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We show that the minimal rate of noise needed to catalytically erase the entanglement in a bipartite
quantum state is given by the regularized relative entropy of entanglement. This offers a solution to the
central open question raised in [Groisman et al., Phys. Rev. A 72, 032317 (2005)] and complements their
main result that the minimal rate of noise needed to erase all correlations is given by the quantum mutual
information. We extend our discussion to the tripartite setting where we show that an asymptotic rate of
noise given by the regularized relative entropy of recovery is sufficient to catalytically transform the state to

a locally recoverable version of the state.
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Introduction.—Quantifying and classifying quantum
correlations is of fundamental importance in quantum
information theory [1]. Motivated by Landauer’s erasure
principle [2], one way to quantify the correlations present in
a bipartite quantum state p,p is to measure the amount of
noise that is required to erase them. In that respect,
Groisman et al. [3] showed that the optimal asymptotic
rate of local noise to bring p,p close to a product 64, ® op
is given by the quantum mutual information

I(A:B), = D(pasllpa ® pp) = GiEnPfRD(PABHUA ® o)
(1)

with PR(A:B) the set of product states in A:B, and
D(pl|lo) == Tr[p(logp —logo)| is the quantum relative
entropy. Hence, the quantum mutual information quantifies
the total amount of correlations in bipartite states—including
both the quantum and classical ones. Alternatively, we can
write

I(A:B), = inf [H(AB),g, —

,= inf H(AB)) ()

with H(A), = —tr[p, logp4] the von Neumann entropy.
Thus, the cost function I(A:B), can conveniently be
understood as either the quantum relative entropy distance
to the next product state as in Eq. (1) or as the amount of
entropy injected into the system to reach the next product
state as in Eq. (2). This finding was generalized in various
directions, including a catalytic analysis of the one-shot
case [4], the study of tripartite correlations [5—7], as well as
the study of coherence [8] and more general symmetries
[9]. However, it remained open how to quantify the optimal
asymptotic rate of local noise to bring p,p close to a

separable state 514 jo{x ® o-é. In particular, it was unclear
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if a quantity defined in such a way can be the basis of a
proper entanglement measure.

In this Letter, we solve the problem and give a precise
mathematical model for erasing entanglement in bipartite
states where the optimal asymptotic rate of local noise
needed to get close to a separable state is given by the
regularized relative entropy of entanglement. In particular,
this also gives a new operational interpretation of the
distance measure quantum relative entropy.

Entanglement measures.—As discussed, the quantum
mutual information is a measure for the total amount of
correlations, and in the following, we introduce more
refined measures only capturing the quantum correlations.
The relative entropy of entanglement is given by [10]

E(A:B), = inf D(p|o). (3)

where SEP(A:B) denotes the set of separable states in
A:B. Since the relative entropy of entanglement is in
general not additive on tensor product states, it has to be
regularised [11,12]. The regularised relative entropy of
entanglement is defined as

1
E<(A:B), = lim - E(A:B) . (4)

This quantity has an operational interpretation in composite
asymmetric quantum hypothesis testing as the asymptotic
exponential rate of mistakenly identifying p,p instead of a
state separable in A:B [13]. As a corresponding one-shot
analogue based on the smooth max-relative entropy [14]

Dix(pllo) = inf inf {2:2%6 — 5 > 0} (5)
PRep
with p =, pin purified distance P(p,p) < ¢
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[15], we have the smooth max-relative entropy of entan-
glement [16]

Esmax (A:B>p = GielggPDfnax (p_ABHGAB)' (6)

This is a smoothed version of the logarithm global robust-
ness of entanglement [17]. All the quantities
E(A:B),, E®(A:B),, Enax(AIB),

define proper entanglement measures with mathematical
properties as requested by axiomatic entanglement theory
(see, e.g., Refs. [18,19] for an overview). We emphasize
that these types of information-theoretic entanglement
measures have been vastly useful for understanding the
entanglement structure of multipartite quantum states in
many body physics. In particular, this led to strong insights
into entropic area laws [20-23] and detecting topological
order [24,25] in condensed matter physics as well as to
basic findings in quantum thermodynamics [3,26-28].

Disentanglement cost.—We are interested in the amount
of local noise needed to catalytically erase the entangle-
ment in a bipartite quantum state. For this purpose—
following Groisman et al. [3] and the follow-up works
[4-9]—a randomizing map is generated by an ensemble of
local unitaries (U, ® U%) as

Ml

A%B UA ® UB (UA ® UB) : (7)

t:l

It is called ¢ disentangling if there exist a state wyp €
SEP(A’:B’) such that

GéEEPP(AAA’ 5 (PaB ® Wap), Oapyp) <€ (8)

with 64455 € SEP(AA": BB'). Here we think of w,p as a
catalytic resource state that is already separable to start with
but has to be kept separable by the randomizing map
(cf. catalytic decoupling [4]). The one-shot e-disentanglement
cost Cggp(A:B), is then defined as the minimal number
log M such that Eq. (8) holds. We are particularly interested in
the asymptotic behavior in the limit of many copies p$5 and
vanishing error ¢ — 0, which we call the dlsentanglement
cost of quantum states:

Csep(A:B), = lim lim — CSEP(A B) en. 9)

e—>0n—oon

Main result.—We find that the e-disentanglement cost is
given by the smooth max-relative entropy of entanglement
and, hence, that the disentanglement cost is given by the
regularized relative entropy of entanglement.

Theorem 1. Let p,p and 1 > € > 6 > 0. Then, we have
Enax(A:B), < Cpp(AiB), (10)

1
<ES3(A:B), +log—,

- (1)

as well as Cggp(A:B), = E*®(A:B),.

This offers a solution to the central open question raised
in Groisman et al. [3] and automatically establishes the
disentanglement cost of quantum states as a proper entan-
glement measure—since it inherits all mathematical proper-
ties from the regularized relative entropy of entanglement.
Note, however, that we do not show the disentanglement cost
being equal to the asymptotic rate of entropy injected into the
system as conjectured by Groisman et al. [cf. Eq. (1)]

1
~ inf [H(AB),
n c€SEP

— H(AB) ] (12)
but to the relative entropy of entanglement as suggested in
Ref. [29]. For pure states |y),z, we get E*(A:B), =
H(A),,—the entropy of the Schmidt spectrum—whereas the
quantum mutual information measuring the total correlations
is equal to 2H(A),,. For the one-shot setting, we find that

1
< HG3(A), +log -

Hﬁlax(A)W < Cipp(A :B)u/ 5

(13)

with  Hi,(A), = inf2log Tr[y/7]
PRep

the smooth max-entropy. Furthermore, we find with Ref. [4]
that the amount of noise needed to erase all correlations in a
pure state [y),p is given by 2 times the cost function from
Eq. (13), which is in exact analogy to the asymptotic case.

Proof of Theorem 1.—We first derive the converse
direction, i.e., the lower bound in Theorem 1, using
standard entropy inequalities. To show the one-shot con-
verse in Eq. (10), we begin by observing that tensoring a
separable state does not change the smooth max-relative
entropy of entanglement (the argument is the same as for
the relative entropy of entanglement [11] and based on the
monotonicity under quantum operations), and, thus, it
suffices to show the converse for disentangling maps
without catalysts. Therefore, let A}, be a disentangling
randomizing map for p,p; that is, there exists o,p €
SEP(A:B) such that P(AY. ;(pag).04p) < €. Next, define
a classically maximally correlated state

_Z‘

and the controlled unitaries Vx and Wgy, , such that

VX, x, = |x ®| | (14)

try,x, [Pasx x,) = A g(pas) (15)
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for the state

p;lBX(,X,, =
(16)

By Uhlmann’s theorem, there exists an extension o4px x,
of o4p such that P(p)ypx x,.0apx,x,) < € with the X, and
X, registers classical in the same basis as in Eq. (14).
Additionally, the extension can be chosen such that
Iy x,048x,x,1x, x, = 0aBx,x,, Where Iy x, is the projec-
tor onto the maximally correlated subspace, i.e., onto the
support of yx x,. Now we bound

EfndX<AB)/1 = Efndx(AX BXb)/)@y
(

= Enax (AX,: BXb)p
< E?nax(AXa :BXb)o-

< DY (0ax,x, 048 @ 7x,x,)

<logM. (17)

The first two inequalities follow from picking two particu-
lar points in the minima defining E%,., and the last
inequality follows from the matrix inequality

oapx,x, < 0ap @y x, = Mo @ yx x,» (18)

which follows from Ref. [30], Lemma 3.1.9. This
proves Eq. (10).

For the asymptotic expansion, we then use the composite
quantum Stein’s lemma from Ref. [13], Proposition II.1 and

Ref. [16], Theorem 1,

1
lim lim — Ef,,,(A:B),

o0 .

lim lim — = E®(A:B),. (19)
We note that asymptotic converses for similar scenarios
were also shown in Ref. [29].

For the achievability part, i.e., the upper bound in
Theorem 1, we invoke a tool that was introduced as the
convex splitting lemma by Anshu et al. [31]. We need a
special case of their main lemma, which is as follows.

Lemma 2 [Convex split]. Let p, ¢ be quantum states

and N = [2Pm(19) /£] with ¢ > 0, & > 0. Then, we have

1N ®(N-1) ®N
P(ﬁlzljp,-@af G®V) <cHE (20)

where p; sits in the ith register and i := [1, ..., N]\i.

We emphasize that this convex split lemma is neatly
proven only using elementary properties of quantum entropy
(Ref. [31], Lemma 12). Now for any state p,z and o,p €
SEP(A:B), we can choose logN = D2 (paglloas) +
log(1/8) in Lemma 2, such that

(Vax, @ Wgx,)(pag ® rx,x,)(Vax, ® Wax,)'.

®(M-1)
( ZpAB@GAB\AB ?24)58 (21)

for AB::A1~~-AMBl~--BM with A,B, :=AB and
A;B; 2 ABfori =2,...,Ay. The idea is to use the catalytic

resource state ¢, IE;\ s € SEP(A\A, : B\B,) together with
the ensemble of local umtanes fori=1,...,N given by
UL @ UL = (11); ® (1), (22)

where (1) denotes the unitary that swaps registers 1 <> i on
A and B, respectively. Optimizing over all 6,5 € SEP(A: B)
then gives the one-shot achievability in Eq. (11). Finally, the
asymptotic expansion of the upper bound follows as in
Eq. (19), which concludes the proof of Theorem 1. O

Multipartite extension.—The relative entropy of entan-
glement can naturally be extended to the multiparty setting
(see, e.g., Ref. [32]). For a k-party quantum state p,, ..o, it
is defined as the relative entropy distance to the set SEP of
completely separable states,

E(Ay:Ay: A, = inf Dipllo).  (23)

14

A regularized version E®(A|:Aj:---1A), is defined
the same way as in the two-party setting. It is then
straightforward to generalize our Theorem 1 to the multi-
party setting: E®(A Ay -+ 1A;), is equal to the multi-
party disentanglement cost, i.e., the asymptotic noise rate
that is necessary to transform pff’l’ﬂ A into a fully separable
state for n — oo.

Catalytic decoupling.—Groisman et al. [3] show that for
their setting of going to product states, one can also achieve
the quantum mutual information by alternatively replacing
the model of coordinated random local unitary channels
as in Eq. (7) to only local unitary channels AY(-):=
(1/M)>"M UL (-)(U,)" and not making use of any
(product state) catalytic assistance. Whereas maps as in
Eq. (7) and catalytic assistance—separable states in our
case—seem necessary to obtain the tight result presented in
the previous sections, it is nevertheless insightful to
compare our result with other models. In particular, the
model of local unitary channels AX () can be related to
catalytic decoupling, where the noisy operation to ensure
closeness to product states is given by a partial trace
map over a system of asymptotic rate size %I (A:B), [4].
This can be done in our case as well, albeit not in the
exact same optimal way as for local unitary channels.
Namely, to implement the coordinated local random unitary
channel from Eq. (7), a classically correlated state yx x, has
to be used as an ancillary system, half of which has to
be discarded afterwards on both sites A and B. More
precisely, for
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Hig = Pap @ wap Q rx x, (24)

with Wp'B! S SEP(A/ :B/)
and A B = A1A23132 = AA/XHBB/X;), there exist JA_IBI S
SEP(A,:B;) and a local unitary Uz ® Ujg such that
P(Trs,5,[(Us ® Upuas(Us ® Up)'l.osp) < (25)

for log |A,| + log |By| = Ef2(A:B), +log(1/5). We con-
clude that the straightforward translation of the disentan-
gling protocol introduced here to two-sided catalytic
decoupling leads to a cost twice the one obtained from
the converse bound in the case of disentangling. It would be
interesting to explore further the decoupling to separable
states notion as in Eq. (25).

Tripartite correlations.—We might extend our results to
analyze tripartite quantum correlations as well. Here, for
tripartite states p,pc, we can define locally recovered
states by

(Zg ® Reoac)(Pse) (26)

with R _ 4¢ local quantum channels.

States papc such that there exists Re_pc with (Zp ®
Re—ac)(psc) = papc are called quantum Markov [33], but
in general, p,p is far from its recovered states. A measure
for the local recoverability is the relative entropy of
recovery

D(A;B|C), = Rinf D(pascll(Zs ® Reoac)(pae))  (27)

C—BC

and its regularized version D®(A; B|C) , [34,35]. The latter
quantity has an operational interpretation in composite
asymmetric quantum hypothesis testing as the asymptotic
exponential rate of mistakenly identifying p, 5 instead of a
corresponding locally recovered state (Zg ® Re_zc)(pac)
[36]. Moreover, it was recently shown that [37]

D*(A; B|C), # D(A; B|C),. (28)

We can now ask for the amount of noise needed to
catalytically transform the state into a corresponding locally
recovered version thereof. For this purpose, we again define
arandomizing map A}y - as in Eq. (7) but now with tripartite
local unitaries (U, ® U ® UL). Such maps are called
recovery € degrading if there exists a locally recovered state

M-1
oype =Ty ® Ro_ye)(pge ). such that
®(M-1

: M )
inf  P(AYypgce(Pasc ® @ape ),
RCC’—»AA’CC’

(Zp ® Rec—ance)(ppe @ P?éM_]))) <e (29)

Here, A’ = AM-1) and B’ and C' are defined analogously.
Like before, we can think of @, g as a catalytic resource
state that is already locally recovered to start with but has
to be kept locally recovered by the randomizing map
(cf. conditional decoupling [5]). The nonrecoverability cost
denoted by Cggc(A; B|C), is then defined as the minimal
rate (1/n) log M needed for recovery e degrading in the limit
of asymptotically many copies py. and vanishing error
& — 0. Using again the convex split lemma (Lemma 2) and
the framework in Ref. [13] for the asymptotic expansion, it is
straightforward to see that nonrecoverability cost is upper
bounded by the regularized relative entropy of recovery

It would be interesting to understand if this upper bound is
also tight. In the Appendix, we show optimality when
restricting the set of allowed coordinated unitary randomizing
maps to only include permutations of the B systems but
arbitrary unitaries on the A and C¥ systems. Finally, we note
that for another well-known measure for tripartite quantum
correlations, the conditional quantum mutual information

I(A:B|C), = H(AC), + H(BC), - H(ABC), — H(C)

p’
(31)
we have the typically strict ordering [34]
D*(A;B|C), < I(A:B|C),,. (32)

Hence, the upper bound in Eq. (30) is in contrast to other
recent work about conditional decoupling of quantum infor-
mation by the authors [5] as well as Wakakuwa et al. [6,7].
The fundamental difference is that our final states are locally
recovered, i.e., of the form (Zz ® R¢_ac)(ppc), but are not
themselves (approximately) locally recoverable. In contrast,
this is demanded in all of these alternative models.

Conclusion.—We have presented a model for catalytic
erasure of entanglement in quantum states and showed that
the optimal asymptotic rate of noise needed is given by the
regularized relative entropy of entanglement. This estab-
lishes the disentanglement cost of quantum states as a
proper entanglement measure. It would be interesting to
work out all the physical consequences of our result in the
same way as the hypothesis testing interpretation of relative
entropy of entanglement [13] immediately led to novel
insights [26,27,38]. We also left open a few questions about
extensions to catalytic decoupling models as well as to
tripartite quantum correlations in terms of the nonrecover-
ability cost. Finally, our proofs make crucial use of the
convex splitting lemma (Lemma 2) by Anshu et al. [31],
and it would be interesting to better understand all the
consequences of this technique in quantum information
theory.
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Note added.—Our main result Theorem 1 as well as the
extension to multiparty entanglement was also derived in
the independent work [39]. Moreover, there it is pointed out
that the results actually extend to any resource theory that
obeys a certain number of natural axioms.

try, x,x.[VaV'] = AM(p ® w), where we have omitted subscripts for brevity.

Now observe that

(IylégnDﬁlax(pABC”UABC) = minDf (@i5¢lloize) =

p O'ES(I

= minDi (Vg geVi]loize)-

oeS,

APPENDIX: NONRECOVERABILITY COST

In this appendix, we show that a converse of Eq. (30)
also holds: For coordinated unitary randomising maps
where the unitaries U’ are all permutations of the M B-
systems, the non-recoverability cost is bounded by the
regularised entropy of recovery from below. To this end, for
any tripartite state o,pc, we define the set

S, = {Rc_ac(opc)|R1ocal quantum channels}.  (Al)

Now let p,pc be a fixed quantum state, and let w, p - and
AV ppco define a recovery e-degrading protocol as
described above. We define L = LL'X; for L=A, B, C
and azze = p®” ® yx,x,x.. Further, let Viz0 = V% ®
V%2 ® V¢ be a unitary such that

elg/l‘isanDfﬁax(VaAchTllﬁ‘ 5¢)
o a

(A3)

Here, S,, is the set of recovered states for which y is first perfectly recovered, and, subsequently, a recovery map is applied to
CC' conditioned on X . The first equation follows in the same way as in the disentanglement case. The second equation is
due to the unitary invariance of the smooth max-relative entropy, and the last equation is due to the fact that

(V4 ® Vh ® Ve)Reoiclhf @ 1)(V4 ® Vi ® V&)t
= (V4 ® Vp)Reoael(V5) (e ® n)Vgl(V ® Vi)' (A4)
for all controlled recovery maps R. Here, \7% implements the same controlled permutation on the B systems controlled on

Xp instead of the C systems controlled on X . The above equation holds because of the permutation invariance of p?g’ . As
A/’;”A, ppco and wyper define an recovery e-degrading protocol, we have that there exists a recovery map Ry _, 44 Such
that

P(Nyppec (Pasc ® @xpc) Rec_ppee (i) < e

Now observe that Rici_ oo (Poe) ® YX,XpXc € S, so we can bound
minDiv(VagpeV'lloise) < Dha(VagzeV IR avce (P ® x,x,xc)
4 a
< Domax(ﬂ_BCHRz‘C’—)AA’CC’ (p?g]) ® }’XAXBXC)’ (AS)
where f3; g ¢ is classical on X, XpX ¢ such that (I,)y v  Bisc(IL)x x,x. =Biscs Reo—ance (P8 = Trx x,x.[Bisc):
and P(Bz5¢. V(papc ® wawce ® rx,x,x.)V") < €. The existence of such a state f follows again by Uhlmanns theorem.
Applying the operator inequality Eq. (18) in the same way as in the disentanglement case finishes the proof. U

190503-5



PHYSICAL REVIEW LETTERS 121, 190503 (2018)

[1] R. Horodecki, P. Horodecki, M. Horodecki, and K.
Horodecki, Quantum entanglement, Rev. Mod. Phys. 81,
865 (2009).

[2] R. Landauer, Irreversibility and heat generation in the
computing process, IBM J. Res. Dev. 5, 183 (1961).

[3] B. Groisman, S. Popescu, and A. Winter, Quantum,
classical, and total amount of correlations in a quantum
state, Phys. Rev. A 72, 032317 (2005).

[4] C. Majenz, M. Berta, F. Dupuis, R. Renner, and M.
Christandl, Catalytic Decoupling of Quantum Information,
Phys. Rev. Lett. 118, 080503 (2017).

[5] M. Berta, F. G. S. L. Brandao, C. Majenz, and M. M. Wilde,
Deconstruction and conditional erasure of quantum corre-
lations, Phys. Rev. A 98, 042320 (2018).

[6] E. Wakakuwa, A. Soeda, and M. Murao, The cost of
randomness for converting a tripartite quantum state to be
approximately recoverable, IEEE Trans. Inf. Theory 63,
5360 (2017).

[7] E. Wakakuwa, A. Soeda, and M. Murao, Markovianizing
cost of tripartite quantum states, IEEE Trans. Inf. Theory 63,
1280 (2017).

[8] U. Singh, M. N. Bera, A. Misra, and A. K. Pati, Erasing
quantum coherence: An operational approach, arXiv:1506
.08186.

[9] E. Wakakuwa, Symmetrizing cost of quantum states,
Phys. Rev. A 95, 032328 (2017).

[10] V. Vedral, M. B. Plenio, M. A. Rippin, and P.L. Knight,
Quantifying Entanglement, Phys. Rev. Lett. 78, 2275
(1997).

[11] K. G. H. Vollbrecht and R.F. Werner, Entanglement mea-
sures under symmetry, Phys. Rev. A 64, 062307 (2001).

[12] K. Audenaert, J. Eisert, E. Jané, M. B. Plenio, S. Virmani,
and B. De Moor, Asymptotic Relative Entropy of Entan-
glement, Phys. Rev. Lett. 87, 217902 (2001).

[13] F. G.S.L. Brandao and M. B. Plenio, A generalization of
quantum Stein’s lemma, Commun. Math. Phys. 295, 791
(2010).

[14] N. Datta, Min-and max-relative entropies and a new
entanglement monotone, IEEE Trans. Inf. Theory 55,
2816 (2009).

[15] M. Tomamichel, R. Colbeck, and R. Renner, Duality
between smooth min- and max-entropies, IEEE Trans.
Inf. Theory 56, 4674 (2010).

[16] N. Datta, Max-relative entropy of entanglement, alias log
robustness, Int. J. Quantum. Inform. 07, 475 (2009).

[17] G. Vidal and R. Tarrach, Robustness of entanglement,
Phys. Rev. A 59, 141 (1999).

[18] F. G. S. L. Branddo, M. Christandl, and J. Yard, Faithful
squashed entanglement, Commun. Math. Phys. 306, 805
(2011).

[19] M. Christandl, The structure of bipartite quantum states—
Insights from group theory and cryptography, University of
Cambridge, Ph.D. thesis, 2006, arXiv:quant-ph/0604183.

[20] E. G.S.L. Branddo and M. Horodecki, An area law for
entanglement from exponential decay of correlations,
Nat. Phys. 9, 721 (2013).

[21] F. G. S. L. Branddo and M. Horodecki, Exponential decay of
correlations implies area law, Commun. Math. Phys. 333,
761 (2015).

[22] M. B. Hastings, An area law for one-dimensional quantum
systems, J. Stat. Mech. (2007) P08024.

[23] M. M. Wolf, F. Verstraete, M. B. Hastings, and J. I. Cirac,
Area Laws in Quantum Systems: Mutual Information and
Correlations, Phys. Rev. Lett. 100, 070502 (2008).

[24] A. Kitaev and J. Preskill, Topological Entanglement
Entropy, Phys. Rev. Lett. 96, 110404 (2006).

[25] M. Levin and X.-G. Wen, Detecting Topological Order in a
Ground State Wave Function, Phys. Rev. Lett. 96, 110405
(2006).

[26] F. G. S. L. Brandao and G. Gour, Reversible Framework for
Quantum Resource Theories, Phys. Rev. Lett. 115, 070503
(2015).

[27] F.G.S.L. Brandao and M. B. Plenio, A reversible theory
of entanglement and its relation to the second law,
Commun. Math. Phys. 295, 829 (2010).

[28] L. del Rio, J. Aberg, R. Renner, O. Dahlsten, and V. Vedral,
The thermodynamic meaning of negative entropy, Nature
(London) 474, 61 (2011).

[29] M. Horodecki, P. Horodecki, R. Horodecki, J. Oppenheim,
A. Sen(De), U. Sen, and B. Synak-Radtke, Local versus
nonlocal information in quantum-information theory:
Formalism and phenomena, Phys. Rev. A 71, 062307
(2005).

[30] R. Renner, Security of quantum key distribution, Ph.D.
thesis, ETH Zurich, 2005, arXiv:quant-ph/0512258.

[31] A. Anshu, V. K. Devabathini, and R. Jain, Quantum Com-
munication Using Coherent Rejection Sampling, Phys. Rev.
Lett. 119, 120506 (2017).

[32] M. B. Plenio and S. Virmani, An introduction to entangle-
ment measures, Quantum Inf. Comput. 7, 1 (2007).

[33] D. Petz, Sufficient subalgebras and the relative entropy of
states of a von Neumann algebra, Commun. Math. Phys.
105, 123 (1986).

[34] F.G.S.L. Brandido, A.W. Harrow, J. Oppenheim, and
S. Strelchuk, Quantum Conditional Mutual Information,
Reconstructed States, and State Redistribution, Phys. Rev.
Lett. 115, 050501 (2015).

[35] K. P. Seshadreesan and M. M. Wilde, Fidelity of recovery,
squashed entanglement, and measurement recoverability,
Phys. Rev. A 92, 042321 (2015).

[36] T. Cooney, C. Hirche, C. Morgan, J.P. Olson, K.P.
Seshadreesan, J. Watrous, and M. M. Wilde, Operational
meaning of quantum measures of recovery, Phys. Rev. A 94,
022310 (2016).

[37] H. Fawzi and O. Fawzi, Efficient optimization of the
quantum relative entropy, J. Phys. A 51, 154003 (2018).

[38] F. G. S. L. Brandao and M. B. Plenio, Entanglement theory
and the second law of thermodynamics, Nat. Phys. 4, 873
(2008).

[39] A. Anshu, M.-H. Hsieh, and R. Jain, following Letter,
Quantifying Resources in General Resource Theory with
Catalysts, Phys. Rev. Lett. 121, 190504 (2018).

190503-6


https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1103/RevModPhys.81.865
https://doi.org/10.1147/rd.53.0183
https://doi.org/10.1103/PhysRevA.72.032317
https://doi.org/10.1103/PhysRevLett.118.080503
https://doi.org/10.1103/PhysRevA.98.042320
https://doi.org/10.1109/TIT.2017.2694481
https://doi.org/10.1109/TIT.2017.2694481
https://doi.org/10.1109/TIT.2016.2639523
https://doi.org/10.1109/TIT.2016.2639523
http://arXiv.org/abs/1506.08186
http://arXiv.org/abs/1506.08186
https://doi.org/10.1103/PhysRevA.95.032328
https://doi.org/10.1103/PhysRevLett.78.2275
https://doi.org/10.1103/PhysRevLett.78.2275
https://doi.org/10.1103/PhysRevA.64.062307
https://doi.org/10.1103/PhysRevLett.87.217902
https://doi.org/10.1007/s00220-010-1005-z
https://doi.org/10.1007/s00220-010-1005-z
https://doi.org/10.1109/TIT.2009.2018325
https://doi.org/10.1109/TIT.2009.2018325
https://doi.org/10.1109/TIT.2010.2054130
https://doi.org/10.1109/TIT.2010.2054130
https://doi.org/10.1142/S0219749909005298
https://doi.org/10.1103/PhysRevA.59.141
https://doi.org/10.1007/s00220-011-1302-1
https://doi.org/10.1007/s00220-011-1302-1
http://arXiv.org/abs/quant-ph/0604183
https://doi.org/10.1038/nphys2747
https://doi.org/10.1007/s00220-014-2213-8
https://doi.org/10.1007/s00220-014-2213-8
https://doi.org/10.1088/1742-5468/2007/08/P08024
https://doi.org/10.1103/PhysRevLett.100.070502
https://doi.org/10.1103/PhysRevLett.96.110404
https://doi.org/10.1103/PhysRevLett.96.110405
https://doi.org/10.1103/PhysRevLett.96.110405
https://doi.org/10.1103/PhysRevLett.115.070503
https://doi.org/10.1103/PhysRevLett.115.070503
https://doi.org/10.1007/s00220-010-1003-1
https://doi.org/10.1038/nature10123
https://doi.org/10.1038/nature10123
https://doi.org/10.1103/PhysRevA.71.062307
https://doi.org/10.1103/PhysRevA.71.062307
http://arXiv.org/abs/quant-ph/0512258
https://doi.org/10.1103/PhysRevLett.119.120506
https://doi.org/10.1103/PhysRevLett.119.120506
https://doi.org/10.1007/BF01212345
https://doi.org/10.1007/BF01212345
https://doi.org/10.1103/PhysRevLett.115.050501
https://doi.org/10.1103/PhysRevLett.115.050501
https://doi.org/10.1103/PhysRevA.92.042321
https://doi.org/10.1103/PhysRevA.94.022310
https://doi.org/10.1103/PhysRevA.94.022310
https://doi.org/10.1088/1751-8121/aab285
https://doi.org/10.1038/nphys1100
https://doi.org/10.1038/nphys1100
https://doi.org/10.1103/PhysRevLett.121.190504

