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The unexpected appearance of a fractional quantum Hall effect (FQHE) plateau at ν ¼ 2þ 6=13
[A. Kumar et al., Phys. Rev. Lett. 105, 246808 (2010)] offers a clue into the physical mechanism of the
FQHE in the second Landau level (SLL). Here we propose a “3̄2̄111” parton wave function, which is
topologically distinct from the 6=13 state in the lowest Landau level. We demonstrate the 3̄2̄111 state to be
a good candidate for the ν ¼ 2þ 6=13 FQHE, and make predictions for experimentally measurable
properties that can reveal the nature of this state. Furthermore, we propose that the “n̄2̄111” family of
parton states naturally describes many observed SLL FQHE plateaus.
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Ever since its discovery more than three decades ago, the
fractional quantum Hall effect (FQHE) [1] has provided a
fertile playground to study quantum many-body phenom-
ena. Intriguingly, fundamentally distinct physics underlies
the FQHE in different Landau levels (LLs). For the lowest
LL (LLL), a unified understanding of the FQHE has
been developed in terms of composite fermions (CFs):
the prominent FQHE at filling factor ν ¼ n=ð2pn� 1Þ,
where n and p are positive integers, arises as the ν� ¼ n
integer quantum Hall effect (IQHE) of composite fermions
[2], while weaker plateaus at fractions such as ν ¼ 4=11
arise as FQHE states of interacting composite fermions
[3–6]. In the half filled LLL, ν ¼ 1=2, a compressible
Halperin-Lee-Read Fermi sea of composite fermions [7] is
realized. In striking contrast, the half filled second LL
(SLL) hosts an incompressible FQH state at ν ¼ 2þ 1=2
[8]. Numerical studies have supported the notion that this
state is a paired state of composite fermions, described by
the Moore-Read Pfaffian wave function [9] or its particle-
hole conjugate, the anti-Pfaffian [10,11]. Recent thermal
Hall measurements [12] appear to be inconsistent with both
of these candidate states; a number of scenarios to explain
the measurements are currently being debated [13].
The surprising observation of a FQHE at ν ¼ 2þ 6=13

by Kumar et al. [14] further underscores the difference
between the LLL and the SLL. In addition to the fact that
the 2þ 1=2 state is not a CF Fermi sea, experiments do not
show conclusive evidence for FQHE at ν ¼ 2þ 3=7,
2þ 4=9, and 2þ 5=11 [15]; the FQHE at ν ¼ 2þ 2=5
[14,16–18] is furthermore believed to be parafermionic and

not CF-like [19–24], and even the nature of the state at
2þ 1=3 is under debate [25–29]. Based on all of these
observations, we conclude that a CF-based LLL-like
description of the ν ¼ 2þ 6=13 state is highly unlikely.
This motivates us to search for a unifying principle for the
FQHE in the SLL. In this work we propose and analyze the
ν ¼ 2þ 6=13 FQHE in terms of a “parton state” that is
topologically distinct from its LLL counterpart. We dem-
onstrate that the parton wave function has lower energy
than the LLL CF ν ¼ 6=13 state for the ideal SLL Coulomb
interaction (neglecting disorder, LL mixing, and finite
width), and also a reasonably high overlap with the ground
state obtained via exact diagonalization. Taking these
results together with the recent demonstration of a related
parton wave function for the ground state at ν ¼ 2þ 1=2,
we propose a sequence of parton wave functions that
naturally captures many prominent fractions observed in
the SLL. We provide several experimentally testable
predictions that follow from our proposal.
Using the parton theory [30–35], we construct new

FQHE states by decomposing each electron into fictitious
particles called partons, placing each parton species into an
IQHE state, and then fusing the partons back into physical
electrons. The m-parton “n1n2…nm” wave function of N
electrons at filling factor ν is given by

Ψfnλg
ν ¼ PLLL

Ym
λ¼1

ΦnλðfzjgÞ; ð1Þ
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where zj ¼ xj − iyj describes the two-dimensional coor-
dinates of electron j, with 1 ≤ j ≤ N, and PLLL denotes
projection into the LLL. Here Φnλ is the IQHE wave
function of N electrons filling nλ LLs. We allow nλ < 0,
referring to IQHE states in a negative magnetic field:
Φn̄ ¼ ½Φn��, where n̄ denotes a negative value. To ensure
that each parton species occupies the same physical area
when exposed to the external magnetic field B, we must
take their charges to be qλ ¼ −eν=nλ, with

P
λqλ ¼ −e,

where −e is the electron charge. The physical filling

factor of the state Ψfnλg
ν in Eq. (1) is then given by ν ¼

ðPλn
−1
λ Þ−1. The parton states of the types n11… and

n̄11… correspond to CF states [2] with Abelian excitations.
More general states of the form in Eq. (1) can also
accommodate non-Abelian excitations [34].
Our motivation for considering a parton state to describe

the ν ¼ 2þ 6=13 FQHE derives from the recent applica-
tion of the parton construction to the ν ¼ 5=2 FQHE in
Ref. [36]. There, the parton state 2̄2̄111 was shown to
exhibit a substantial overlap with the SLL Coulomb ground
state obtained by numerical exact diagonalization, as well
as the anti-Pfaffian wave function [10,11]. Further argu-
ments showed that the 2̄2̄111 parton state and the anti-
Pfaffian state describe the same phase. These results,
together with the experimental observations described
above, lead us to consider parton states of the form [37]:

Ψn̄2̄111
ν¼2n=ð5n−2Þ ¼ PLLLΦn̄Φ2̄Φ3

1: ð2Þ
The choice n ¼ 2 produces the state at ν ¼ 1=2 considered
in Ref. [36]. We shall investigate the n ¼ 3 state of this
sequence, which occurs at ν ¼ 6=13. This 6=13 parton state
is also applicable, through particle-hole conjugation, to the
recently observed FQHE at ν ¼ 7=13 in the n ¼ 1 LL of
bilayer graphene [39].
We note here that Levin and Halperin [40] proposed to

obtain a FQHE at ν ¼ 2þ 6=13 as the first daughter in a
hierarchy emanating from the anti-Pfaffian. Since no
simple wave function follows from the Levin-Halperin
construction, it has not figured prominently in numerical
studies of the SLL FQHE. Interestingly, below we show
that the Levin-Halperin state and the 3̄2̄111 parton state are
possibly topologically equivalent.
An advantage of the parton construction is that the wave

function in many cases can be evaluated for very large
systems, well beyond the sizes accessible to exact diago-
nalization [36]. This efficient evaluation is possible because
we can project these states into the LLL as

Ψn̄2̄111
ν¼2n=ð5n−2Þ ∼

½PLLLΦn̄Φ2
1�½PLLLΦ2̄Φ2

1�
Φ1

¼
ΨCF

n=ð2n−1ÞΨ
CF
2=3

Φ1

:

ð3Þ
The ∼ sign indicates that the wave function on the right-
hand side of Eq. (3) differs slightly from the definition in

Eq. (2) in how the projection to the LLL is implemented.
We expect such details of the projection to have only a
minor effect on the state; in particular, we expect that the
universality class of the state should not be affected [38].
The CF states ΨCF

n=ð2n−1Þ can be evaluated for hundreds of

electrons using the Jain-Kamilla projection [41–44].
Throughout this work we employ the spherical geometry

[45] in which N electrons move on the surface of a sphere,
with a radial magnetic field emanating from a monopole of
strength 2Qðh=eÞ at the sphere’s center. Incompressible
quantum Hall states occur at flux values 2Q ¼ ν−1N − S,
where S is a topological number called the shift [46]. These
states are uniform on the sphere and thus have total orbital
angular momentum L ¼ 0. The parton states Ψn̄2̄111

ν¼2n=ð5n−2Þ
occur at 2Q ¼ Nð5n − 2Þ=ð2nÞ − ð1 − nÞ; i.e., their shifts
are given by S ¼ 1 − n. In particular, the 3̄2̄111 parton state
has a shift of S ¼ −2, distinct from the shift of S ¼ 8 for
the 611 CF state that also occurs at ν ¼ 6=13.
We first ask if the 3̄2̄111 parton state is a plausible

candidate to describe the ν ¼ 2þ 6=13 FQHE. To this end,
we begin by comparing the parton and the CF states in the
LLL and the SLL (see Fig. 1). In our calculations, all states
are written for the LLL; the SLL is simulated by using an
effective interaction that has the same pseudopotentials in
the LLL as the Coulomb interaction in the SLL. Here we
use the effective interaction described in Ref. [47]. We find
that the 611 CF state has a lower energy in the LLL, as
expected, while the 3̄2̄111 parton state has lower energy in
the SLL. For completeness we have also investigated the
competition between these two states in the n ¼ 1 LL
of monolayer graphene. We find the 611 CF state to be
favored here, consistent with the observation that FQHE
states in the n ¼ 1 LL of monolayer graphene conform to
the CF paradigm [48–50].
We next ask how accurately the parton state represents the

ground state found from exact diagonalization. For this
purpose we shall use the SLL Coulomb pseudopotentials of
the disk geometry, which slightly differ from those of the
spherical geometry but are known to give better thermody-
namic extrapolation. ForN ¼ 12 particles, the overlap of the
parton wave function with the numerically exact ground
state is 0.7536(9). The ground state energy per particle of the
parton state for the effective interaction is −0.39390ð6Þ
while the exact energy is−0.39689, both in units of e2=ðϵlÞ,
where ϵ is the dielectric constant of the host material and
l ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=ðeBÞp
is the magnetic length. (This energy has been

corrected for the finite size deviation of the density in the
spherical geometry, and includes electron-background and
background-background interactions.) The agreement by
itself is not conclusive, but provides comparable evidence
to that obtained from overlaps for the Pfaffian [52–54] and
Laughlin [25,26] states at filling factors 5=2 and 7=3.
In situations where overlaps are suggestive but not

conclusive, the standard approach is to ask if the ansatz
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wave function is a good ground state for a model interaction
and then to establish adiabatic continuity along a line
connecting the model interaction and the physical Coulomb
interaction. No local interaction is known which produces
our ν ¼ 6=13 wave function as the exact ground state. We
instead draw inspiration from the Pfaffian wave function,
which is the exact solution for a three-body interaction.
It was previously shown that particle-hole symmetrization
or a mean-field approximation of this interaction produces
a two-body interaction whose ground sate is also very
close to the Pfaffian state [55,56]. This interaction, denoted
H2, is defined by the pseudopotentials V1 ¼ 3V3, and
Vm ¼ 0 for m > 3. The pseudopotential denoted by Vm is
the energy of a pair of electrons in a state with relative
angular momentum m. We define an interaction HðλÞ ¼
ð1 − λÞHSLL þ λH2, where HSLL is the SLL Coulomb
interaction and the value of V1 in H2 is taken to be that
of the SLL Coulomb pseudopotential.
In Fig. 2 we show the overlap of the 3̄2̄111 parton state

with the exact ground state of HðλÞ for 0 ≤ λ ≤ 1. We
furthermore show the transport and neutral gaps for the
latter. The high overlap near the second LL Coulomb point
and the robust gaps support the assertion that the parton
state is stabilized for a range of interaction potentials near
the Coulomb interaction.
To assess the qualitative effect of the quantum well’s

finite width, we study the overlap of the 3̄2̄111 ansatz with
the numerically exact ground state for an interaction
proposed by Zhang and Das Sarma (ZDS) that takes into
account the finite quantum well width d [57]:
HZDS ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
r2 þ ðd=2Þ2

p
. As shown in the inset of

Fig. 2, the overlap in fact improves when the finite width
is taken into account. This further underscores the robust-
ness of the 3̄2̄111 ansatz. LL mixing can also provide
quantitative corrections, but a proper treatment of this effect
is outside the scope of this work.
We believe that these comparisons make a clear case for

the plausibility of the 3̄2̄111 ansatz. In the remainder of the

Letter we deduce the experimental consequences of our
theory, which allow its validity to be assessed.
The most immediate ramification of our proposal is the

sequence ν ¼ 2n=ð5n − 2Þ arising from the n̄2̄111 parton
states. The first three members of the sequence occur at
2þ 2=3, 2þ 1=2, and 2þ 6=13, and have been observed.
This provides a natural explanation for why 2þ 6=13
is observed, which appears “out of order” from the

FIG. 2. The transport (red line) and neutral (blue line) gaps as
the Hamiltonian is tuned from the second Landau level Coulomb
interaction, modeled using truncated disk pseudopotentials, to the
model Hamiltonian H2, for N ¼ 12 electrons seeing a flux of
2Q ¼ 28 in the spherical geometry. The model HamiltonianH2 is
defined by the set of pseudopotentials V1 ¼ VSLL

1 (same as the
second Landau level Coulomb), V3 ¼ V1=3, and the rest Vm ¼ 0.
The “transport” gap for this system is defined as
½Eð2Q ¼ 29Þ þ Eð2Q ¼ 27Þ − 2Eð2Q ¼ 28Þ�=6, where Eð2QÞ
is the ground state energy at flux 2Q and the factor of 6 accounts
for the fact that the removal or addition of one flux quantum
produces 6 fundamental quasiparticles or quasiholes. The neutral
gap for this system is defined as the difference between the two
lowest energies at a fixed flux 2Q ¼ 28. This figure also displays
the overlap (green line) of the ground state with the 3̄2̄111 parton
state. Inset: Overlap between the parton state and the exact
ground state of the Zhang–Das Sarma Hamiltonian HZDS as a
function of thickness parameter d=l.

FIG. 1. Thermodynamic extrapolations of the energies (per particle) for the CF state (blue crosses) and the 3̄2̄111 parton state (red
dots). The left-hand panel shows energies for ν ¼ 6=13 in the LLL, the middle panel for ν ¼ 2þ 6=13 in the second LL, and the right-
hand panel for 6=13 in the n ¼ 1 LL of monolayer graphene (for n ¼ 0 LL, graphene results are identical to those in the left-hand panel
for the n ¼ 0 GaAs LL). The energies include the electron-background and background-background interaction, and are quoted in units
of e2=ðϵlÞ. The LLL Coulomb energy for the CF state has been reproduced from Ref. [51].

PHYSICAL REVIEW LETTERS 121, 186601 (2018)

186601-3



perspective of the LLL CF theory. A definitive observation
of the next fraction 2þ 4=9 or its hole partner will lend
further credence to the parton paradigm for the second LL
FQHE, although it is possible that this and further fractions
are swamped by bubble phases.
The quasiparticles of the 3̄2̄111 state obey Abelian braid

statistics. An additional CF particle in the factor Φ3̄ has
charge q3̄ ¼ 2e=13, whereas that in the factor Φ2̄ has a
charge q2̄ ¼ 3e=13. A combination of a CF particle in Φ3̄

and a CF hole in Φ2̄ leads to the smallest charge, of
magnitude q2̄ − q3̄ ¼ e=13. At this stage, it has not been
possible to reliably estimate the thermodynamic values of
the gaps predicted by our parton ansatz. The transport gap
of 0.0016e2=ϵl for N ¼ 12 particles, while much smaller
than the gap of 0.1e2=ϵl at ν ¼ 1=3, far exceeds the gap of
10.5 mK ∼ 0.0001e2=ϵl measured by Kumar et al. [14].
A significant discrepancy exists for the gaps of other FQHE
states as well, especially for the more delicate ones,
presumably arising from a combination of disorder, finite
width effects, and LL mixing. We note that in the
thermodynamic limit, we expect the neutral gap to be
smaller than or equal to the transport gap; the large
deviation between the two for 12 particles indicates strong
finite size effects for excitations, as has been found for other
fractions in the second LL [26,27,58].
To deduce other topological consequences, we consider

the low-energy effective theory of the edge, which is
described by the Lagrangian density [35,59,60]:

L ¼ −
1

4π
KIJϵ

μνλaIμ∂νaJλ −
1

2π
ϵμνλtIAμ∂νaIλ: ð4Þ

Here we have used Einstein’s summation convention, ϵμνλ

is the completely antisymmetric Levi-Civita tensor, A is the
external electromagnetic vector potential, and a denotes the
internal gauge field. Naively, one might guess that there are
a total of eight edge states: three from the factor Φ3̄, two
from Φ2̄, and one from each factor Φ1. However, these are
not all independent. Recalling that the density variations of
all partons must be identified, which gives four constraints,
one ends up with four independent edge states. The integer-
valued symmetric K matrix and the charge vector t from
Eq. (4) for the parton state are given by [61]

K ¼

0
BBB@

−2 −1 0 1

−1 −2 0 1

0 0 −2 1

1 1 1 1

1
CCCA; t ¼

0
BBB@

0

0

0

1

1
CCCA: ð5Þ

The ground state degeneracy of the parton state on a
manifold with genus g is j detðKÞjg ¼ 13g.
The K matrix above has one positive and three negative

eigenvalues; the 3̄2̄111 state thus hosts one forward moving
and three backward moving edge modes. The thermal Hall

conductance κxy takes a quantized value proportional to the
chiral central charge c, which is the difference in the
number of forward and backward moving modes:
κxy ¼ c½π2k2B=ð3hÞ�T. For 3̄2̄111 we thus predict a thermal
Hall conductance of κxy ¼ −2½π2k2B=ð3hÞ�T. The Hall
viscosity is also expected to be quantized [62]:
ηH ¼ ℏρ0S=4 ¼ ð−1=2Þℏρ0, where ρ0 ¼ ν=ð2πl2Þ is the
density and S ¼ −2 is the shift.
In contrast, the K matrix of the 6=13 CF state is given by

the 6 × 6 matrix Kij ¼ 2þ δij and charge vector
t ¼ ð1; 1; 1; 1; 1; 1ÞT . It is an Abelian state with quasipar-
ticle charge −e=13 and degeneracy of 13g on a manifold of
genus g. In contrast to 3̄2̄111, the CF state has six forward
moving edge states and no upstream neutral modes
(assuming the absence of edge reconstruction), its thermal
Hall conductance κxy ¼ 6½π2k2B=ð3hÞ�T, and its Hall vis-
cosity ηH ¼ 2ℏρ0, corresponding to shift S ¼ 8.
Shot noise experiments have been used to measure the

presence of upstream modes [63–66] and also the quantized
thermal Hall conductance [12,67] at other filling fractions;
these experiments can test the predictions of the parton
theory and thus discriminate between the topological struc-
tures of the 6=13 states in the LLL and the SLL. In particular,
including the contribution arising from the filled LLL, the
thermal Hall conductance of the 3̄2̄111 ansatz vanishes. This
is dramatically different from what one would expect from
the CF state, which has κxy ¼ 8½π2k2B=ð3hÞ�T.
The Levin-Halperin state [40] at ν ¼ 2þ 6=13 is also

Abelian, occurs at shift S ¼ −2, and has a thermal Hall
conductance of κxy ¼ −2½π2k2B=ð3hÞ�T. Therefore, it may
be in the same topological phase as the 3̄2̄111 state.
To gain insight into what makes the n̄2̄111 parton states

special, we consider other parton states. The fact that the
CF states n11… and n̄11… capture the most prominent
states of the LLL suggests that placing parton species into
ν ¼ 1 states builds good correlations. The simplest gener-
alization thus is to have nn211…, with jn2j ¼ 2, where …
indicates that more 1’s may be added. The states n̄21 at
ν ¼ 2n=ð3n − 2Þ and n̄2̄1 at ν ¼ 2n=ðn − 2Þ do not
produce fractions in the filling factor range of our interest.
The n21 parton states at ν ¼ 2n=ð3nþ 2Þ ¼ 2=5; 1=2;
6=11;… appear, a priori, as plausible as the ones we
considered above. However, this family does not provide an
account of the SLL FQHE: the first two states, namely the
2=5 CF and the 221 parton states, have been ruled out
for ν ¼ 2þ 2=5 and ν ¼ 2þ 1=2 [68,69], respectively,
and no FQHE has been seen at the third fraction in the
sequence, ν ¼ 2þ 6=11, or its hole partner, ν ¼ 2þ 5=11.
We note, however, that this is an energetic issue; the n21
parton states are conceptually well defined and can
possibly be stabilized by some other interaction (see,
e.g., Refs. [70–72] for the 221 parton state). For the
SLL in GaAs, the sequence we propose appears to be
the most plausible scenario.
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In summary, we have proposed that the parton ansatz
“n̄2̄111” naturally captures an important sequence of
observed fractional quantum Hall states in the second
Landau level, explaining, in particular, the unusual stability
of 2þ 6=13 FQHE. We have further suggested experimen-
tal quantities that can reveal the underlying parton character
of the 2þ 6=13 state and demonstrate it to be topologically
distinct from the 6=13 state in the lowest Landau level. The
parton construction can be readily generalized to multi-
component systems involving spin, valley, layer, or orbital
degrees of freedom. The viability and properties of these
states remain to be explored.

The Center for Quantum Devices is funded by the
Danish National Research Foundation. This work was
supported by the European Research Council (ERC) under
the European Union Horizon 2020 Research and
Innovation Programme, Grant Agreement No. 678862
and A. C. B. and M. R. also thank the Villum
Foundation for support. The work at Penn State was
supported by the U.S. Department of Energy, Office of
Basic Energy Sciences, under Grant No. DE-SC0005042.
M. B. is supported by NSF CAREER (DMR-1753240) and
JQI-PFC-UMD. Some of the numerical calculations were
performed using the DiagHam package, for which we are
grateful to its authors. Some portions of this research were
conducted with Advanced CyberInfrastructure computa-
tional resources provided by The Institute for CyberScience
at The Pennsylvania State University.

A. C. B. and S. M. contributed equally to this work.

[1] D. C. Tsui, H. L. Stormer, and A. C. Gossard, Phys. Rev.
Lett. 48, 1559 (1982).

[2] J. K. Jain, Phys. Rev. Lett. 63, 199 (1989).
[3] K. Park and J. K. Jain, Phys. Rev. B 62, R13274 (2000).
[4] W. Pan, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, K. W.

Baldwin, and K.W. West, Phys. Rev. Lett. 90, 016801
(2003).

[5] A. Wójs, K.-S. Yi, and J. J. Quinn, Phys. Rev. B 69, 205322
(2004).

[6] S. Mukherjee, S. S. Mandal, Y.-H. Wu, A. Wójs, and J. K.
Jain, Phys. Rev. Lett. 112, 016801 (2014).

[7] B. I. Halperin, P. A. Lee, and N. Read, Phys. Rev. B 47,
7312 (1993).

[8] R. Willett, J. P. Eisenstein, H. L. Störmer, D. C. Tsui, A. C.
Gossard, and J. H. English, Phys. Rev. Lett. 59, 1776
(1987).

[9] G. Moore and N. Read, Nucl. Phys. B360, 362 (1991).
[10] M. Levin, B. I. Halperin, and B. Rosenow, Phys. Rev. Lett.

99, 236806 (2007).
[11] S.-S. Lee, S. Ryu, C. Nayak, and M. P. A. Fisher, Phys. Rev.

Lett. 99, 236807 (2007).
[12] M. Banerjee, M. Heiblum, V. Umansky, D. E. Feldman, Y.

Oreg, and A. Stern, Nature (London) 559, 205 (2018).
[13] J. Alicea, Viewpoint: A Hot Topic in the Quantum Hall

Effect, Physics 11, 70 (2018).

[14] A. Kumar, G. A. Csáthy, M. J. Manfra, L. N. Pfeiffer, and
K.W. West, Phys. Rev. Lett. 105, 246808 (2010).

[15] V. Shingla, E. Kleinbaum, A. Kumar, L. N. Pfeiffer, K. W.
West, and G. A. Csáthy, Phys. Rev. B 97, 241105 (2018).

[16] J. S. Xia, W. Pan, C. L. Vicente, E. D. Adams, N. S.
Sullivan, H. L. Stormer, D. C. Tsui, L. N. Pfeiffer, K. W.
Baldwin, and K.W. West, Phys. Rev. Lett. 93, 176809
(2004).

[17] H. C. Choi, W. Kang, S. Das Sarma, L. N. Pfeiffer, and
K.W. West, Phys. Rev. B 77, 081301 (2008).

[18] W. Pan, J. S. Xia, H. L. Stormer, D. C. Tsui, C. Vicente,
E. D. Adams, N. S. Sullivan, L. N. Pfeiffer, K. W. Baldwin,
and K.W. West, Phys. Rev. B 77, 075307 (2008).

[19] N. Read and E. Rezayi, Phys. Rev. B 59, 8084 (1999).
[20] E. H. Rezayi and N. Read, Phys. Rev. B 79, 075306 (2009).
[21] G. J. Sreejith, Y.-H. Wu, A. Wójs, and J. K. Jain, Phys. Rev.

B 87, 245125 (2013).
[22] W. Zhu, S. S. Gong, F. D. M. Haldane, and D. N. Sheng,

Phys. Rev. Lett. 115, 126805 (2015).
[23] R. S. K. Mong, M. P. Zaletel, F. Pollmann, and Z. Papić,

Phys. Rev. B 95, 115136 (2017).
[24] K. Pakrouski, M. Troyer, Y.-L. Wu, S. Das Sarma, and M. R.

Peterson, Phys. Rev. B 94, 075108 (2016).
[25] N. d’Ambrumenil and A.M. Reynolds, J. Phys. C 21, 119

(1988).
[26] A. C. Balram, Y.-H. Wu, G. J. Sreejith, A. Wójs, and J. K.

Jain, Phys. Rev. Lett. 110, 186801 (2013).
[27] S. Johri, Z. Papić, R. N. Bhatt, and P. Schmitteckert, Phys.

Rev. B 89, 115124 (2014).
[28] M. R. Peterson, Y.-L. Wu, M. Cheng, M. Barkeshli, Z.

Wang, and S. Das Sarma, Phys. Rev. B 92, 035103 (2015).
[29] J.-S. Jeong, H. Lu, K. H. Lee, K. Hashimoto, S. B. Chung,

and K. Park, Phys. Rev. B 96, 125148 (2017).
[30] J. K. Jain, Phys. Rev. B 40, 8079 (1989).
[31] B. Blok and X. G. Wen, Phys. Rev. B 42, 8145 (1990).
[32] B. Blok and X. G. Wen, Phys. Rev. B 42, 8133 (1990).
[33] J. K. Jain, Phys. Rev. B 41, 7653 (1990).
[34] X. G. Wen, Phys. Rev. Lett. 66, 802 (1991).
[35] X.-G. Wen, Int. J. Mod. Phys. B 06, 1711 (1992).
[36] A. C. Balram, M. Barkeshli, and M. S. Rudner, Phys. Rev. B

98, 035127 (2018).
[37] The choice n ¼ 1 in Eq. (2) produces a state that differs

from the LLL ν ¼ 2=3 state ½Φ2��Φ2
1 only through the

additional factor jΦ1j2. It was shown in Ref. [38] that 2̄1̄111
and 2̄11 are very nearly the same after LLL projection.

[38] A. C. Balram and J. K. Jain, Phys. Rev. B 93, 235152
(2016).

[39] A. A. Zibrov, C. R. Kometter, H. Zhou, E. M. Spanton, T.
Taniguchi, K. Watanabe, M. P. Zaletel, and A. F. Young,
Nature (London) 549, 360 (2017).

[40] M. Levin and B. I. Halperin, Phys. Rev. B 79, 205301
(2009).

[41] R. K. Kamilla, X. G. Wu, and J. K. Jain, Solid State
Commun. 99, 289 (1996).

[42] G. Möller and S. H. Simon, Phys. Rev. B 72, 045344 (2005).
[43] J. K. Jain, Composite Fermions (Cambridge University

Press, New York, 2007).
[44] S. C. Davenport and S. H. Simon, Phys. Rev. B 85, 245303

(2012).
[45] F. D. M. Haldane, Phys. Rev. Lett. 51, 605 (1983).

PHYSICAL REVIEW LETTERS 121, 186601 (2018)

186601-5

https://doi.org/10.1103/PhysRevLett.48.1559
https://doi.org/10.1103/PhysRevLett.48.1559
https://doi.org/10.1103/PhysRevLett.63.199
https://doi.org/10.1103/PhysRevB.62.R13274
https://doi.org/10.1103/PhysRevLett.90.016801
https://doi.org/10.1103/PhysRevLett.90.016801
https://doi.org/10.1103/PhysRevB.69.205322
https://doi.org/10.1103/PhysRevB.69.205322
https://doi.org/10.1103/PhysRevLett.112.016801
https://doi.org/10.1103/PhysRevB.47.7312
https://doi.org/10.1103/PhysRevB.47.7312
https://doi.org/10.1103/PhysRevLett.59.1776
https://doi.org/10.1103/PhysRevLett.59.1776
https://doi.org/10.1016/0550-3213(91)90407-O
https://doi.org/10.1103/PhysRevLett.99.236806
https://doi.org/10.1103/PhysRevLett.99.236806
https://doi.org/10.1103/PhysRevLett.99.236807
https://doi.org/10.1103/PhysRevLett.99.236807
https://doi.org/10.1038/s41586-018-0184-1
https://doi.org/10.1103/PhysRevLett.105.246808
https://doi.org/10.1103/PhysRevB.97.241105
https://doi.org/10.1103/PhysRevLett.93.176809
https://doi.org/10.1103/PhysRevLett.93.176809
https://doi.org/10.1103/PhysRevB.77.081301
https://doi.org/10.1103/PhysRevB.77.075307
https://doi.org/10.1103/PhysRevB.59.8084
https://doi.org/10.1103/PhysRevB.79.075306
https://doi.org/10.1103/PhysRevB.87.245125
https://doi.org/10.1103/PhysRevB.87.245125
https://doi.org/10.1103/PhysRevLett.115.126805
https://doi.org/10.1103/PhysRevB.95.115136
https://doi.org/10.1103/PhysRevB.94.075108
https://doi.org/10.1088/0022-3719/21/1/010
https://doi.org/10.1088/0022-3719/21/1/010
https://doi.org/10.1103/PhysRevLett.110.186801
https://doi.org/10.1103/PhysRevB.89.115124
https://doi.org/10.1103/PhysRevB.89.115124
https://doi.org/10.1103/PhysRevB.92.035103
https://doi.org/10.1103/PhysRevB.96.125148
https://doi.org/10.1103/PhysRevB.40.8079
https://doi.org/10.1103/PhysRevB.42.8145
https://doi.org/10.1103/PhysRevB.42.8133
https://doi.org/10.1103/PhysRevB.41.7653
https://doi.org/10.1103/PhysRevLett.66.802
https://doi.org/10.1142/S0217979292000840
https://doi.org/10.1103/PhysRevB.98.035127
https://doi.org/10.1103/PhysRevB.98.035127
https://doi.org/10.1103/PhysRevB.93.235152
https://doi.org/10.1103/PhysRevB.93.235152
https://doi.org/10.1038/nature23893
https://doi.org/10.1103/PhysRevB.79.205301
https://doi.org/10.1103/PhysRevB.79.205301
https://doi.org/10.1016/0038-1098(96)00126-3
https://doi.org/10.1016/0038-1098(96)00126-3
https://doi.org/10.1103/PhysRevB.72.045344
https://doi.org/10.1103/PhysRevB.85.245303
https://doi.org/10.1103/PhysRevB.85.245303
https://doi.org/10.1103/PhysRevLett.51.605


[46] X. G. Wen and A. Zee, Phys. Rev. Lett. 69, 953 (1992).
[47] C. Shi, S. Jolad, N. Regnault, and J. K. Jain, Phys. Rev. B

77, 155127 (2008).
[48] F. Amet, A. J. Bestwick, J. R. Williams, L. Balicas, K.

Watanabe, T. Taniguchi, and D. Goldhaber-Gordon, Nat.
Commun. 6, 5838 (2015).

[49] A. C. Balram, C. Tőke, A. Wójs, and J. K. Jain, Phys. Rev. B
92, 205120 (2015).

[50] Y. Zeng, J. I. A. Li, S. A.Dietrich, O.M.Ghosh, K.Watanabe,
T. Taniguchi, J. Hone, and C. R. Dean, arXiv:1805.04904.

[51] A. C. Balram and J. K. Jain, Phys. Rev. B 96, 235102
(2017).

[52] R. H. Morf, Phys. Rev. Lett. 80, 1505 (1998).
[53] V.W. Scarola, S.-Y. Lee, and J. K. Jain, Phys. Rev. B 66,

155320 (2002).
[54] K. Pakrouski, M. R. Peterson, T. Jolicoeur, V.W. Scarola, C.

Nayak, and M. Troyer, Phys. Rev. X 5, 021004 (2015).
[55] M. R. Peterson, K. Park, and S. Das Sarma, Phys. Rev. Lett.

101, 156803 (2008).
[56] G. J. Sreejith, Y. Zhang, and J. K. Jain, Phys. Rev. B 96,

125149 (2017).
[57] F. C. Zhang and S. Das Sarma, Phys. Rev. B 33, 2903

(1986).
[58] R. H. Morf, N. d’Ambrumenil, and S. Das Sarma, Phys.

Rev. B 66, 075408 (2002).
[59] X. Wen, Mod. Phys. Lett. B 05, 39 (1991).
[60] J. E. Moore and X.-G. Wen, Phys. Rev. B 57, 10138 (1998).

[61] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.121.186601 for a deri-
vation of the low-energy effective theory of the 3̄2̄111
parton edge.

[62] N. Read, Phys. Rev. B 79, 045308 (2009).
[63] A. Bid, N. Ofek, H. Inoue, M. Heiblum, C. L. Kane, V.

Umansky, and D. Mahalu, Nature (London) 466, 585
(2010).

[64] M. Dolev, Y. Gross, R. Sabo, I. Gurman, M. Heiblum, V.
Umansky, and D. Mahalu, Phys. Rev. Lett. 107, 036805
(2011).

[65] Y. Gross, M. Dolev, M. Heiblum, V. Umansky, and D.
Mahalu, Phys. Rev. Lett. 108, 226801 (2012).

[66] H. Inoue, A. Grivnin, Y. Ronen, M. Heiblum, V. Umansky,
and D. Mahalu, Nat. Commun. 5, 4067 (2014).

[67] M. Banerjee, M. Heiblum, A. Rosenblatt, Y. Oreg, D. E.
Feldman, A. Stern, and V. Umansky, Nature (London) 545,
75 (2017).

[68] A. Wójs, Phys. Rev. B 80, 041104 (2009).
[69] P. Bonderson, A. E. Feiguin, G. Möller, and J. K. Slingerland,

Phys. Rev. Lett. 108, 036806 (2012).
[70] Y.-H. Wu, T. Shi, and J. K. Jain, Nano Lett. 17, 4643 (2017).
[71] S. Bandyopadhyay, L. Chen, M. Tanhayi Ahari, G. Ortiz,

Z. Nussinov, and A. Seidel, arXiv:1803.00975.
[72] Y. Kim, A. C. Balram, T. Taniguchi, K. Watanabe, J. K. Jain,

and J. H. Smet, arXiv:1807.08375.

PHYSICAL REVIEW LETTERS 121, 186601 (2018)

186601-6

https://doi.org/10.1103/PhysRevLett.69.953
https://doi.org/10.1103/PhysRevB.77.155127
https://doi.org/10.1103/PhysRevB.77.155127
https://doi.org/10.1038/ncomms6838
https://doi.org/10.1038/ncomms6838
https://doi.org/10.1103/PhysRevB.92.205120
https://doi.org/10.1103/PhysRevB.92.205120
http://arXiv.org/abs/1805.04904
https://doi.org/10.1103/PhysRevB.96.235102
https://doi.org/10.1103/PhysRevB.96.235102
https://doi.org/10.1103/PhysRevLett.80.1505
https://doi.org/10.1103/PhysRevB.66.155320
https://doi.org/10.1103/PhysRevB.66.155320
https://doi.org/10.1103/PhysRevX.5.021004
https://doi.org/10.1103/PhysRevLett.101.156803
https://doi.org/10.1103/PhysRevLett.101.156803
https://doi.org/10.1103/PhysRevB.96.125149
https://doi.org/10.1103/PhysRevB.96.125149
https://doi.org/10.1103/PhysRevB.33.2903
https://doi.org/10.1103/PhysRevB.33.2903
https://doi.org/10.1103/PhysRevB.66.075408
https://doi.org/10.1103/PhysRevB.66.075408
https://doi.org/10.1142/S0217984991000058
https://doi.org/10.1103/PhysRevB.57.10138
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.186601
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.186601
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.186601
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.186601
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.186601
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.186601
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.186601
https://doi.org/10.1103/PhysRevB.79.045308
https://doi.org/10.1038/nature09277
https://doi.org/10.1038/nature09277
https://doi.org/10.1103/PhysRevLett.107.036805
https://doi.org/10.1103/PhysRevLett.107.036805
https://doi.org/10.1103/PhysRevLett.108.226801
https://doi.org/10.1038/ncomms5067
https://doi.org/10.1038/nature22052
https://doi.org/10.1038/nature22052
https://doi.org/10.1103/PhysRevB.80.041104
https://doi.org/10.1103/PhysRevLett.108.036806
https://doi.org/10.1021/acs.nanolett.7b01080
http://arXiv.org/abs/1803.00975
http://arXiv.org/abs/1807.08375

