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Prototypes of quantum impurities, such as NV and SiV color centers in diamond, have garnered much
attention due to their minimally invasive and high-resolution magnetic field and thermal sensing. Here, we
investigate quantum-impurity relaxometry as a method for probing collective excitations in magnetic
insulators. We develop a general framework to relate the measurable quantum-impurity relaxation rates to
the intrinsic dynamic properties of a magnetic system via the noise emitted by the latter. We suggest, in
particular, that the quantum-impurity relaxometry is sensitive to dynamic phase transitions, such as magnon
condensation, and can be deployed to detect signatures of the associated coherent spin dynamics, both in
ferromagnetic and antiferromagnetic systems. Finally, we discuss prospects to nonintrusively probe spin-
transport regimes and measure the associated transport coefficients in magnetic insulators.
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Introduction.—Quantum impurities (QIs), such as NV
and SiV centers in diamond, display an exceptional
sensitivity to static magnetic fields and their spin state
can be initialized and read out optically [1–5]. These
defects can noninvasively resolve magnetic textures on
length scales of the order of tens of nanometers, without
requiring strong external polarizing fields [6]. Their relax-
ation rates are, furthermore, affected by the electromagnetic
noise in its vicinity, encapsulating information about the
dynamic properties of the environment. In equilibrium, this
is rooted in the fluctuation-dissipation theorem [7], which
relates the noise to the physical response function.
While QI relaxometry has already been proposed as a

platform for studying transport properties and spatial inho-
mogeneities in electronic systems [8], an analogous theo-
retical framework for magnetic insulators is still in its
infancy. The QI ability to probe noise locally and non-
intrusively, however, appears particularly appealing for
magnetic insulating systems [9], as the detection of their
collective excitations, such as spin waves, is, otherwise,
largely limited to conventional spin-transport experiments
[10,11] or microwave probes [12]. As we discuss below, the
QI relaxometrymayoffer a number of clear advantages, such
as a direct bulk measurement of spin-transport coefficients.
Heretofore, spin-wave relaxometry has been focusing

only on the noise emitted by a magnetic system at frequen-
cies higher than its spin-wave gap [6,9,13]. For a ferromag-
net, this noise reflects both the spectrum and the distribution
of its magnon gas at the QI resonance frequency [9].
Following this approach, Du et al. [9] have provided the
first direct measurement of the magnon chemical potential,
as well as its dependence on external perturbations, in a
ferromagnetic system. However, a variety of magnetic
systems possess spin-wave gaps that are much larger than
the maximum operating frequency of, e.g., NV centers [6].

In particular, the relaxometry of antiferromagnetic insulators,
which have been attracting much attention lately owing to
their ultrafast spin dynamics [14], has not yet been under-
taken due to the lack of a theoretical framework for the
magnetic subgap noise. In this Letter, therefore, we address
the detection, via QI relaxometry, of the magnetic noise
emerging at subgap frequencies.
The interaction between spin waves and a QI spin

induces transitions between its quantum states. When the
spin relaxes, it releases an energy proportional to its
resonance frequency, as shown in Fig. 1(a). How this

(a) (b) (c)

FIG. 1. Quantum-impurity relaxation via one- and two-magnon
processes. (a) The interaction between the QI spin and a nearby
magnetic system, here, depicted as gas of magnons with spin ℏ
and frequency ωk (with ωk¼0 ¼ Δ), leads to a QI transition with
emission of energy ℏω. (b) When ω > Δ, the latter can result in
the creation of a magnon at frequency ωk ¼ ω or in a magnon
(Raman) scattering with energy gain ℏω. These events contribute,
respectively, to the single-magnon, Γ1 m, and two-magnon, Γ2 m,
QI relaxation rates. When ω > Δ, the relaxation rate is typically
dominated by the one-magnon processes. (c) Conversely, for
ω < Δ, one-magnon events are suppressed and Γ ≈ Γ2 m. Similar
processes, in reverse, are responsible for the QI transitions with
absorption of energy ℏω.
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energy is converted into excitations of the magnetic system
depends on the gap of the spin-wave spectrum. If the QI
resonance frequency is larger than the spin-wave gap, the
relaxation can trigger both one- and two-magnon processes,
corresponding, respectively, to the creation of a magnon at
the QI resonance frequency or to a magnon scattering with
energy gain equal to it, as depicted in Fig. 1(b). One can
show, by using a simple model of a local coupling between
the QI spin and the ferromagnetic spin density of an ideal
magnon gas, that the relaxation rate, Γ2m, due to the two-
magnon processes is suppressed at low temperatures with
respect to the one-magnon, Γ1m, one: Γ1m ∼ T=TC while
Γ2m ∼ ðT=TCÞ2, in terms of the Curie temperature TC.
When the QI resonance frequency lies within the gap,
however, the one-magnon scattering is prohibited and two-
magnon processes overtake the QI transitions, as shown in
Fig. 1(c). Focusing on this regime, we develop a theory of
relaxometry driven by two-magnon noise.
To illustrate its capability of probing spin-transport

properties and detecting dynamic phase transitions, we
discuss two main examples. First, we focus on the
characterization of a diffusive spin-wave transport, which
is relevant in the context of magnetic insulator-based
devices. Heretofore, these properties have been investigated
in metallic-insulating heterostructures, where invasive met-
allic contacts are used for spin injection and detection
[10,11]. In such setups, the spin interconversion at the
metal-insulator interface depends on a variety of parameters
and length scales, which might hinder the extraction of a
bulk signal. Here, we show how the QI relaxometry driven
by two-magnon noise can overcome these drawbacks,
allowing us to probe the intrinsic bulk spin-transport
properties directly. Finally, we investigate the dependence
of the two-magnon noise on the spin chemical potential in
both ferromagnetic and antiferromagnetic systems. We find
that the two-magnon noise can signal the precipitation of a
Bose-Einstein condensation (BEC).
Model.—In this Letter, we focus, for simplicity, on

axially symmetric magnetic insulating films with approxi-
mate U(1) symmetry and a strong collinear order. In such
systems, the net spin parallel to the magnetic symmetry axis
is (approximately) conserved. The spin-wave dynamics can
then be described in terms of transport of the conserved
component of the spin density, and, moreover, we can
introduce a well-defined magnon chemical potential
[15–17]. In the setup we envision, illustrated in Fig. 2, a
QI spin SQI is placed at a height d above a magnetic
film and it is oriented along its anisotropy axis n, with
z · n ¼ cos θ. With a NV center in mind [1], we set
jSQIj ¼ 1. The local spin density sðrÞ of the magnetic film
generates a stray field BðrQIÞ ¼ γ

R
d2rDðr; rQIÞsðrÞ at the

QI position rQI ¼ ð0; 0; dÞ, where γ is the gyromagnetic
ratio of the film and D the tensorial magnetostatic Green’s
function [18,19]. Up to leading order in perturbation theory,
the Zeeman coupling between the QI spin and the stray

field induces QI transitions between the spin states
ms ¼ 0 ↔ �1 at the resonance frequency ω�. We find
the corresponding transition rate as [20]

Γðω�Þ ¼ fðθÞ
Z

∞

0

dkk3e−2kd½Cxxðk;ω�Þ þ Czzðk;ω�Þ�;

ð1Þ

with fðθÞ ¼ ðγγ̃Þ2ð5 − cos 2θÞ=16π, where γ̃ is the QI
gyromagnetic ratio. Here, CxxðzzÞðk;ωÞ is the Fourier
transform of the spin-spin correlator CxxðzzÞðri; rj; tÞ ¼
hfŝxðzÞðri; tÞ; ŝxðzÞðrj; 0Þgi, which describes magnetic noise
transverse (longitudinal) to the magnetic symmetry axis z,
i.e., to the equilibrium orientation of the order parameter.
Here, we have introduced the spin density operator ŝ, h…i
stands for the equilibrium (thermal) average and f…g for
the anticommutator. Invoking the Holstein-Primakoff trans-
formation [21], i.e., ŝþ ¼ ŝx þ iŝy ∝ â† and ŝz ∝ â†â, with
â† (â) being the magnon creation (annihilation) operator,
one can see that the transverse and longitudinal noises
emerge from, respectively, one- and two-magnon proc-
esses. In the following, we assume the QI frequency to lie
sufficiently within the magnetic gap, such that only two-
magnon processes contribute, i.e., Cxxðk;ω�Þ → 0 [22].
Diffusive transport properties via two-magnon noise.—

The longitudinal noise, Czz, can be related to the imaginary
part, χ00zz, of the longitudinal spin susceptibility via the
fluctuation-dissipation theorem [7], i.e., Czzðk;ωÞ ¼
cothðβℏω=2Þχ00zzðk;ωÞ, with β ¼ 1=kBT and kB being the
Boltzmann constant. Thus, the two-magnon driven QI
relaxation rate is fully determined by the longitudinal spin
susceptibility of the magnetic system. The latter depends on
the pertinent spin-transport regime, and it can be obtained
by inverting the corresponding spin-transport equation.

FIG. 2. Setup for QI relaxometry of a magnetic insulating
system. The QI spin SQI is located at a height d above the
magnetic film and oriented along its anisotropy axis n, with
z · n ¼ cos θ. The coordinate system has the xy plane placed on
the magnetic film, with the origin aligned with the QI position.
The interactions between the QI spin and the local spin density
sðrÞ of the magnetic film induce QI transitions between the spin
states ms ¼ 0 ↔ �1 with energy loss or gain of ℏω� at the
rate Γðω�Þ.
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As an experimentally relevant example, here, we consider a
weakly interacting magnon system, whose spin density
dynamics can be treated as diffusive at wavelengths larger
than the magnon mean free path (mfp) lmfp, i.e.,

∂tsz þ ∇ · js ¼ −
1

τs
sz: ð2Þ

Here, we have introduced the spin-relaxation time τs and
the spin current js ¼ −σ∇μ, where σ is the magnon spin
conductivity, μ ¼ χ−1sz − γH the chemical potential, χ the
static uniform longitudinal susceptibility, andH an external
magnetic field. Introducing the diffusion coefficient
D ¼ σ=χ, the imaginary part of the dynamical longitudinal
spin susceptibility can be written as [23]

χ00zzðk;ωÞ ¼
χℏ2ωDk2

ðDk2 þ 1=τsÞ2 þ ω2
: ð3Þ

One might notice that, in Eq. (1), the filtering function
k3e−2kd, introduced by dipolar interactions, is peaked
around the wave vector k ∼ 1=d: contributions to Eq. (1)
from smaller wave vectors are algebraically suppressed as
they have limited phase space, while the ones at larger wave
vectors are exponentially suppressed due to the self-
averaging of short-wavelength fluctuations [8]. This allows
us to approximate χ00zzðkÞ ∼ χ00zzð1=dÞ [24]. For βℏω ≪ 1,
the QI relaxation rate reads as

ΓðωÞ ∼ fðθÞ ℏχ
βDd2

1

½1þ ð dlsÞ2�2 þ ðωd2D Þ2 ; ð4Þ

where we have introduced the spin-diffusion length
ls ¼

ffiffiffiffiffiffiffiffi
Dτs

p
. Measuring the QI relaxation rate while

varying the distance between the QI and the magnetic
film should then unveil the region over which a diffusive
description of transport holds, according to Eq. (4), as well
as the wavelength at which it starts breaking down.
Equation (4) shows that the relaxation rate increases
with decreasing frequency, up to becoming constant, i.e.,
Γ ∼ ðdþ d3=l2

sÞ−2, for ω ≪ D=d2. In this regime, one can
detect the region where d ∼ ls as the crossover region
between Γ ∼ d−2 and Γ ∼ d−6, as depicted in Fig. 3. Within
such a region, we find that measuring the QI relaxation
rates, Γðd1Þ and Γðd2Þ, at two different distances, d1 and
d2, leads to an estimate for the spin diffusion length as

l2
s ∼

d31
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γðd1Þ=Γðd2Þ

p
− d32

d2 − d1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Γðd1Þ=Γðd2Þ

p : ð5Þ

Since the spin-relaxation time τs and the susceptibility χ
can be directly measured, one can use Eq. (5) to extract the
magnon spin conductivity σ. Such a measurement, which
could be performed by, e.g., embedding a NV center on a
cantilever [25,26], would provide a direct probe of bulk
spin-transport properties, not marred by interfacial effects
that affect conventional spin-transport experiments [11].
The associated transport coefficients cannot be easily
extracted from the one-magnon noise. Thus, our results
suggest that, even when the spin-wave gap is lower than the
maximum operating QI frequency, probing the subgap
magnetic noise can provide a unique set of information.
Magnon BEC via two-magnon noise.—As an example of

detection, via two-magnon noise, of a dynamical phase
transition, we focus on magnon Bose-Einstein condensa-
tion and, therefore, investigate the dependence of the two-
magnon noise on the magnon chemical potential. Our
starting point is a general U(1)-symmetric Hamiltonian

Hm ¼ −J
X
hi≠ji

Ŝi · Ŝj þ γ
X
i

Ŝi ·Hþ K
2

X
i

ðŜz;iÞ2; ð6Þ

where Ŝi is the dimensionless on-site spin operator at the
site ri of a lattice, which, we take, for simplicity, to be
square, H ¼ Hz a uniform magnetic field, with H > 0, J
the exchange stiffness, and K the constant governing the
strength of the local anisotropy. First, we consider a
ferromagnetic system with easy-plane anisotropy, i.e., J,
K > 0. Introducing the Holstein-Primakoff transformation
at leading order [21], we truncate the resulting Hamiltonian
up to quadratic order and Fourier transform it. Equation (6)
is diagonalized by a magnon mode with chemical potential
μ and dispersion ℏωk ¼ Ak2 þ ΔF, where A ∼ JSa20 is the
spin stiffness, a0 the atomic spacing, and ΔF the ferro-
magnetic gap. In the continuum limit, the QI spin couples
to the coarse-grained spin density (in physical units).

d1

d2

QI

QI
Γ

d
�s

d2

d1

∼ d−6

∼ d−2

FIG. 3. Measurement of the spin diffusion length ls. By
varying the distance d between the magnetic film and the
quantum impurity, one can find a crossover region between
two limiting behaviors of the QI relaxation rate Γ, i.e., Γ ∼ d−2

and Γ ∼ d−6. Within this region, measuring the relaxation rate at
two different heights, d1 and d2, leads to an estimate for the spin
diffusion length ls.
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We approximate the dipolar kernel Dðr − r0Þ by a local
coupling between the QI spin and the gradient of the
longitudinal spin density, sz, underneath it, and we set
θ ¼ 0 [20,27].
As an example, we consider yttrium iron garnet (YIG),

which is widely used in spintronic devices due to its long-
range spin-transport properties. Taking jγj ¼ jγ̃j ¼ 2μB=ℏ,
where μB is the Bohr magneton, and A ¼ 10−39 Jm2 [28],
we plot, in Fig. 4(a), the two-magnon driven relaxation
rate as a function of the chemical potential μ, having
set ΔF=ℏ ¼ 10 GHz, ω ¼ 1 GHz, T ¼ 100 K, and d ¼
100 nm [20]. Figure 4(a) shows that, while increasing the
magnon chemical potential, which could be achieved via,
e.g., microwave pumping [9], the two-magnon noise
increases logarithmically and reaches its saturation value
in correspondence to the precipitation of Bose-Einstein
condensation, i.e., μ ¼ ΔF. For ℏω ≪ Δ − μ, βΔ ≪ 1, and
in proximity to the condensation point, i.e., μ → Δ, the QI
relaxation rate can be approximated as [20]

Γ ∼
ℏ3ðγγ̃Þ2
A3β2

ln

�
A

d2ðΔF − μÞ
�
: ð7Þ

In equilibrium (i.e., μ ¼ 0), Γ−1 ∼ 10 ms, while at the onset
of BEC, the QI relaxation time decreases up to Γ−1 ∼
100 μs [29]. The latter is much shorter than the intrinsic
relaxation time of, e.g., NV centers, which can reach
seconds at T ∼ 100 K [30], suggesting that the signal is
detectable in practice.
Next, we consider an antiferromagnetic system with

easy-axis anisotropy, whose energetics can be described by
Eq. (6) setting K, J → −K, −J, while keeping K, J > 0.
Introducing the Holstein-Primakoff transformation up to
leading order and, consequently, a Bogoliubov transforma-
tion (see, e.g., Ref. [31]), we can diagonalize the resulting
Fourier transform of Eq. (6) in terms of two magnon
eigenmodes, each one carrying spin angular momentum
�ℏ, whose distribution functions are characterized by the

dispersion ℏωk ∓ γH and chemical potential �μ [17].
Here, we have introduced ℏωk ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Δ2 þ ðckÞ2

p
, with

c ∼ JSa0 being the spin-wave velocity and Δ the anti-
ferromagnetic gap. The QI spin couples to the coarse-
grained spin density (in physical units) of both sublattices.
Focusing on the antiferromagnetic insulator MnFe2,
we take c ¼ 10−31 Jm (having set a0 ¼ 4 _A) and Δ=ℏ ¼
1 THz [31]. We set d ¼ 100 nm, T ¼ 10 K, ω ¼ 10 GHz,
and H ¼ 0. Figure 4(b) shows that the QI relaxation rate
increases logarithmically with increasing chemical poten-
tial, in analogy with the ferromagnetic case [20]. Indeed,
for ω ≪ Δ − μ, βΔ ≪ 1, and in proximity of the conden-
sation point, i.e., μ → Δ, the relaxation rate can be
approximated as [20]

Γ ∼
ℏ3ðγγ̃Þ2Δ3

c6β2
ln

�
A

d2ðΔ − μÞ
�
: ð8Þ

In equilibrium (i.e., μ ¼ 0), Γ−1 ∼ 10 ms, while at the onset
of BEC, the QI relaxation time decreases up to Γ−1 ∼ 1 μs
[29]. As could be expected, the QI relaxation rate decreases
with increasing distance d (albeit only logarithmically), as
shown by Eqs. (7) and (8).
Discussion.—Although the QI relaxometry of magnetic

insulators has, so far, been primarily focused on the one-
magnon noise [9], subgap magnetic fluctuations have been
recently detected near a YIG film [32]. In this Letter, we
relate the leading-order subgap magnetic noise to two-
magnon Raman processes. We show that two-magnon
driven QI relaxometry can be used as a direct probe of
spin-wave bulk transport properties of magnetic insulators,
which cannot be easily extracted from the one-magnon
noise. With the growing interest in insulating systems with
long-range spin-transport capabilities, we propose QI
relaxometry as a direct probe of key quantities such as
the spin-diffusion coefficient and spin-relaxation time,
without a need to fabricate metal-insulator heterostructures.
While we have, for simplicity, focused on the diffusive
transport, our framework can also be applied to other
transport regimes.
Our results suggest that magnon Bose-Einstein conden-

sation can be detected via two-magnon noise in both
ferromagnetic and antiferromagnetic systems. Our findings
can be readily tested experimentally in ferromagnetic
insulators, such as YIG, and, most importantly, they open
up new prospects for detecting magnon condensation,
induced by, e.g., thermal gradients [33], in antiferromag-
netic insulators. With its combined capabilities, QI relax-
ometry of the two-magnon noise can also shed light on
spin transport and dynamics in systems in which thermal
spin waves coexist with a superfluid condensate of mag-
nons [34].
In this work, we focused on magnetic insulators, where,

due to the lack of charge noise, we can directly relate the
QI relaxation rates to one- and two-magnon processes.

(a) (b)

FIG. 4. QI relaxation rate as a function of the magnon chemical
potential for a QI spin interacting with (a) a YIG film at
T ¼ 100 K, with ω ¼ 1 GHz; (b) a MnFe2 film at T ¼ 10 K,
with ω ¼ 10 GHz. Each relaxation rate Γ is normalized by its
respective value Γeq in equilibrium, i.e., for μ ¼ 0, while the
magnon chemical potential is normalized by the spin-wave gap
(Δ and ΔF for the ferromagnetic and antiferromagnetic cases,
respectively).
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Our theory, however, can also be applied to conducting
materials, in the regimes where the magnetostatic noise
associated with spin-density fluctuations dominates over
the electronic (Johnson-Nyquist) noise.
Future work should investigate the role of higher-order

magnon processes. While generically, at lower temper-
atures, we may expect for such processes to give only small
corrections, they might become important at the onset of a
singularity, such as that triggered by the magnon Bose-
Einstein condensation [cf. Eqs. (7) and (8)]. This may affect
the fate of the logarithmic singularity derived here, at the
onset of a dynamic phase transition.
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