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Typical studies of quantum error correction assume probabilistic Pauli noise, largely because it is
relatively easy to analyze and simulate. Consequently, the effective logical noise due to physically realistic
coherent errors is relatively unknown. Here, we prove that encoding a system in a stabilizer code and
measuring error syndromes decoheres errors, that is, causes coherent errors to converge toward
probabilistic Pauli errors, even when no recovery operations are applied. Two practical consequences
are that the error rate in a logical circuit is well quantified by the average gate fidelity at the logical level and
that essentially optimal recovery operators can be determined by independently optimizing the logical
fidelity of the effective noise per syndrome.

DOI: 10.1103/PhysRevLett.121.190501

Introduction.—Quantum computers are likely to dra-
matically outperform classical computers, provided that
errors can be corrected enough to make the output reliable.
Errors in a quantum computer can take many forms with
differing impacts on an error-correction procedure. Most
studies of the performance of quantum error-correcting
codes only consider probabilistic Pauli errors because they
are easy to simulate via the Gottesman-Knill theorem [1].
However, in real systems, it is likely that other noise will
also be present.
Determining the performance of an error-correcting code

at the logical level under general noise is complicated
because such noise is harder to simulate. Previous appro-
aches have expanded the class of errors to some larger class
that can still be efficiently simulated [2], performed full
density-matrix simulations [3], used tensor network descrip-
tions of specific codes [4,5] or effective logical process
matrices [6–8]. These methods are suboptimal because they
either require a huge amount of resources to simulate or are
indirect approximations. They also do not easily give
structural insight because extrapolating the effective logical
noise from the description of the encoded state is difficult
and determining the scaling with parameters of interest
typically requires extensive recalculations.
Optimistically, one may hope that a (numerical or

analytical) estimate of the infidelity of the logical noise
under a probabilistic Pauli channel generalizes directly to
general logical noise. However, even quantifying the error
becomes more complicated for more general noise. The

“error rate” due to a noise process N acting on a m-level
system is often experimentally quantified via the average
gate infidelity to the identity (hereafter the infidelity)

rðN Þ ¼ 1 −
Z

dψhψ jN ðjψihψ jÞjψi ð1Þ

because it can be efficiently estimated via randomized
benchmarking [9–13]. However, theoreticians often report
rigorous bounds on the performance of a quantum error-
correcting code or a circuit in terms of the diamond distance
to the identity (hereafter the diamond distance) [14]

ϵðN Þ ¼ sup
ψ

1

2
k½N ⊗ Im − Im2 �ðψÞk1; ð2Þ

where kAk1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
TrA†A

p
and the maximization is over all

m2-dimensional pure states (to account for the error
introduced when acting on entangled states).
The infidelity and diamond distance are related via the

bounds [15,16]

rðN Þð1þm−1Þ ≤ ϵðN Þ ≤
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mðmþ 1ÞrðN Þ

q
: ð3Þ

which scale optimally with respect to r and m [17]. For
unitary noise, ϵðN Þ scales as ffiffiffiffiffiffiffiffiffiffiffi

rðN Þp
, though it does not

necessarily saturate the upper bound of Eq. (3); this scaling
follows from the magnitude of the coherent (non-Pauli) part
of the noise [18]. Pauli noise saturates the lower bound of
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Eq. (3) and the effect of coherent noise is often assumed to
be negligible, so that experimental infidelities are often
compared to diamond distance targets to determine whether
fault tolerance is possible [17]. However, even if coherent
errors make a negligible contribution to the infidelity, they
can dominate the diamond norm [19]. Because of this
uncertainty about how to quantify errors effectively, it is
unclear what figure of merit recovery operations should
optimize and how to quantify the logical error rate [3,8,20].
Previous studies have shown that the contribution to the

logical noise from the coherent part of the physical noise
decays exponentially as a function of code distance [7],
although the decay rate was only given as an abstract
property of the noise map. Recently, the decay rate was
analyzed for specific noise models in the repetition
code [21].
In this Letter, we directly relate the decay rate of coherent

terms at the logical level of a general stabilizer code to the
infidelity of the physical noise of a general local noise
process, which can be estimated by randomized bench-
marking. Further, we give physical motivation for the
decoherence of errors with increasing code distance by
relating the scaling of errors to projective syndrome
measurements. We demonstrate that—even without apply-
ing recovery operations—encoding a system in a quantum
error-correcting code and measuring error syndromes deco-
heres errors, that is, causes rapid convergence toward
probabilistic Pauli errors. To isolate the contribution from
local noise, we assume that there is no other contributing
noise. That is, encoding, syndromemeasurements, recovery
operations, and decoding are all assumed to be noiseless.
Our results show that the effective logical noise is well

characterized by the logical infidelity. This provides a
rigorous justification for choosing recovery maps to inde-
pendently optimize the logical fidelity per syndrome
(instead of, e.g., optimizing the diamond norm of the logical
noise averaged over all syndromes). Complementary results
on the scaling of the diamond distance with quantum
error-correction protocols were independently obtained
in Ref. [22].
The Letter is structured as follows. We first introduce

Markovian noise processes and review the process matrix
formalism, a convenient representation of quantum chan-
nels (not to be confused with the χ matrix representation).
We then give an expression for the infidelity in terms of this
representation and discuss the implications and bounds on
the entries of a process matrix in terms of its infidelity.
Next, we introduce stabilizer codes and, using the afore-
mentioned bounds, discuss the behavior of the effective
logical noise of an encoded state after syndrome measure-
ments with and without the application of recovery oper-
ations in terms of the physical infidelity of the qubits. We
conclude by discussing some implications of our work and
discuss how our results relate to existing results showing
coherent errors at the logical level.

Markovian noise processes.—We represent quantum
states and measurements of a m-dimensional system by
vectors as follows. Let fej∶j ∈ Zmg be the canonical basis
of Cm2

and B be an arbitrary trace-orthonormal basis of
Cm×m respectively, that is, TrðB†

jBkÞ ¼ δj;k for all Bj,
Bk ∈ B. We will generally choose B to be the set of
normalized (physical or logical) Pauli operators,
P ¼ fI2; X; Y; Zg=

ffiffiffi
2

p
, or tensor products thereof. We

define a map j·ii: Cm×m → Cm2

by setting jBjii → ej for
all Bj ∈ B and extending to a linear map, so that

jMii ¼
X
j

TrðB†
jMÞej: ð4Þ

Defining hhMj ¼ jMii†, we have
hhMjNii ¼ TrðM†NÞ: ð5Þ

A Markovian noise process is a linear map N that maps
valid quantum states of one system to valid quantum states
of another system, and so is completely positive and trace
preserving. Let Bin and Bout be trace-orthonormal bases for
the input and output systems, respectively. Then

jN ðMÞii ¼
X
B∈Bin

jN ðBÞiihhBjMii ¼ N jMii; ð6Þ

where we abuse notation slightly by using N to denote
both an abstract map and its matrix representationP

B∈Bin
jN ðBÞiihhBj. Note that jN ðBÞii is a state of the

output system and so is expanded relative to Bout via
Eq. (4). The composition of two channels is then given by
the standard matrix product of the process matrices.
The average infidelity of a single-qubit noise process N

with the identity in terms of process matrices is [23]

r ¼ Tr½I −N �
6

: ð7Þ

The infidelity only captures the effects of the Pauli part of
the noise, that is, the diagonal part, whereas the disconnect
between the infidelity and the diamond norm in Eq. (3) for
non-Pauli noise is due to the off-diagonal terms, which we
call the coherent part of the noise.
Setting B0 ¼ I2=

ffiffiffi
2

p
and defining the single-qubit error

matrix E≡ jI4 −N j, we have the following bounds on the
matrix entries Eσ;τ ¼ hhσjEjτii of E in terms of the
infidelity.
Lemma 1.—For any single-qubit Markovian noise proc-

ess with infidelity r,

Eσ0;σ ¼ 0; ð8aÞ
Eσ;σ0 ≤ 3r; ð8bÞ
Eσ;σ ≤ 3r; ð8cÞ
Eσ;τ ≤

ffiffiffiffiffi
6r

p
; ð8dÞ

for all σ; τ ∈ σ⃗ ¼ I; X; Y; Z=
ffiffiffi
2

p
.
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Proof.—Equation (8a) follows directly from the trace-
preserving condition. Equation (8b) was proven in [16],
Prop. 12. To prove Eq. (8c), note that the Pauli twirl of N ,

1

4

X
P∈fI;X;Y;Zg

PNP ð9Þ

where P denotes the channel that acts via conjugation by P,
is a valid channel whose process matrix is the diagonal part
of N whose singular values are consequently the diagonal
entries. We can then write Eσ;σ ¼ aσr [24] where the aσ
must satisfy

ðaσ − aτÞ2 ≤ a2ν ð10Þ
for all permutations fσ; τ; νg of σnfσ0g in order for the map
to be completely positive and trace preserving [Eq. (63) in
[16] ] and must add to 6, by Eq. (7), as N has infidelity r.
Equation (8d) holds as the Euclidean norm of any

column of N u is upper bounded by 1 where N u is the
unital block obtained by deleting the first row and column
of N [24]. Note that the term in the square root was only
kept to OðrÞ; an r2 term was dropped, reducing the
inequality from Eσ;τ ≤

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6r − 9r2

p
. This convention will

be followed for the remainder of the Letter. This bound can
be tightened further by considering unitarity [25].
Stabilizer codes.—We now review stabilizer codes; for

more details, see, e.g., Ref. [26]. Let ½A; B� ¼ AB − BA and
fA; Bg ¼ ABþ BA. An n-qubit Pauli operator P is the
tensor product of n single-qubit Pauli operators, and the
weight wðPÞ of a Pauli operator P is the number of qubits P
acts on nontrivially. An ⟦n; k; d⟧ stabilizer code encodes k
logical qubits in n physical qubits and is distance d; it is
defined by an Abelian group S=∋ − I of 2n−k n-qubit Pauli
operators, which can be described by a set of generators
g1;…; gn−k. We can define a set of 2n−k mutually orthogo-
nal projectors

Πs ¼
Yn−k
j¼1

1

2
½I þ ð−1Þsjgj�; ð11Þ

where sj is the jth entry of the syndrome s, and the code
space is the support of Π0. An error is detectable if it maps
the support of Π0 outside of Π0 and has no effect if it acts
trivially on Π0, that is, if it is in S. The distance of the code
is the minimal Pauli weight of an undetectable error that
acts nontrivially on Π0. For each error syndrome s ∈ Zn−k

2

we can find a Pauli operator Rs satisfying RsΠsRs ¼ Π0

which corrects the error.
We can find a set of operators fX̄j; Z̄j∶j ¼ 1;…; kg such

that for all S ∈ S and j ≠ k,

½X̄j; S� ¼ ½Z̄j; S� ¼ 0;

½X̄j; X̄k� ¼ ½X̄j; Z̄k� ¼ ½Z̄j; Z̄k� ¼ 0;

X̄jZ̄j ¼ −Z̄jX̄j: ð12Þ

Let L be the projective group generated by fX̄j; Z̄j∶j ¼
1;…; kg. Then 2−k=2LΠ0 is a trace-orthonormal set of
operators that span the code space. Therefore, any operator
ρ̄ in the code space can be written as

ρ̄ ¼ 2−k
X
L∈L

TrðLΠ0ρ̄ÞLΠ0: ð13Þ

Effective noise under error correction.—We now prove
that, even with bad decoders (or no correction), encoding in
an error-correcting code decoheres local errors.
For ideal encoding and correction operations, preparing

an initial state in the code space, applying a general local n-
qubit noise process N ¼ N ð1Þ ⊗ N ð2Þ ⊗ � � � ⊗ N ðnÞ, and
performing a syndrome measurement with the outcome s
maps the system from the support of Π0 to that of Πs. Let
pðsÞ be the probability of observing the syndrome s, which
will generally depend upon the input state. Then by Eq. (6)
the effective noise map from Π0 to Πs is

N̄ ðsÞL;L0 ¼ hhLΠsjN jL0Π0ii
pðsÞ2k ; ð14Þ

where the factor of 2−k comes from the normalization of
LΠs [6]. Note that it is conventional to apply a “pure error”
[27] to map back to the code space. We omit this step to
highlight the fact that syndrome measurements alone
decohere the noise.
Theorem 2.—For any ⟦n; k; d⟧ stabilizer code, the

average off-diagonal elements of the logical noise under
a local noise process N ¼ ⊗

n

j¼1
N ðjÞ scales as

X
s

pðsÞN̄ ðsÞL;L0 ∈ Oðrd=2Þ as r → 0; ð15Þ

where r ¼ maxjrðN ðjÞÞ.
Proof.—By Eq. (11), Eq. (14) can be rewritten as

N̄ ðsÞL;L0 ¼
X
S;S0∈S

ϕðSjsÞhhLSjN jL0S0ii
pðsÞ22n−k ; ð16Þ

where ϕðSjsÞ is the sign of S in the expansion of Eq. (11).
As N and the stabilizers are all tensor products, terms of
the form hhLSjN jL0S0ii can be factorized. However, this
introduces a subtlety as LS may be a phase multiple of an
element of fI; X; Y; Zg⊗n, which needs to be accounted for
when factoring the tensor product. Let χðAÞ ∈ f�;�ig be
the phase multiple of A relative to its representative element
A0 in the projective Pauli group fI; X; Y; Zg⊗n so that
A ¼ χðAÞA0. Note that we can ignore the �i case as all
operators under consideration are Hermitian. Then, using
N P;Q ¼ hhPjN ðjÞjQii=2 for P;Q ∈ fI; X; Y; Zg,

N̄ ðsÞL;L0 ¼
X
S;S0∈S

ϕðSjsÞχðLSÞχðL0S0Þ
pðsÞ2n−k

Yn
j¼1

N ðjÞ
LjSj;L0

jS
0
j
:

ð17Þ
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By the definition of the code distance, SL and S0L0 differ on
at least d qubits for S ∈ SL, S0 ∈ SL0, and L ≠ L0.
Therefore, for any L ≠ L0, each term on the right-hand
side of Eq. (17) is in Oðrd=2Þ by Lemma 1 after syndrome
measurements. Averaging over the syndromes cancels the
pðsÞ in the denominator.
Intuitively, syndrome measurements decohere errors

because the act of measuring projects out any Pauli in
the expansion of the output state that is not of the form LS,
thus removing the components of the output state corre-
sponding to the additional Pauli operators introduced by
coherent noise.
In Theorem 1, we proved that any errors are suppressed

exponentially with the code distance. To conclude that the
noise is decohered, we need to show that the off diagonals
of the logical error matrix E do not scale as the square root
of the diagonals, so that the ratio of the off diagonals
to diagonals decreases with code distance (i.e., the ratio of
the off-diagonal elements to the diagonal elements of the
logical noise is less than the corresponding ratio for the
physical noise). To see that this holds, at least for typical
noise in nondegenerate stabilizer codes, note that Eq. (16)
is linear in N . Writing N ¼ P

x⊂Zn
EðxÞ where EðxÞ is an

error that only acts nontrivially on qubits in x and
Eð∅Þ ¼ I,

N̄ ðsÞL;L0 ¼
X

S;S0∈S;x⊂Zn

ϕðSjsÞχðSLÞχðS0L0Þ
pðsÞ2n−k

Y
j∈x

EðxÞðjÞLjSj;L0
jS

0
j
:

ð18Þ

For a nondegenerate distance d stabilizer code, there
exists some set x of at most ⌈d=2⌉ qubits such that
EðxÞ cannot be corrected, that is, canceled out when
averaged over syndromes. This set contributes a termP

S∈S
Q

j∈x EðxÞðjÞLjSj;LjSj
. By reducing the generators so

that at most one generator acts nontrivially as σ on each
j ∈ x for each σ ∈ σ⃗, we can find some stabilizer such that
LjSj ≠ σ0 for all j ∈ x. Let

r0 ¼ min
j;σ∈σ⃗

EðxÞðjÞσ;σ; ð19Þ

which will be OðrÞ for typical noise. Then x contributes a
term that scales as at least r0jxj to the effective logical error
and so the logical infidelity scales as r0⌈d=2⌉ or worse, so
that the off diagonals are, at worst, proportional to the
diagonals of the logical error matrix.
As d increases, the scaling described above causes the

effective logical noise to become progressively less coher-
ent so that the Pauli twirl approximation captures the
logical noise more effectively. However, due to contribu-
tions from the coherent part of the physical noise to the
Pauli part of the logical noise, approximating the physical
noise as Pauli in order to calculate the logical noise

produces inaccurate results as observed previously
[3,21]. Reference [21] demonstrated that the coherent
contribution dominates the Pauli part of the logical noise
after many rounds of error correction. We now apply our
bounds on the scaling of errors to a more general analysis of
error accumulation in a scheme with rounds of error
correction. The effective logical noise after h rounds of
error correction is

ðI − ĒÞh ≈ I − hĒþ
�
h
2

�
Ē2; ð20Þ

where we have taken a binomial expansion to second order
in Ē. Assuming typical noise, the off diagonals of Ē scale at
worst as Oðrðdþ1Þ=2Þ, and the diagonals as Oðrd=2Þ. When
the noise is Pauli, the effective logical noise on the diagonal
after h rounds of error correction will be at worst

ðI − ĒÞhσ;σ ≈ 1 −Oðhrðdþ1Þ=2Þ þOðh2rdþ1Þ: ð21Þ

If coherent noise is present,

ðI − ĒÞhσ;σ ≈ 1 −Oðhrðdþ1Þ=2Þ þOðh2rdÞ: ð22Þ

Taking the ratio of the first and second order terms,
quadratic errors start to accumulate from Pauli noise at
hP ≈ 1=rðdþ1Þ=2 and from coherent noise at hc ≈ 1=rðd−1Þ=2.
The coherent noise begins to dominate the Pauli part of the
effective logical noise at hcrit ≈ 1=r, independent of the
code distance. This critical value is consistent with the
value observed in Ref. [21] of 1=ϵ2, where, ϵ is the angle of
rotation about the x axis, and we note that all of our
observations hold in their specific case when we replace r
in our results with

ffiffiffi
ϵ

p
, as that is how the specified noise

scales relative to our Lemma 1. Because the off-diagonal
terms and diagonal terms produce the same scaling in a
worst-case analysis with coherent noise, the ratio of off-
diagonal to diagonal errors is independent of the number of
rounds of error correction in the worst-case scaling of
typical noise.
Conclusion.—In this Letter, we have shown that for

generic local noise, coherent errors are decohered by
syndrome measurements in error-correcting stabilizer
codes. Consequently, error rates in logical circuits are well
quantified by the logical infidelity. Therefore, it is appro-
priate to choose recovery operators to optimize the logical
fidelity, instead of other measures such as the diamond
norm. This dramatically simplifies the process of selecting
recovery operators for general noise because the fidelity is a
linear function of quantum channels and so we can
optimize the fidelity of the logical noise for each syndrome
independently, as noted in [8]. By contrast, if we tried to
optimize the diamond norm of the average logical noise,
we would have to simultaneously optimize all recovery
operators.
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While we have only explicitly considered independent
errors, note that our arguments apply directly to correlated
errors of the form

N ¼
X
α

pα ⊗
n

j¼1
N ðα;jÞ ð23Þ

by linearity. The only nontrivial issue is identifying a
scaling parameter akin to the single-qubit infidelity.
Previous results have demonstrated significant logical

coherent errors [3,7], namely, off diagonals that scale as
r3=2 compared to diagonals that scale as r2. However, these
results were all for distance 3 codes and are consistent with
our results as for such codes, ⌈d=2⌉ ¼ 2 giving diagonals
that scale as r02 and off diagonals that scale as r3=2 by
Theorem 1. Numerically, significant discrepancies between
the logical diamond norm error with and without Pauli
twirling (which removes the coherent part of the noise) at
the physical level have been observed for high distance
surface codes [4] (up to distance 10). These discrepancies
have been interpreted as suggesting significant logical
coherent errors [21]. Our results show that these discrep-
ancies are almost entirely due to contributions to the logical
infidelity (and thereby diagonals) from the coherent part
(i.e., off diagonals) of the physical noise, though for a
specific syndrome and noise model, the effective logical
noise may appear coherent. That is, the effective logical
noise is generically very close to a Pauli channel on
average; however, it may not be the Pauli channel one
would predict from the Pauli twirl of the physical noise.
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