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We show that the minimal rate of noise needed to catalytically erase the entanglement in a bipartite
quantum state is given by the regularized relative entropy of entanglement. This offers a solution to the
central open question raised in [Groisman et al., Phys. Rev. A 72, 032317 (2005)] and complements their
main result that the minimal rate of noise needed to erase all correlations is given by the quantum mutual
information. We extend our discussion to the tripartite setting where we show that an asymptotic rate of
noise given by the regularized relative entropy of recovery is sufficient to catalytically transform the state to
a locally recoverable version of the state.
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Introduction.—Quantifying and classifying quantum
correlations is of fundamental importance in quantum
information theory [1]. Motivated by Landauer’s erasure
principle [2], one way to quantify the correlations present in
a bipartite quantum state ρAB is to measure the amount of
noise that is required to erase them. In that respect,
Groisman et al. [3] showed that the optimal asymptotic
rate of local noise to bring ρAB close to a product σA ⊗ σB
is given by the quantum mutual information

IðA∶BÞρ ≔ DðρABkρA ⊗ ρBÞ ¼ inf
σ∈PR

DðρABkσA ⊗ σBÞ
ð1Þ

with PRðA∶BÞ the set of product states in A∶B, and
DðρkσÞ ≔ Tr½ρðlog ρ − log σÞ� is the quantum relative
entropy. Hence, the quantum mutual information quantifies
the total amount of correlations in bipartite states—including
both the quantum and classical ones. Alternatively, we can
write

IðA∶BÞρ ¼ inf
σ∈PR

½HðABÞσ⊗σ −HðABÞρ� ð2Þ

with HðAÞρ ≔ −tr½ρA log ρA� the von Neumann entropy.
Thus, the cost function IðA∶BÞρ can conveniently be
understood as either the quantum relative entropy distance
to the next product state as in Eq. (1) or as the amount of
entropy injected into the system to reach the next product
state as in Eq. (2). This finding was generalized in various
directions, including a catalytic analysis of the one-shot
case [4], the study of tripartite correlations [5–7], as well as
the study of coherence [8] and more general symmetries
[9]. However, it remained open how to quantify the optimal
asymptotic rate of local noise to bring ρAB close to a
separable state

P
jpjσ

j
A ⊗ σjB. In particular, it was unclear

if a quantity defined in such a way can be the basis of a
proper entanglement measure.
In this Letter, we solve the problem and give a precise

mathematical model for erasing entanglement in bipartite
states where the optimal asymptotic rate of local noise
needed to get close to a separable state is given by the
regularized relative entropy of entanglement. In particular,
this also gives a new operational interpretation of the
distance measure quantum relative entropy.
Entanglement measures.—As discussed, the quantum

mutual information is a measure for the total amount of
correlations, and in the following, we introduce more
refined measures only capturing the quantum correlations.
The relative entropy of entanglement is given by [10]

EðA∶BÞρ ≔ inf
σ∈SEP

DðρkσÞ; ð3Þ

where SEPðA∶BÞ denotes the set of separable states in
A∶B. Since the relative entropy of entanglement is in
general not additive on tensor product states, it has to be
regularised [11,12]. The regularised relative entropy of
entanglement is defined as

E∞ðA∶BÞρ ≔ lim
n→∞

1

n
EðA∶BÞρ⊗n : ð4Þ

This quantity has an operational interpretation in composite
asymmetric quantum hypothesis testing as the asymptotic
exponential rate of mistakenly identifying ρAB instead of a
state separable in A∶B [13]. As a corresponding one-shot
analogue based on the smooth max-relative entropy [14]

Dε
maxðρkσÞ ≔ inf

ρ̄≈ερ
inf fλ∶2λσ − ρ̄ ≥ 0g ð5Þ

with ρ̄ ≈ε ρ in purified distancePðρ̄; ρÞ ≤ ε
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[15], we have the smooth max-relative entropy of entan-
glement [16]

Eε
maxðA∶BÞρ ≔ inf

σ∈SEP
Dε

maxðρ̄ABkσABÞ: ð6Þ

This is a smoothed version of the logarithm global robust-
ness of entanglement [17]. All the quantities

EðA∶BÞρ; E∞ðA∶BÞρ; Eε
maxðA∶BÞρ

define proper entanglement measures with mathematical
properties as requested by axiomatic entanglement theory
(see, e.g., Refs. [18,19] for an overview). We emphasize
that these types of information-theoretic entanglement
measures have been vastly useful for understanding the
entanglement structure of multipartite quantum states in
many body physics. In particular, this led to strong insights
into entropic area laws [20–23] and detecting topological
order [24,25] in condensed matter physics as well as to
basic findings in quantum thermodynamics [3,26–28].
Disentanglement cost.—We are interested in the amount

of local noise needed to catalytically erase the entangle-
ment in a bipartite quantum state. For this purpose—
following Groisman et al. [3] and the follow-up works
[4–9]—a randomizing map is generated by an ensemble of
local unitaries ðUi

A ⊗ Ui
BÞ as

ΛM
A∶Bð·Þ ≔

1

M

XM
i¼1

ðUi
A ⊗ Ui

BÞð·ÞðUi
A ⊗ Ui

BÞ†: ð7Þ

It is called ε disentangling if there exist a state ωA0B0 ∈
SEPðA0∶B0Þ such that

inf
σ∈SEP

PðΛM
AA0∶BB0 ðρAB ⊗ ωA0B0 Þ; σABA0B0 Þ ≤ ε ð8Þ

with σAA0BB0 ∈ SEPðAA0∶BB0Þ. Here we think of ωA0B0 as a
catalytic resource state that is already separable to start with
but has to be kept separable by the randomizing map
(cf. catalytic decoupling [4]). Theone-shot ε-disentanglement
cost Cε

SEPðA∶BÞρ is then defined as the minimal number
logM such that Eq. (8) holds.We are particularly interested in
the asymptotic behavior in the limit of many copies ρ⊗n

AB and
vanishing error ε → 0, which we call the disentanglement
cost of quantum states:

CSEPðA∶BÞρ ≔ lim
ε→0

lim
n→∞

1

n
Cε
SEPðA∶BÞρ⊗n : ð9Þ

Main result.—We find that the ε-disentanglement cost is
given by the smooth max-relative entropy of entanglement
and, hence, that the disentanglement cost is given by the
regularized relative entropy of entanglement.

Theorem 1. Let ρAB and 1 ≥ ε ≥ δ > 0. Then, we have

Eε
maxðA∶BÞρ ≤ Cε

SEPðA∶BÞρ ð10Þ

≤ Eε−δ
maxðA∶BÞρ þ log

1

δ
; ð11Þ

as well as CSEPðA∶BÞρ ¼ E∞ðA∶BÞρ.
This offers a solution to the central open question raised

in Groisman et al. [3] and automatically establishes the
disentanglement cost of quantum states as a proper entan-
glement measure—since it inherits all mathematical proper-
ties from the regularized relative entropy of entanglement.
Note, however, that we do not show the disentanglement cost
being equal to the asymptotic rate of entropy injected into the
system as conjectured by Groisman et al. [cf. Eq. (1)]

1

n
inf

σ∈SEP
½HðABÞσn −HðABÞρ⊗n � ð12Þ

but to the relative entropy of entanglement as suggested in
Ref. [29]. For pure states jψiAB, we get E∞ðA∶BÞψ ¼
HðAÞψ—the entropy of the Schmidt spectrum—whereas the
quantummutual information measuring the total correlations
is equal to 2HðAÞψ . For the one-shot setting, we find that

Hε
maxðAÞψ ≤ Cε

SEPðA∶BÞψ ≤ Hε−δ
maxðAÞρ þ log

1

δ
ð13Þ

with Hε
maxðAÞρ ≔ inf

ρ̄≈ερ
2 log Tr½ ffiffiffī

ρ
p �

the smooth max-entropy. Furthermore, we find with Ref. [4]
that the amount of noise needed to erase all correlations in a
pure state jψiAB is given by 2 times the cost function from
Eq. (13), which is in exact analogy to the asymptotic case.
Proof of Theorem 1.—We first derive the converse

direction, i.e., the lower bound in Theorem 1, using
standard entropy inequalities. To show the one-shot con-
verse in Eq. (10), we begin by observing that tensoring a
separable state does not change the smooth max-relative
entropy of entanglement (the argument is the same as for
the relative entropy of entanglement [11] and based on the
monotonicity under quantum operations), and, thus, it
suffices to show the converse for disentangling maps
without catalysts. Therefore, let ΛM

A∶B be a disentangling
randomizing map for ρAB; that is, there exists σAB ∈
SEPðA∶BÞ such that PðΛM

A∶BðρABÞ; σABÞ ≤ ε. Next, define
a classically maximally correlated state

γXaXb
≔

1

M

XM
i¼1

jiihijXa
⊗ jiihijXb

ð14Þ

and the controlled unitaries VAXa
and WBXb

, such that

trXaXb
½ρ0ABXaXb

� ¼ ΛM
A∶BðρABÞ ð15Þ
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for the state

ρ0ABXaXb
≔ ðVAXa

⊗ WBXb
ÞðρAB ⊗ γXaXb

ÞðVAXa
⊗ WBXb

Þ†:
ð16Þ

By Uhlmann’s theorem, there exists an extension σABXaXb

of σAB such that Pðρ0ABXaXb
; σABXaXb

Þ ≤ ε with the Xa and
Xb registers classical in the same basis as in Eq. (14).
Additionally, the extension can be chosen such that
ΠXaXb

σABXaXb
ΠXaXb

¼ σABXaXb
, where ΠXaXb

is the projec-
tor onto the maximally correlated subspace, i.e., onto the
support of γXaXb

. Now we bound

Eε
maxðA∶BÞρ ¼ Eε

maxðAXa∶BXbÞρ⊗γ

¼ Eε
maxðAXa∶BXbÞρ0

≤ E0
maxðAXa∶BXbÞσ

≤ D0
maxðσABXaXb

kσAB ⊗ γXaXb
Þ

≤ logM: ð17Þ

The first two inequalities follow from picking two particu-
lar points in the minima defining Eε

max, and the last
inequality follows from the matrix inequality

σABXaXb
≤ σAB ⊗ ΠXaXb

¼ MσAB ⊗ γXaXb
; ð18Þ

which follows from Ref. [30], Lemma 3.1.9. This
proves Eq. (10).
For the asymptotic expansion, we then use the composite

quantum Stein’s lemma from Ref. [13], Proposition II.1 and
Ref. [16], Theorem 1,

lim
ε→0

lim
n→∞

1

n
Eε
maxðA∶BÞρ ¼ E∞ðA∶BÞρ: ð19Þ

We note that asymptotic converses for similar scenarios
were also shown in Ref. [29].
For the achievability part, i.e., the upper bound in

Theorem 1, we invoke a tool that was introduced as the
convex splitting lemma by Anshu et al. [31]. We need a
special case of their main lemma, which is as follows.
Lemma 2 [Convex split]. Let ρ, σ be quantum states

and N ¼ ⌈2D
ζ
maxðρ̄kσÞ=ξ⌉ with ζ ≥ 0, ξ > 0. Then, we have

P

�
1

N

XN
i¼1

ρi ⊗ σ⊗ðN−1Þ
ic ; σ⊗N

�
≤ ζ þ ξ; ð20Þ

where ρi sits in the ith register and ic ≔ ½1;…; N�ni.
We emphasize that this convex split lemma is neatly

proven only using elementary properties of quantum entropy
(Ref. [31], Lemma 12). Now for any state ρAB and σAB ∈
SEPðA∶BÞ, we can choose logN ¼ Dε−δ

maxðρABkσABÞ þ
logð1=δÞ in Lemma 2, such that

P

�
1

M

XM
i¼1

ρAiBi
⊗ σ⊗ðM−1Þ

Ã B̃ nðAiBiÞ; σ
⊗M
Ã B̃

�
≤ ε ð21Þ

for Ã B̃ ≔ A1 � � �AMB1 � � �BM with A1B1 ≔ AB and
AiBi ≅ AB for i ¼ 2;…; AM. The idea is to use the catalytic

resource state σ⊗ðM−1Þ
ÃB̃nðA1B1Þ∈SEPðÃnA1∶B̃nB1Þ together with

the ensemble of local unitaries for i ¼ 1;…; N given by

Ui
Ã
⊗ Ui

B̃
≔ ð1iÞÃ ⊗ ð1iÞB̃; ð22Þ

where ð1iÞ denotes the unitary that swaps registers 1 ↔ i on
Ã and B̃, respectively. Optimizing over all σAB ∈ SEPðA∶BÞ
then gives the one-shot achievability in Eq. (11). Finally, the
asymptotic expansion of the upper bound follows as in
Eq. (19), which concludes the proof of Theorem 1. □

Multipartite extension.—The relative entropy of entan-
glement can naturally be extended to the multiparty setting
(see, e.g., Ref. [32]). For a k-party quantum state ρA1���Ak

, it
is defined as the relative entropy distance to the set SEP of
completely separable states,

EðA1∶A2∶ � � � ∶AkÞρ ≔ inf
σ∈SEP

DðρkσÞ: ð23Þ

A regularized version E∞ðA1∶A2∶ � � � ∶AkÞρ is defined
the same way as in the two-party setting. It is then
straightforward to generalize our Theorem 1 to the multi-
party setting: E∞ðA1∶A2∶ � � � ∶AkÞρ is equal to the multi-
party disentanglement cost, i.e., the asymptotic noise rate
that is necessary to transform ρ⊗n

A1���Ak
into a fully separable

state for n → ∞.
Catalytic decoupling.—Groisman et al. [3] show that for

their setting of going to product states, one can also achieve
the quantum mutual information by alternatively replacing
the model of coordinated random local unitary channels
as in Eq. (7) to only local unitary channels ΛM

A ð·Þ ≔
ð1=MÞPM

i¼1 U
i
Að·ÞðUi

AÞ† and not making use of any
(product state) catalytic assistance. Whereas maps as in
Eq. (7) and catalytic assistance—separable states in our
case—seem necessary to obtain the tight result presented in
the previous sections, it is nevertheless insightful to
compare our result with other models. In particular, the
model of local unitary channels ΛM

A ð·Þ can be related to
catalytic decoupling, where the noisy operation to ensure
closeness to product states is given by a partial trace
map over a system of asymptotic rate size 1

2
IðA∶BÞρ [4].

This can be done in our case as well, albeit not in the
exact same optimal way as for local unitary channels.
Namely, to implement the coordinated local random unitary
channel from Eq. (7), a classically correlated state γXaXb

has
to be used as an ancillary system, half of which has to
be discarded afterwards on both sites A and B. More
precisely, for

PHYSICAL REVIEW LETTERS 121, 190503 (2018)

190503-3



μĀ B̄ ≔ ρAB ⊗ ωA0B0 ⊗ γXaXb
ð24Þ

with ωA0B0 ∈ SEPðA0∶B0Þ

and Ā B̄ ≔ Ā1Ā2B̄1B̄2 ≔ AA0XaBB0Xb, there exist σĀ1B̄1
∈

SEPðĀ1∶B̄1Þ and a local unitary UĀ ⊗ UB̄ such that

PðTrĀ2B̄2
½ðUĀ ⊗ UB̄ÞμĀ B̄ðUĀ ⊗ UB̄Þ†�; σĀ1B̄1

Þ ≤ ε ð25Þ

for log jĀ2j þ log jB̄2j ¼ Eε−δ
maxðA∶BÞρ þ logð1=δÞ. We con-

clude that the straightforward translation of the disentan-
gling protocol introduced here to two-sided catalytic
decoupling leads to a cost twice the one obtained from
the converse bound in the case of disentangling. It would be
interesting to explore further the decoupling to separable
states notion as in Eq. (25).
Tripartite correlations.—We might extend our results to

analyze tripartite quantum correlations as well. Here, for
tripartite states ρABC, we can define locally recovered
states by

ðIB ⊗ RC→ACÞðρBCÞ ð26Þ

withRC→AC local quantum channels:

States ρABC such that there exists RC→BC with ðIB ⊗
RC→ACÞðρBCÞ ¼ ρABC are called quantumMarkov [33], but
in general, ρABC is far from its recovered states. A measure
for the local recoverability is the relative entropy of
recovery

DðA;BjCÞρ ≔ inf
RC→BC

DðρABCkðIB ⊗ RC→ACÞðρBCÞÞ ð27Þ

and its regularized version D∞ðA;BjCÞρ [34,35]. The latter
quantity has an operational interpretation in composite
asymmetric quantum hypothesis testing as the asymptotic
exponential rate of mistakenly identifying ρABC instead of a
corresponding locally recovered state ðIB ⊗ RC→BCÞðρACÞ
[36]. Moreover, it was recently shown that [37]

D∞ðA;BjCÞρ ≠ DðA;BjCÞρ: ð28Þ

We can now ask for the amount of noise needed to
catalytically transform the state into a corresponding locally
recovered version thereof. For this purpose, we again define
a randomizing mapΛM

ABC as in Eq. (7) but now with tripartite
local unitaries ðUi

A ⊗ Ui
B ⊗ Ui

CÞ. Such maps are called
recovery ε degrading if there exists a locally recovered state

ωA0B0C0 ¼ ðIB0 ⊗ RC0→A0C0 Þðρ⊗ðM−1Þ
BC Þ, such that

inf
RCC0→AA0CC0

P(ΛM
AA0BB0CC0 ðρABC ⊗ ω⊗ðM−1Þ

ABC Þ;

ðIBB0 ⊗ RCC0→AA0CC0 ÞðρBC ⊗ ρ⊗ðM−1Þ
BC Þ) ≤ ε: ð29Þ

Here, A0 ¼ AðM−1Þ and B0 and C0 are defined analogously.
Like before, we can think of ωA0B0C0 as a catalytic resource
state that is already locally recovered to start with but has
to be kept locally recovered by the randomizing map
(cf. conditional decoupling [5]). The nonrecoverability cost
denoted by CRECðA;BjCÞρ is then defined as the minimal
rate ð1=nÞ logM needed for recovery ε degrading in the limit
of asymptotically many copies ρ⊗n

ABC and vanishing error
ε → 0. Using again the convex split lemma (Lemma 2) and
the framework in Ref. [13] for the asymptotic expansion, it is
straightforward to see that nonrecoverability cost is upper
bounded by the regularized relative entropy of recovery

CRECðA;BjCÞρ ≤ D∞ðA;BjCÞρ: ð30Þ

It would be interesting to understand if this upper bound is
also tight. In the Appendix, we show optimality when
restricting the set of allowed coordinated unitary randomizing
maps to only include permutations of the BM systems but
arbitraryunitaries on theAM andCM systems. Finally,wenote
that for another well-known measure for tripartite quantum
correlations, the conditional quantum mutual information

IðA∶BjCÞρ ≔ HðACÞρ þHðBCÞρ −HðABCÞρ −HðCÞρ;
ð31Þ

we have the typically strict ordering [34]

D∞ðA;BjCÞρ ≤ IðA∶BjCÞρ: ð32Þ

Hence, the upper bound in Eq. (30) is in contrast to other
recent work about conditional decoupling of quantum infor-
mation by the authors [5] as well as Wakakuwa et al. [6,7].
The fundamental difference is that our final states are locally
recovered, i.e., of the form ðIB ⊗ RC→ACÞðρBCÞ, but are not
themselves (approximately) locally recoverable. In contrast,
this is demanded in all of these alternative models.
Conclusion.—We have presented a model for catalytic

erasure of entanglement in quantum states and showed that
the optimal asymptotic rate of noise needed is given by the
regularized relative entropy of entanglement. This estab-
lishes the disentanglement cost of quantum states as a
proper entanglement measure. It would be interesting to
work out all the physical consequences of our result in the
same way as the hypothesis testing interpretation of relative
entropy of entanglement [13] immediately led to novel
insights [26,27,38]. We also left open a few questions about
extensions to catalytic decoupling models as well as to
tripartite quantum correlations in terms of the nonrecover-
ability cost. Finally, our proofs make crucial use of the
convex splitting lemma (Lemma 2) by Anshu et al. [31],
and it would be interesting to better understand all the
consequences of this technique in quantum information
theory.
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Note added.—Our main result Theorem 1 as well as the
extension to multiparty entanglement was also derived in
the independent work [39]. Moreover, there it is pointed out
that the results actually extend to any resource theory that
obeys a certain number of natural axioms.

APPENDIX: NONRECOVERABILITY COST

In this appendix, we show that a converse of Eq. (30)
also holds: For coordinated unitary randomising maps
where the unitaries Ui

B are all permutations of the M B-
systems, the non-recoverability cost is bounded by the
regularised entropy of recovery from below. To this end, for
any tripartite state σABC, we define the set

Sσ ¼ fRC→ACðσBCÞjR local quantum channelsg: ðA1Þ

Now let ρABC be a fixed quantum state, and let ωA0B0C0 and
ΛM
AA0BB0CC0 define a recovery ε-degrading protocol as

described above. We define L̄ ¼ LL0XL for L ¼ A, B, C
and αĀ B̄ C̄ ¼ ρ⊗M ⊗ γXAXBXC

. Further, let VĀ B̄ C̄ ¼ Va
Ā
⊗

Vb
B̄ ⊗ Vc

C̄ be a unitary such that

trXAXBXC
½VαV†� ¼ ΛMðρ ⊗ ωÞ;where we have omitted subscripts for brevity: ðA2Þ

Now observe that

min
σ∈Sρ

Dε
maxðρABCkσABCÞ ¼ min

σ∈Ŝα

Dε
maxðαĀ B̄ C̄kσĀ B̄ C̄Þ ¼ min

σ∈VŜαV†
Dε

maxðVαĀ B̄ C̄V
†kσĀ B̄ C̄Þ

¼ min
σ∈Ŝα

Dε
maxðVαĀ B̄ C̄V

†kσĀ B̄ C̄Þ: ðA3Þ

Here, Ŝα is the set of recovered states for which γ is first perfectly recovered, and, subsequently, a recovery map is applied to
CC0 conditioned on XC. The first equation follows in the same way as in the disentanglement case. The second equation is
due to the unitary invariance of the smooth max-relative entropy, and the last equation is due to the fact that

ðVa
Ā
⊗ Vb

B̄ ⊗ Vc
C̄ÞRC̄→Ā C̄ðρ⊗M

BC ⊗ γÞðVa
Ā
⊗ Vb

B̄ ⊗ Vc
C̄Þ†

¼ ðVa
Ā
⊗ Vb

B̄ÞRC̄→Ā C̄½ðṼc
B̄Þ†ðρ⊗M

BC ⊗ γÞṼc
B̄�ðVa

Ā
⊗ Vb

B̄Þ† ðA4Þ

for all controlled recovery maps R. Here, Ṽc
B̄ implements the same controlled permutation on the B systems controlled on

XB instead of the C systems controlled on XC. The above equation holds because of the permutation invariance of ρ⊗M
BC . As

ΛM
AA0BB0CC0 and ωA0B0C0 define an recovery ε-degrading protocol, we have that there exists a recovery mapR�

CC0→AA0CC0 such
that

P(ΛM
AA0BB0CC0 ðρABC ⊗ ωA0B0C0 Þ; R�

CC0→AA0CC0 ðρ⊗M
BC Þ) ≤ ε:

Now observe that R�
CC0→AA0CC0 ðρ⊗M

BC Þ ⊗ γXAXBXC
∈ Ŝα, so we can bound

min
σ∈Ŝα

Dε
maxðVαĀ B̄ C̄V

†kσĀ B̄ C̄Þ ≤ Dε
maxðVαĀ B̄ C̄V

†kR�
CC0→AA0CC0 ðρ⊗M

BC Þ ⊗ γXAXBXC
Þ

≤ D0
maxðβĀ B̄ C̄kR�

CC0→AA0CC0 ðρ⊗M
BC Þ ⊗ γXAXBXC

Þ; ðA5Þ

where βĀ B̄ C̄ is classical on XAXBXC such that ðΠγÞXAXBXC
βĀ B̄ C̄ðΠγÞXAXBXC

¼ βĀ B̄ C̄, R
�
CC0→AA0CC0 ðρ⊗M

BC Þ ¼ TrXAXBXC
½βĀ B̄ C̄�,

and P(βĀ B̄ C̄; VðρABC ⊗ ωA0B0C0 ⊗ γXAXBXC
ÞV†) ≤ ε. The existence of such a state β follows again by Uhlmanns theorem.

Applying the operator inequality Eq. (18) in the same way as in the disentanglement case finishes the proof. □
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