2(b)] and simulations
[Fig. 2(d)] on a finite lossy lattice. The effects of energy
loss and finite number of units are therefore secondary to
modulation effects; see Supplemental Material [28] for
discussions of finite-size and loss effects.

In order to demonstrate the tunability of the nonrecip-
rocal frequency range in our system, we next set the
modulation frequency to fmod ¼ 40 Hz, within the band
gap of the underlying monatomic lattice. Our model
predicts nonreciprocal wave behavior for driving frequen-
cies near the crossings at 10 and 30 Hz, as shown in
Fig. 3(a). This is also captured in the measured velocity
responses in Fig. 3(b) and time domain profiles at fdr ¼
31.6 Hz in Fig. 3(c). Corresponding numerical simulations
in Figs. 3(d), 3(e) agree very well with the measurements.
The dispersion curve of the modulated lattice in

Fig. 3(a), obtained from numerical calculations, corrobo-
rates the observed nonreciprocal characteristics for
fmod ¼ 40 Hz. The dispersion curve reveals two crossings
located near 30 and 10 Hz (visible as small bright yellow
regions lying on the main dispersion branches). At these
points, the modulation-induced scattered field is strong
enough to change the overall wave field. This is evident in
the velocity response functions, as r > 1 near 10 Hz and
r < 1 near 30 Hz. For other points along the main
dispersion branch, the scattered wave is too weak compared
to the incident field to induce any noticeable nonreciprocal
effects. In contrast to the case for fmod ¼ 15 Hz, the
crossing here occurs between a positive and a negative
branch of the dispersion curve (ω0ωs < 0) and leads to the
opening of a couple of “vertical” band gaps, as shown in
Fig. 3(a). Such crossings in infinite loss-less systems are
characteristic of unstable interactions caused by supersonic
modulation velocities, where the velocity field is contin-
uously amplified by drawing energy from the modulation
[31,32]. However, our experimental system is intrinsically
lossy and finite, and remains stable in the studied regime.

(a) (b) (d)

(c) (e)

FIG. 3. Nonreciprocal wave propagation for fmod ¼ 40 Hz. (a) Dispersion diagram of the modulated lattice calculated by Fourier
analysis of simulated velocity fields (color map) and analytically by coupled mode theory (solid black line). (b) Measured velocity
response function. The amplitude ratios are r ¼ 1.8 at 9.8 Hz and r ¼ 0.4 at 31.6 Hz. (c) Measured velocity time series at
fdr ¼ 31.6 Hz. The time series for qmod ¼ −π=2 is shown along the negative time axis for better illustration. (d) and (e) Simulation
results corresponding to (b) and (c), respectively. The simulated bias ratios are r ¼ 1.6 at 9.8 Hz and r ¼ 0.7 at 31.6 Hz in panel (c).
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The presence of losses is known to quench instabilities
[33]. In our system, this translates in the presence of a sharp
peak around 30 Hz in the transmission spectrum, shown in
Figs. 3(b), 3(d).
In conclusion, our results provide an experimental

demonstration of modulation-induced nonreciprocity in a
linear phononic lattice. The operating range of our lattice is
beyond the asymptotic limits that are typically enforced in
the existing theoretical work. The experimental realization
of dynamically modulated nonreciprocal systems opens
new opportunities for sound and vibration insulation
[11,12,15], phononic logic [13,14], and energy localization
and trapping [34]. In the future, the phononic waveguide
developed in our work could be employed to study the
nonlinear dynamics of modulated lattices, a regime that has
not been explored before. The design could also be
miniaturized into micro- or nanoscale electromechanical
systems [35–37] with tunable frequencies as basic elements
for acoustic rectifying circuits.
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