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A question that is commonly asked in all areas of physics is how a certain property of a physical system
can be used to achieve useful tasks and how to quantify the amount of such a property in a meaningful way.
We answer this question by showing that, in a general resource-theoretic framework that allows the use of
free states as catalysts, the amount of “resources” contained in a given state, in the asymptotic scenario, is
equal to the regularized relative entropy of a resource of that state. While we need to place a few
assumptions on our resource-theoretical framework, it is still sufficiently general, and its special cases
include quantum resource theories of entanglement, coherence, asymmetry, athermality, nonuniformity,
and purity. As a by-product, our result also implies that the amount of noise one has to inject locally to erase
all the entanglement contained in an entangled state is equal to the regularized relative entropy of
entanglement.
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In thermodynamics, the amount of work a system can do
on its surroundings depends on the free energy of the system,
highlighting the role of free energy in physicallymeaningful
tasks. Various other physical systems have similar proper-
ties, such as the quantum entanglement of a bipartite
quantum state [1] or the quantum coherence in a given
quantum state [2]. While the full power of these resources is
not completely understood, they have been identified as
being crucial for achieving certain communication and
computational tasks [3,4] and states that possess these
properties are called “resourceful states.” However, there
is no unified framework that operationally quantifies the
amount of useful resources contained in a given state. We
show that the amount of resources present in a state can be
quantified in an operationally meaningful and unified way.
Our result implies that the relative entropy of a resource [5]
tightly captures the amount of noise required to change a
resourceful state into a free state. The relative entropy of
resource EðρMÞ of a quantum state ρM is defined as

EðρMÞ ¼ inf
σM∈F

DðρMkσMÞ;

where F is a collection of free states and DðρMkσMÞ is the
quantum relative entropy [6], and the regularized relative
entropy of the resource is

E∞ðρMÞ ¼ lim
n→∞

1

n
Eðρ⊗n

M Þ:

A geometric illustration of EðρMÞ is depicted in Fig. 1.

The core of a resource theory rests on two system-
dependent requirements: (i) the existence of a set of states
that are free and inexpensive and (ii) the allowed free
operations that map the set of free states only to themselves.
A resource theory emerges when quantum information
theory is found to provide a unified platform for character-
izing a resource [7,8] because, in a nutshell, all resources
can be viewed as interconversions of different system states
with system-dependent constraints. Many resource theories
have been developed over the past decade [9–21] which

FIG. 1. A geometric illustration of the relative entropy of a
resource EðρMÞ.
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address a vast diversity of the physically meaningful
properties of the natural world.
It is well known that not every state transformation is

possible, and adding a catalyst could at least make the
transformation possible with a positive probability [22].
Moreover, even if a transformation is possible a priori, the
addition of a catalyst often makes the process much more
efficient. Therefore, individual resource theories have
begun to include catalysts in their formalisms [10,15].
We, therefore, consider a general resource-theoretic

framework that allows free states to be used as catalysts.
Our main contribution is a complete characterization of the
amount of resources contained in a given state ρ (relative to
the free states) in the asymptotic scenario, as well as in the
one-shot setting. Prior to our work, Ref. [5] also considered
a general resource-theoretic framework for state trans-
formation and showed that the asymptotic transformation
rate from ρ to σ is given by the ratio E∞ðρÞ=E∞ðσÞ. The
major differences are threefold. In Ref. [5], a catalyst was
not included, and the allowed free operations became
resource-free only when the number of copies approached
infinity. Moreover, their setting and the corresponding
results do not imply our results regardless of whether
catalysts are involved or not. Finally, their method cannot
be used when only one copy of the resource state is
involved in the transformation (i.e., the one-shot setting).
To achieve such a characterization, we begin by con-

sidering a task that provides a metric for “counting” the
amount of resources present in ρ. This task motivated by
the work in Ref. [23] requires an experimenter to “destroy”
all the resources present in ρ by converting them into a free
state with the help of noise. The amount of randomness
required to generate the noise serves as the desired
measure. To further illustrate this task, we discuss the
problem considered in Ref. [23], which transforms a
bipartite quantum state ρ⊗n

AB into a product state ρAn ⊗
ρBn with the aid of shared randomness and local unitaries.
It was shown that the number of bits of randomness
required (in other words, the randomness cost) is
≈nIðA∶BÞρ, where IðA∶BÞρ is the quantum mutual infor-
mation. Thus, it was observed that the total correlation
contained in the state ρAB is equal to the amount of noise
used to erase this correlation. This seminal result gave the
first operational meaning to this entropic quantity and
significantly advanced our understanding of entanglement
theory. Being able to find the optimal randomness cost
required bringing entangled states to separable states; thus,
it bears equivalent significance, if not more, since the
existence of entanglement is believed to make quantum
systems superior to their classical counterparts, and the
amount of entanglement is generally linked to its computa-
tional power [4]. Likewise, the crucial question as to the
amount of valuable resources possessed by a state relative
to its free states is found in every resource theory, be it
quantum coherence, quantum thermodynamics, etc.

Our setting for quantifying the amount of resources is
along the lines of the framework considered in the above
work but with the further freedom of allowing the use of
additional free states that can aid in the transformation of
the desired quantum state (Fig. 2). We denote the set of all
free states as F and the set of free operations as U, where
their formal definitions can be found in the Supplemental
Material [24]. Assume that the resource state is ρM defined
on the register M. The experimenter can prepare a free
classical quantum state μEJ, where J corresponds to a
classical register, and E denotes the corresponding quantum
registers, and can perform a unitary UJME ¼ P

jUj ⊗
jjihjjJ where Uj acts on registers ME and belongs to
the set of free operations (operations that map a free state to
a free state). The resulting quantum state ΘMEJ must have
the property that ΘME is close to a free state from F (by a
distance of ε according to a suitably chosen distance
measure). We call such a task an ðε; log jJjÞ transformation
of ρM to F , where log jJj is the randomness cost. If ΘME is
close to ωM ⊗ μE (where ωM ∈ F is a free state), then the
quantum state μE is almost unaltered and, hence, serves as a
catalyst. We call such a task an ðε; log jJjÞ-catalytic trans-
formation of ρM to F (see the Supplemental Material [24]
for a formal definition of these tasks).
We can also define the asymptotic randomness rate of the

catalytic transformation, as the per copy amount of the
randomness required to transform ρ⊗n

M toF , when n is large
(as formally defined in the Supplemental Material [24]).
The main result of this work is as follows, which is a
consequence of Theorem B (stated in the Proof techniques
section).
Theorem A. [Informal statement] For a quantum state

ρM, the asymptotic randomness rate of catalytic trans-
formation of ρM is given by E∞ðρMÞ.

(a) (b) (c)

FIG. 2. Catalytic resource framework. (a) A free state is
prepared in registers E and J. (b) Free operations Uj are
performed on registers M and E controlled by the classical
register J. (c) Upon discarding the register J, the final state of
registers M and E should be close to some free state.
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The achievability part of this theorem uses a simple
“controlled swap” unitary which is allowed in a large family
of resource theories. However, for our converse argument,
we also allow for quantum measurements which can be
implemented via adding free ancilla followed by a free
unitary followed by the tracing out of the ancilla subsystem.
The resource cost of such protocols is counted as the total
number of qubits discarded in the implementation.
Proof techniques.—It is apparent that if no limits are set

on the allowed operations and free states, then it is almost
impossible to obtain a useful characterization, as also noted
in Ref. [5]. The postulates of the set of free states F in our
framework are very natural. They are as follows. (i) The set
of free states is a convex and closed set. (ii) If two quantum
states are free states, then their tensor product is a free state
as well. (iii) If a quantum state on more than one register is
a free state, then we obtain a free state with a partial trace
over a subset of these registers. The set of all free operations
U is the set of unitaries that take a free state to a free state.
Since we are interested in the amount of noise required

to transform a state into a free state, we naturally assume
that the experimenter can apply a mixture of unitaries
fðpj; UjÞ∶Uj ∈ Ugnj¼1

. Such a setting is also found in
Refs. [20,23] concerned with randomness cost. The result-
ing free ensemble becomes fpj; UjσU

†
j∶σ ∈ Fgnj¼1.

Observe that since F is a convex set and Uj are free
operations, the quantum state

P
jpjUjσU

†
j belongs to F .

With the help of the “church of the larger Hilbert space,”we
can introduce a “classical” register J and write the overall
unitary operation as U ¼ P

n
j¼1Uj ⊗ jjihjjJ applied to the

state σ ⊗
P

jpjjjihjjJ. We expand our set of free states F
and free operations U to include such states and unitaries
as well.
Now, we are in a position to formally define our task that

we call an ðε; log jJjÞ transformation of ρM to F . We
interpret log jJj as the randomness cost of the protocol and
ε as the allowed error. While we have identified the register
J as classical, we show in the Supplemental Material [24]
that this assumption can, in fact, be dropped to accom-
modate a more general transformation. This only leads to a
multiplicative loss of a factor of 2 in the randomness cost.
Our task is as follows.
Task 1.—An experimenter holds a resourceful quantum

state ρM. Using a classical quantum state μEJ ∈ F , she
applies a unitary U ∈ U to obtain a joint quantum state
ΘMEJ:

ΘMEJ ¼ UðρM ⊗ μEJÞU†:

It is required that there exists a σME ∈ F such that
PurðΘME; σMEÞ ≤ ε, where the chosen distance measure
is the purified distance defined as Purðω;ω0Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − F2ðω;ω0Þ

p
[with Fðω;ω0Þ being the fidelity]. The

randomness cost is log jJj.

Note that in many cases, it is desirable that the free state
μE be returned in as close to its original form as possible,
that is, act as a catalyst. Our achievability result shall
belong to such a class of transformations. Hence, Task 1 is
said to be an ðε; log jJjÞ-catalytic transformation of ρM if
μEJ ¼ μE ⊗ μJ and σME ¼ σM ⊗ μE for some σM ∈ F .
Finally, we say that the asymptotic randomness rate of

the catalytic transformation of ρM is R, if, for every ε > 0,
there exists an integer n0ðεÞ such that for all n ≥ n0ðεÞ,
there exists an ðε; nRÞ-catalytic transformation of ρ⊗n

M to F .
We provide a near optimal characterization of the

randomness cost of Task 1 in Theorem B below. We obtain
matching upper and lower bounds of the randomness cost
even if one only has a single copy of a given state, i.e., the
one-shot scenario [24]. Our one-shot bounds are given in
terms of the smooth max-relative entropy [25], which is
defined as

Dε
maxðρkσÞ ¼ min

ρ0∶ Purðρ0;ρÞ≤ε
minfλ∶ ρ0 ≼ 2λσg:

This is a one-shot analogue of the quantum relative
entropy. Hence, our result also provides a new operational
meaning for this quantity in the resource-theoretic frame-
work. The upper bound, or the achievability result, is as
follows. The experimenter possesses the quantum state ρM.
Let σ0M be the free state that minimizes the quantity
minσM∈FDε

maxðρMkσMÞ. Let k be an integer such that logk¼
Dε

maxðρMkσ0MÞþ2logð1=δÞ (for an error parameter δ).
The experimenter introduces the free state σ0M1

⊗σ0M2
⊗…

⊗σ0Mk
(as a catalyst, where M1;M2;…;Mk are registers

equivalent to M) and the maximally mixed state IJ=k in
register J of dimension k. The registers M1;M2;…;Mk are
collectively viewed as the register E introduced in Task 1.
Controlled on the classical value j in register J, the
experimenter swaps the registers M and Mj. The quantum
state in register M is now σ0M. Upon discarding the classical
register J, the quantum state in registers M1;M2;…;Mk is

1

k

Xk

j¼1

σ0M1
⊗ … ⊗ σ0Mj−1

⊗ ρMj
⊗ σ0Mjþ1

⊗ …σ0Mk
:

From the convex-split lemma [32], this quantum state is
close to the original state σ0M1

⊗ σ0M2
⊗ … ⊗ σ0Mk

, with
purified distance at most εþ δ. Thus, we have the following
theorem.
Theorem B. Fix ϵ, δ > 0, and a quantum state ρM.
(i) Achievability: There exists an ðεþ δ; log kÞ-

catalytic transformation of ρM to F , where log k ≔
minσM∈FDε

maxðρMkσMÞ þ 2 logð1=δÞ.
(ii) Converse: For every ðε; log jJjÞ transformation of ρM

to F , it holds that

log jJj ≥ min
σM∈F

Dε
maxðρMkσMÞ:
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The proof of this theorem is given in the Supplemental
Material [24], which includes the aforementioned argument
for achievability and a converse proof. The proof of
Theorem A follows from an asymptotic and i.i.d. analysis
of this result and the continuity of relative entropy of the
resource [33].
Implications and applications.—Our first contribution is

a unified resource-theoretic framework for quantifying the
amount of resources contained in a resourceful state and
connecting this amount to the regularized relative entropy
of a resource. Our general resource framework includes the
resource theories of entanglement, coherence, thermo-
dynamics, nonuniformity, purity, and asymmetry (the full
discussion of these special cases can be found in
Supplemental Material [24]). In particular, our result
implies that the amount of “entanglement” contained in
ρM is equal to the regularized relative entropy of entangle-
ment [34,35] asymptotically, yielding a direct operational
meaning for this quantity. Hence, our work resolves an
open question posted in Ref. [23], where only gapped upper
and lower bounds were provided. In addition, our result
also recovers the symmetrization cost given by the relative
entropy of frameness [20]. While both Refs. [20,23]
employ resource-destroying maps, our framework that
allows the use of free states as catalysts is more general
and results in stronger matching one-shot bounds (Theorem
B in the Proof techniques section) that were not possible
previously.
Second, our result directly yields that the regularized

relative entropy of a resource is an upper bound for
distilling the aforementioned resources, since it is impos-
sible to distill more of a resource than originally contained
in a state. Interestingly, it is possible to distill the maximal
amount of resources for the various resources described
below.
In the resource theory of entanglement [1,23,34–37], the

set of free states is the collection of separable states, and
the free operations contain the local quantum operations
and classical communications (LOCC). The authors of
Ref. [36] showed that the amount of maximally entangled
states that one can distill from infinitely many copies of a
given state is equal to the regularized relative entropy of
entanglement when nonentangling maps are allowed as
free operations. When this is combined with our work, the
role of regularized relative entropy of entanglement is set
on a firm footing since the amount of distillable entangle-
ment should intuitively be equal to the “amount of
entanglement” possessed by the given bipartite state (if
a reversible entanglement theory holds true). Note that
interpreting our achievability proof of Theorem A in this
context reveals that the resource-destroying controlled
unitaries can be implemented by LOCC. Furthermore,
our converse proof shows that the randomness cost is
optimal even when nonentangling operations (the opera-
tions that do not change separable states to entangled states)

are used. Finally, we emphasize that there are fundamental
differences between our entanglement-erasing framework
and that in Ref. [38]. In the latter, the total correlation (both
classical and quantumcorrelations) is erasedwith the help of
catalysts, and the number of qubits that have to be discarded
is given in terms of the smooth max-mutual information.
However, in our case, the convex-split lemma allows us to
erase just the quantum correlation and leads to a charac-
terization of noise in terms of the smooth max-relative
entropy.
In the resource theory of coherence [2,37,39,40], the set

of free states is the collection of diagonal states on a
predetermined basis. It was shown that the amount of
distillable coherence is also maximal and is equal to the
relative entropy of coherence under the set of strictly
incoherent operations [40]. This, again, coincides with
our result; however, the unitary operation required in our
achievable proof is permutation unitary, which corresponds
to the smaller class of physically incoherent operations
[41]. Finally, in the resource theory of nonuniformity [13]
and purity [16], the only free state is the completely
mixed state. The maximally distillable nonuniformity is
again given by relative entropy of a resource when noisy
operations are used [13].
Before ending this part of the discussion, we remark that

in the resource theory of quantum thermodynamics [9–14],
the free states are Gibbs quantum states, which are states
of the form ρβðHÞ ¼ ½e−βH=Trðe−βHÞ� for an arbitrary
Hamiltonian H > 0. It has been shown that the amount
of a pure excited state that can be distilled is in terms of
min-relative entropy in the one-shot setting [11]. While this
quantity yields the relative entropy of a resource in the
asymptotic setting, it is smaller than our one-shot random-
ness cost given in terms of max-relative entropy.
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Note added.—Berta andMajenz [42] have done independent
work on the regularized relative entropy of entanglement.
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