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We study, for the first time, the Casimir effect in non-Abelian gauge theory using first-principles
numerical simulations. Working in two spatial dimensions at zero temperature, we find that closely spaced
perfect chromoelectric conductors attract each other with a small anomalous scaling dimension. At large
separation between the conductors, the attraction is exponentially suppressed by a new massive quantity,
the Casimir mass, which is surprisingly different from the lowest glueball mass. The apparent emergence
of the new massive scale may be a result of the backreaction of the vacuum to the presence of the plates
as sufficiently close chromoelectric conductors induce, in a space between them, a smooth crossover
transition to a color deconfinement phase.
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Quantum fluctuations of virtual particles are affected
by the presence of physical objects. This property is a
cornerstone of the Casimir effect [1], which states that the
energy of vacuum (“zero-point”) quantum fluctuations
should be modified by the presence of physical bodies
[2,3]. The energy shift of the virtual particles has real
physical consequences because the Casimir effect leads to
the appearance of a small quantum force, known as the
“Casimir-Polder force” [4], between neutral objects. This
force has been detected in various experiments [5].
Apart from the simplest cases, the Casimir-Polder forces

are difficult to calculate analytically even in noninteracting
field theories since the energy spectrum of vacuum fluc-
tuations cannot be determined exactly for generic geom-
etries. Therefore the Casimir effect is often studied using
certain analytical approximations such as proximity-force
calculations [6] and various numerical tools [7], which
include worldline approaches [8] and methods of lattice
field theories [9,10].
In interacting theories the calculations become even

more involved. In quantum electrodynamics a negligibly
small correction to the Casimir-Polder force coming from
fermionic vacuum loops was calculated in a second-order
perturbation theory [3,11]. Perturbative calculations in
finite-volume geometries of non-Abelian gauge theories
and their effective infrared models were addressed in
Ref. [12].

In strongly coupled theories the interactions may not
only lead to a noticeable modification of the Casimir-
Polder forces but may also affect the structure of the
vacuum itself. The Casimir effect leads to the strengthening
of a chiral finite-temperature phase transition in a four-
fermion effective field theory [13]. The presence of the
boundaries effectively restores the chiral symmetry in an
otherwise chirally broken phase both in plane [14] and in
cylindrical [15] geometries. The interactions may even
change the overall sign of the Casimir-Polder force in
certain fermionic systems with condensates [16] and in
the CPN−1 model on an interval [17,18]. First-principles
numerical simulations show that the presence of the
boundaries affects also nonperturbative (de)confining prop-
erties of certain bosonic gauge systems [10]. There is
evidence that spatially compactified geometries may lead to
a phase transition in the non-Abelian vacuum [19].
In our Letter we initiate a first-principles investigation of

the Casimir effect in Yang-Mills theory which has an
inherently nonperturbative vacuum structure. We consider a
zero-temperature Yang-Mills theory in (2þ 1) spacetime
dimensions which exhibits both mass gap generation
and color confinement similar to its (3þ 1)-dimensional
counterpart. We concentrate on the simplest geometry of
two parallel static wires along the x2 direction separated by
a finite distance R along the x1 axis.
The simplest version of the Casimir effect in a gauge

system can be formulated in the Maxwellian gauge theory

LUð1Þ ¼ −
1

4
fμνfμν; fμν ¼ ∂μaν − ∂νaμ; ð1Þ

where aμ is an Abelian gauge field. Restricting ourselves
to idealized cases, one may impose either boundary
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conditions corresponding to a material made of a perfect
electric conductor (with normal magnetic and tangential
electric components vanishing at conductor’s boundary) or
its dual analogue, an ideal magnetic conductor (in which
magnetic and electric components exchange their roles).
The electric-type boundary conditions in two spatial
dimensions are given by the following condition:

ϵμαβnμðxÞfαβðxÞ ¼ 0; ð2Þ

where nμðxÞ is a vector normal to the boundary at the point
x. In the geometry of two parallel wires the vacuum
fluctuations of the Uð1Þ gauge field lead to the attractive
potential between the wires, VCasðRÞ ¼ −ζð3Þ=ð16πR2Þ,
where ζðxÞ is the zeta function [10,20].
The Lagrangian of Yang-Mills theory has the form

LYM ¼ −
1

4
Fa
μνFμν;a; ð3Þ

where Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν is the field-

strength tensor of the non-Abelian (gluon) field Aa
μ with

a ¼ 1;…; N2
c − 1, and fabc are the structure constants of

the SUðNcÞ gauge group. A non-Abelian analogue of the
perfect conductor condition (2) is straightforward as given
by the following gauge-invariant condition:

ϵμαβnμðxÞFa
αβðxÞ ¼ 0; a ¼ 1;…; N2

c − 1: ð4Þ

The perfectly conducting chromoelectric wires are posi-
tioned at points x1 ¼ 0; R so that nμ ¼ δμ1.
In a tree order one may formally set g ¼ 0 so that both

the Yang-Mills theory (3) and the boundary conditions (4)
are reduced toN2

c − 1 noninteracting copies of the Maxwell
electrodynamics (1) with theUð1Þ boundary conditions (2).
Thus in a tree order all N2

c − 1 gluons contribute additively
to the Casimir energy density:

V tree
Cas ¼ −ðN2

c − 1Þ ζð3Þ
16πR2

: ð5Þ

The lattice version of the Nc ¼ 2 Yang-Mills theory (3)
is given in terms of the SUð2Þ link variables Ul residing on
the links l≡ lx;μ of the Euclidean cubic lattice L3

s with
periodic boundary conditions in all three directions. The
path integral is given by the integration with the Haar
measure over all link variables Ul and the standard
plaquette action SP ¼ βPð1 − 1

2
TrUPÞ. Here the plaquette

field strength is UPx;μν
¼ Ux;μUxþμ̂;νU

†
xþν̂;μU

†
x;ν, where μ̂ is

a unit lattice vector in the positive μ direction. In the
absence of the Casimir wires the lattice couplings βP are
uniform, βP ¼ β, where the bulk coupling constant,

β ¼ 4

ag2
; ð6Þ

is related to the lattice spacing a. The quantity g2, which has
the dimension of mass, becomes the physical coupling of
the continuum Yang-Mills theory in the limit a → 0.
The lattice analogue of the chromoelectric boundaries (4)

is realized via the space-dependent coupling [10]: βP ¼
λwβ at the plaquettes P ¼ Px;23 with x1 ¼ 0; R, and βP ¼ β
otherwise. In the limit λw → þ∞ the tangential chromo-
electric field vanishes (UP23

→ 1), leading to the perfect
“chromometallic” conditions (4).
The energy of the vacuum fluctuations of the gluon field

is related to a local expectation value of its energy density,

T00 ¼ 1

2
ðB2

z þ E2
x þ E2

yÞ; ð7Þ

which is a component of the energy-momentum tensor
associated with the Yang-Mills Lagrangian (3). In a
Minkowski spacetime one has Fa

01 ¼ Ea
x , Fa

02 ¼ Ea
y , and

Fa
12 ¼ −Ba

z , with a ¼ 1, 2, 3 and E2
x ≡ ðEa

xÞ2, etc.
After a Wick rotation to a Euclidean space the energy

density (7) transforms to T00
E ¼ ðB2

z − E2
x − E2

yÞ=2, while
the geometry of the problem implies that hB2

zi ¼ hE2
xi.

Thus in Euclidean space the expectation value of the
normalized energy density (7) becomes as follows:

ERðxÞ ¼
1

2
ðhE2

yi0 − hE2
yðxÞiRÞ; ð8Þ

where the subscripts 0 and R indicate that the expectation
value is taken, respectively, in the absence of the wires and
in the presence of the wires separated by the distance R.
The ultraviolet divergencies cancel in Eq. (8) so that ERðxÞ
provides us with a local finite quantity, the Casimir energy
density, which is equal to a change in the energy density of
the vacuum fluctuations due to the presence of the wires.
In the lattice notations the Casimir energy density (8)

calculated per a unit length of the wires is given by

V lat
CasðRÞ ¼ −⟪SP23

⟫lat
R ; ð9Þ

where the plaquette P23 is oriented along the wires’
direction (μ ¼ 2) and the Euclidean time (ν ¼ 3), and

⟪OðxÞ⟫lat
R ¼

XLs−1

x1¼0

½hOðx1ÞiR − hOi0�: ð10Þ

In physical units the Casimir potential is

VCasðRÞ≡ Vphys
Cas ðRÞ ¼ a−2V lat

CasðR=aÞ; ð11Þ

where a is the lattice spacing in physical units and
R ¼ aRlat. Ideally, the continuum physics a → ∞ is
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reached as β → ∞ according to Eq. (6), while in practice
one deals with finite values of the lattice coupling β
which affect the extrapolation to continuum with OðanÞ
corrections. We estimate that finite-size effects may lead to
numerically significant, 10%–15%, corrections to the non-
Abelian Casimir energy.
We improve the continuum scaling at finite β in three

steps. First, in order to reduce the finite-size corrections, we
use the mean-field improved coupling expressed via the
average plaquette following Refs. [21,22]:

βIðβÞ ¼ β
1

2
hTrUPiðβÞ: ð12Þ

Second, we express the physical lattice spacing a via the
phenomenologically determined series over 1=βI [21],

a
ffiffiffi
σ

p ¼ 1.341ð7Þ
βI

−
0.421ð51Þ

β2I
þOð1=β3I Þ; ð13Þ

where σ is the tension of the confining (fundamental) Yang-
Mills string at zero temperature. In the selected range of the
coupling constant β the higher-order terms in Eq. (13) are
numerically irrelevant.
Third, we notice that in the lattice perturbation theory the

expectation value the lattice plaquette operator hTrUμνi
acquires radiative corrections, of both an additive and a
multiplicative nature. The additive corrections—which
correspond to the UV-divergent perturbative vacuum con-
tributions—are automatically removed from the Casimir
energy by the subtraction scheme (10). The multiplicative
correction originates from the fact that the physically
relevant quantity is the product β4hTrUμνi ∼ a−4hTrUμνi ∼
hF2

μνiphys and not the expectation value of the plaquette
itself (indeed, it is the former quantity that determines
the physical value of the nonperturbative gluon condensate
[23]). In order to improve the finite-size scaling, we
thus rescale the expectation value of the plaquette operator
with the improved value of the coupling (12):
hTrUμνi → hTrUμνiI ¼ ðβI=βÞ4hTrUμνi.
Summarizing, the scale-improved relation for the

Casimir energy density in the continuum limit is

VCasðRÞ ¼ −
1

a2ðσ; βÞ
�
βI
β

�
4

⟪SP23
⟫lat
R ; ð14Þ

where the lattice spacing a ¼ aðσ; βÞ and the mean-field
improved lattice coupling βI are given in Eqs. (13) and (12),
respectively. In the weak coupling limit β → ∞ the energy
(14) approaches its natural form given by Eqs. (9) and (11)
since the plaquette expectation value then tends to unity
1
2
hTrUPiðβÞ → 1, and the improved coupling converges to

the Wilson coupling, βIðβÞ → β.
We generate gauge-field configurations on the 323 lattice

using a hybrid Monte Carlo algorithm which combines

standard Monte Carlo methods [24] with the molecular
dynamics approach, similar to our studies of the Casimir
forces in Abelian gauge theories in Refs. [10,25]. Long
autocorrelation lengths in Markov chains are eliminated by
over-relaxation steps using five steps between trajectories
for 250 000 trajectories in total.
A non-Abelian permittivity of the wires is determined by

the strength of the coupling constant λwβ at their world
surfaces. At large λw the wires behave as almost-ideal
conductors which force all tangent components of the
chromoelectric field to vanish at the wires, Fa

k → 0.
In Fig. 1 we show the non-Abelian Casimir energy (14)

as the function of the interwire distance R in units of the
physical string tension σ for nearly perfect chromometallic
wires with λw ¼ 50. In order to demonstrate the absence
of substantial finite-volume corrections, we also show the
results for a larger L ¼ 48 lattice. The Casimir energy
exhibits nearly excellent physical scaling as the data at
different values of the bulk lattice coupling a ¼ aðβÞ and at
different volumes match the same single curve. We get
similar results for other strengths λw.
We fit the Casimir energy by the following function:

VCasðRÞ ¼ 3
ζð3Þ
16π

1

R2

1

ð ffiffiffi
σ

p
RÞν e

−MCasR; ð15Þ

where ν and MC are the free parameters determined from
the best fit. The power of σ in the denominator in Eq. (15)
is chosen to keep the correct dimension (mass2) of the
Casimir potential, as it corresponds to the Casimir energy
of the non-Abelian fluctuations between the wires calcu-
lated per unit length of the wire.
The fitting function (15) has a transparent physical

meaning. The exponent ν in the fitting function (15) is
an anomalous dimension of the Casimir potential at short
distances. The quantity MCas, which we call the “Casimir
mass,” corresponds to an effective screening of the Casimir
potential at large distances due to nonperturbative mass gap
generation. In the absence of interactions the mass gap is

FIG. 1. The Casimir potential VCas for a nearly perfect wire
(λw ¼ 50) as the function of the distance R between the wires in
units of the string tension σ at various bulk couplings β.
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absent,MCas ¼ 0, while the anomalous dimension is equal to
its canonical value, ν ¼ 0, so the phenomenological potential
(15) naturally reduces to its tree-level expression (5).
The best fit of the Casimir potential with the almost-

perfect wires (λw ¼ 50) is shown in Fig. 1 by the dashed
line. The dependences of the best-fit values of the anoma-
lous dimension ν and the Casimir mass MCas on the
strength of the wire λw are shown in Fig. 2. They can be
described by the fit function

OðλwÞ ¼ O∞ þ αOe−λw=λ
O
w ; ð16Þ

where O ¼ ν, MCas, and O∞, αO and λOw are the fitting
parameters. The quantities ν and MCas rapidly approach,
with λνw ≃ λMCas

w ¼ 12ð1Þ, and the corresponding asymptotic
values O∞ ≡ limλw→∞OðλwÞ in the perfect-wire limit.
The asymptotic value of the Casimir mass MCas corre-

sponding to the energy of the vacuum fluctuations of the
non-Abelian gauge field between perfect wires (λw → ∞),

MCas ¼ 1.38ð3Þ ffiffiffi
σ

p
; ð17Þ

is shown by the horizontal dashed line in the main part of
Fig. 2. Surprisingly, the Casimir massMCas, Eq. (17), turns
out to be substantially smaller than the mass

M0þþ ≈ 4.7
ffiffiffi
σ

p ð18Þ

of the lowest 0þþ glueball in SUð2Þ gauge theory (calcu-
lated numerically in Refs. [21,26]). According to Fig. 2, the
enhancement of the strength of the wires leads to a
diminishing of the Casimir mass. On the contrary, as
the wire weakens, the Casimir mass moves towards the
higher masses, so we may expect that in the weak-wire limit
λw → 1 the Casimir mass MCas may naturally approach the
mass of the lightest glueball, M0þþ , although the simple

form of the fitting function (16) does not allow us to make
this conclusion more precise at the present stage.
According to the fit in the inset of Fig. 2, the anomalous

dimension ν slightly overshoots the free-field value ν ¼ 0:

ν∞ ¼ 0.05ð2Þ: ð19Þ

One may also suggest that in the volume between finitely
separated parallel wires the gluons behave as if they are
subjected to a heat bath at finite temperature. In a Euclidean
formulation of an equilibrium finite-temperature theory,
the temporal direction is compactified to a circle with the
length 1=T, making the fields periodic along this direction.
On the contrary, the periodicity of the gluon fields is
evidently absent in the Casimir setup. However, similar to
the T ≠ 0 case, the perfectly conducting wires do indeed
restrict allowed frequencies of free gluons with certain
polarizations. In particular, the propagator of free gluons in
the Feynman gauge corresponds to the Neumann boundary
condition for the normal (with respect to the boundary)
gluon component Aa⊥ ≡ Aa

1 [27]. For narrowly placed
wires the Neumann conditions dimensionally reduce the
dynamics of the normal gluon components Aa⊥ to (1þ 1)-
dimensional spacetime with the tangential coordinate
xk ¼ ðx2; x0 ≡ x3Þ. Thus the normal gluon component
Aa⊥ in the Casimir setup plays the role of a timelike gluon
Aa
0 at T ≠ 0. Therefore in our case one could expect that

the normal gluon components Aa⊥ are correlated along the
conducting wires with the “Casimir” screening mass
M2

g;Cas ¼ cDg2=ð2πRÞ, where cD is a constant.
Yang-Mills theories are known to experience a decon-

finement phase transition at a sufficiently high temperature.
In (2þ 1) dimensions the critical temperature in SUð2Þ
gauge theory was determined in Ref. [28]. Given the
mentioned analogy, one may expect the gluonic vacuum
in between sufficiently close wires may enter a deconfi-
nementlike regime. A similar conclusion may also be
drawn from properties of a confining compact QED in
finite geometries [25]. In order to check this idea, we
calculate numerically the deconfinement order parameter,
the Polyakov line L, which has a vanishing expectation
value in the confinement phase, hLi ¼ 0, and a nonzero
value in the deconfinement phase, hLi ≠ 0.
The Polyakov line is given by an ordered product of the

non-Abelian matrices along the temporal direction:

Lx ¼
1

2
Tr

YL−1
x3¼0

Ux;x3;3; ð20Þ

where x≡ ðx1; x2Þ is the spatial two-dimensional coordi-
nate. Notice that the Polyakov line (20) is defined along the
long temporal direction, while in the finite-temperature
theory the line is directed along the short compactified

FIG. 2. The Casimir massMCas and the anomalous dimension ν
(in the inset) for the best fit (15) as a function of the strength of the
wire λw. The thick dashed lines denote the best fit by function
(16), and the short-dashed horizontal lines show the asymptotic
values (17) and (19), respectively. The dotted-dashed line in the
inset marks the tree-level power ν ¼ 0.
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time. This property shows a difference between the
Casimir-like geometry and a finite-temperature theory.
We calculated the expectation value of the absolute value

of a normalized sum over the Polyakov lines (20) over the
points in the space inside and outside the wires. For all sets of
parameters we get the same picture: as the distance between
the wires gets smaller, the expectation value of the Polyakov
line in between the wires increases, thus signaling an
approach to a deconfinement regime, Fig. 3. However, we
have not found any signature of a critical behavior of the
Polyakov lines, in agreement with the smooth behavior of
the Casimir potential as a function of the interwire distance
R, Fig. 1. Therefore the gluons in between the wires become
deconfined, and the transition in between the confining and
deconfining regions is, most probably, a smooth noncritical
crossover or an infinite-order transition of a Berezinskii-
Kosterlitz-Thouless type [29].
Summarizing, we studied for the first time the Casimir

effect in a zero-temperature non-Abelian gauge-field theory
using first-principles simulations. We found that at large
distances between the perfectly chromo-conducting wires
the attractive Casimir interaction is an exponentially
diminishing function of the interwire separation. The
infrared damping of the Casimir interaction is characterized
by the new quantity, the Casimir mass (17), which is
unexpectedly 3 times lighter than the mass of the lowest
glueball (18). As the chromometallic wires become more
opaque (λw → 1), the Casimir mass increases, presumably
towards the lowest glueball mass.
The short-distance Casimir interaction is slightly differ-

ent than the canonical tree-level R−2 behavior (5) due to a
small anomalous scaling dimension (19).
Finally, we observed a (smooth) confinement-

deconfinement transition of the gluonic fields in between
the wires. The relatively low value of the Casimir mass may
be a result of the gradually induced deconfinement in a
shrinking finite geometry, which weakens the mass gap
generation of the zero-temperature Yang-Mills theory.

The numerical simulations were performed at the com-
puting cluster Vostok-1 of Far Eastern Federal University.
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Note added.—Recently, we were informed about Ref. [30],
which shows that the (2þ 1) Casimir mass is related to the
magnetic mass of a gluon in (3þ 1) dimensions.
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