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We address a long-standing debate regarding the finite-size scaling (FSS) of the Ising model in high
dimensions, by introducing a random-length random walk model, which we then study rigorously. We
prove that this model exhibits the same universal FSS behavior previously conjectured for the self-avoiding
walk and Ising model on finite boxes in high-dimensional lattices. Our results show that the mean walk
length of the random walk model controls the scaling behavior of the corresponding Green’s function. We
numerically demonstrate the universality of our rigorous findings by extensive Monte Carlo simulations of
the Ising model and self-avoiding walk on five-dimensional hypercubic lattices with free and periodic
boundaries.
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Finite-size scaling (FSS) [1,2] is a fundamental theory
which characterizes the asymptotic approach of finite
systems to the thermodynamic limit, close to a continuous
phase transition. While critical systems above the upper
critical dimension dc exhibit simple mean-field behavior in
the thermodynamic limit [3], their FSS behavior above dc is
surprisingly subtle and the subject of long-standing debate;
see, e.g., Refs. [4–10]. In this work, we clarify a number of
these subtleties by introducing a simple model, which can
be studied rigorously.
The n-vector model [11], which describes interacting

spin systems on a lattice, plays a central role in various
areas of physics such as statistical mechanics and con-
densed matter physics. Prominent examples are the self-
avoiding walk (SAW) (n → 0) in polymer physics, and the
Ising (n ¼ 1) and XY (n ¼ 2) models of ferromagnetism.
The latter can be related to the Bose-Hubbard model [12]
which describes bosonic atoms in an optical lattice.
On an infinite hypercubic lattice Zd, it is known

rigorously [13,14] that for sufficiently large dimension
d, the two-point functions of the critical Ising and SAW
models exhibit the same scaling behavior as the Green’s
function of the simple random walk (SRW). On finite
lattices this connection breaks down because the SRW is
recurrent, implying that its Green’s function does not exist.
In this Letter, we argue that if one considers random

walks with an appropriate random (finite) length N , then
the Green’s function displays the same finite-size scaling
as the two-point functions of the SAW and Ising models,
defined on boxes in Zd of linear size L. For this random-
length random walk (RLRW) model, one can prove [15]
that if d ≥ 3 and hN i ≍ Lμ with μ ≥ 2, then the Green’s
function scales as

gðxÞ ≍
� kxk2−d; kxk ≤ OðLðd−μÞ=ðd−2ÞÞ
Lμ−d; kxk ≥ OðLðd−μÞ=ðd−2ÞÞ:

ð1Þ

In words, if μ > 2, gðxÞ exhibits the standard infinite-
lattice asymptotic decay kxk2−d at moderate values of x,
but then enters a plateau of order Lμ−d which persists to the
boundary. Since a typical RLRW will explore distances of
order

ffiffiffiffiffiffiffiffiffi
hN i

p
from the origin, no plateau exists for μ < 2

because typical walks will be too short to feel the boundary;
in this case gðxÞ decays significantly faster [15] than
kxk2−d for kxk ≫

ffiffiffiffiffiffiffiffiffi
hN i

p
.

The above scaling behavior of the Green’s function holds
on boxes with both free and periodic boundaries. As a
consequence of this scaling [16], one can prove [15] that
the corresponding susceptibility scales as

χ ≍ Lμ; for any μ > 0: ð2Þ

The mean walk length of the SAW, restricted to a finite
box in Zd, depends strongly on the boundary conditions
imposed. For a given choice of SAW boundary conditions,
one can consider a RLRW where hN i is chosen to scale in
the same way as it does for the SAW. Our numerical results
below strongly suggest that the scaling of the Green’s
function of this RLRW model, given by Eq. (1), then
correctly predicts the two-point function scaling of the
corresponding SAW model. We therefore conclude that the
SAW two-point function is only affected by geometry via
its effect on the mean walk length. These observations are
seen to hold not only at the thermodynamic critical point,
but also at general pseudocritical points. We numerically
demonstrate the universality of these predictions by
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showing that they also correctly describe the FSS behavior
of the Ising two-point function.
These observations shed light on a number of open

questions regarding the FSS behavior of the Ising model
above dc. For periodic boundary conditions (PBCs) at
criticality, the scaling of the Ising two-point function has
been actively debated in Refs. [6–8]. The known [17]
behavior of the mean walk length of the SAW on the
complete graph [18], together with extensive Monte Carlo
simulations in five dimensions, suggest that on high-
dimensional tori at criticality we have hN iSAW ≍ Ld=2.
We therefore predict that the critical SAW and Ising two-
point functions should be given by Eq. (1) with μ ¼ d=2.
This prediction is in agreement with the conjectured
behavior of the critical Ising two-point function given in
Ref. [19], and is in excellent agreement with the numerical
results presented in Ref. [6].
For free boundary conditions (FBCs), the possible

existence of the FSS behavior χ ≍ Ld=2 at pseudocritical
points is the subject of ongoing debate [4,7,10].
Specifically, denoting by TL the temperature which max-
imizes χðT; LÞ on a box of size L, it was observed
numerically in Ref. [10] that χðTL; LÞ has the same Ld=2

scaling observed at criticality for periodic systems. The
results in Ref. [7] are in agreement with this observation;
however, the more recent work Ref. [4] refuted this claim,
and numerically observed only the standard mean-field
scaling L2. From Eq. (2), we see that one can observe
χ ≍ Ld=2 in a RLRW model in which the mean walk length
scales as Ld=2. Universality then suggests that this scaling
should also be observable in the SAW and Ising models, at
appropriate pseudocritical points. Our numerical results
below confirm this.
Random-length random walk.—Let ðStÞt∈N be a simple

random walk on a box of side length L in Zd, centered
at the origin. Let N be an N-valued random variable,
independent of each choice of step in ðStÞt∈N. We refer to
ðStÞNt¼0 as the corresponding RLRW. We study its Green’s
function

gRLRWðxÞ ≔ E

�XN
n¼0

PðSn ¼ xÞ
�
;

which is the expected number of visits to x, and the
corresponding susceptibility χRLRW ≔

P
xgRLRWðxÞ. Here,

PðSn ¼ xÞ denotes the probability that the RLRW is at
site x after n steps.
Consider a RLRW with mean walk length N ≔ hN i ≍

Lμ on a d ≥ 3 dimensional hypercubic lattice, with either
periodic or free boundary conditions. If μ ≥ 2, it can then
be proved [15] that the Green’s function exhibits the
piecewise asymptotic behavior in Eq. (1). In particular,
the case μ > 2 shows the existence of a macroscopic
plateau of order Lμ−d for large distances, while this plateau
is absent for 0 < μ < 2. The case μ ¼ 2 is marginal.

Numerical setup for n-vector models.—We study the
two-point function gIsingðxÞ ≔ Eðs0sxÞ for the zero-field
ferromagnetic Ising model, defined by the Hamiltonian
H ¼ −

P
ijsisj. Here, si ¼ �1 denotes the spin at site i of

a hypercubic lattice of side length L, and the sum is over
nearest neighbors. We simulate the Ising model at
fugacities z ≔ tanhðβÞ, where β is the inverse Ising
temperature, via the worm algorithm introduced in
Ref. [20].
We also investigate the SAWon a box with linear size L

in the variable length ensemble. We study the two-point
function gSAWðxÞ ≔

P
ω∶ 0→x z

jωj, where the sum is over
all SAWs starting at the origin 0 and ending at x. We
simulated this ensemble using an irreversible version
of the Berretti-Sokal algorithm [21,22]. For both models
we study the corresponding susceptibility, defined
by χIsing=SAW ≔

P
x gIsing=SAWðxÞ.

We study our models on hypercubic lattices, in the case
of both free and periodic boundary conditions. The Ising
model was simulated at the estimated location of the
infinite-volume critical point zc;Ising;5D ¼ 0.113 915 0ð5Þ
[9] in five dimensions, and the simulations for the SAW
were performed at the estimated infinite-volume critical
point zc;SAW;5D ¼ 0.113 140 84ð1Þ [22]. We also simulated
the FSS behavior at pseudocritical points zL ¼ zc − aL−λ

for various a ∈ R and λ > 0. We simulated linear system
sizes up to L ¼ 71 in the Ising model and L ¼ 201 for the
SAW. To estimate the exponent value for a generic
observable Y we performed least-squares fits to the ansatz
Y ¼ aYLbY þ cY . A detailed analysis of autocorrelation
times can be found in Ref. [23] for the worm algorithm and
in Ref. [22] for the irreversible Berretti-Sokal algorithm.
Universal scaling at criticality.—We now argue that

Eqs. (1) and (2) correctly predict the FSS behavior of the
two-point functions and the susceptibility of the critical
SAW and Ising model, with either FBCs or PBCs.
We first study the periodic case. It is expected that

models on high-dimensional tori should exhibit the same
scaling as the corresponding model on the complete graph.
It was proved in Ref. [17] that, on the complete graph,
NSAW scales at criticality like the square root of the number
of vertices. On five-dimensional tori, our fits for NSAW at
criticality lead to the exponent value 2.50(1), in excellent
agreement with the complete graph prediction of d=2.
Combining this scaling for NSAW with our results for the
RLRW, the two-point functions of the critical Ising and
SAWmodels on high-dimensional tori are then predicted to
display the scaling in Eq. (1) with μ ¼ d=2. Figure 1(a)
verifies this prediction, showing an excellent data collapse
for appropriately scaled versions of the two-point functions
of the Ising and SAW models onto the scaling variable
y ≔ kxk=Lðd−μÞ=ðd−2Þ with μ ¼ d=2. As a corollary of this
two-point function scaling, we obtain χ ≍ Ld=2, in agree-
ment with the numerical studies for the Ising model in
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Refs. [24,25], and with our direct exponent estimates for
d ¼ 5 of 2.50(1) for χSAW, and 2.51(2) for χIsing.
On free boundaries at criticality, our fits for NSAW lead

to the exponent value 2.00(1), strongly suggesting that
NSAW ≍ L2. Combining this scaling for NSAW with our
results for the RLRW, the two-point functions of the critical
Ising and SAW models on high-dimensional boxes with
free boundaries are then predicted to display the scaling in
Eq. (1) with μ ¼ 2. Figure 2(a) verifies this prediction,
showing an excellent data collapse for the two-point
functions of the critical Ising and SAW models onto the
ansatz in Eq. (1) with μ ¼ 2. Equation (2) then predicts
χ ≍ L2, in agreement with the numerical study of the Ising
model in Ref. [9], and with our direct exponent estimates
for d ¼ 5 of 2.01(8) for the Ising model and 1.99(1) for
the SAW.
Universal scaling at pseudocritical points.—We now

turn to the actively debated question [4,7,10] of whether
one can observe the scaling behavior χ ≍ Ld=2, correspond-
ing to critical PBC behavior, on free boundaries at
pseudocritical points. This also motivates the reverse
question, of whether it is possible to observe the standard
mean-field behavior χ ≍ L2, corresponding to critical FBC
behavior, at pseudocritical points on periodic boundaries.

The above results for the RLRW suggest that the FSS
behavior of the SAW two-point function should only
depend on the boundary conditions through their effect
on N. We now numerically verify that this is indeed the
case, and that analogous results also hold for the
Ising model.
For periodic boundaries, we study FSS at pseudocritical

points zLðλÞ ¼ zc − aL−λ, with a chosen positive so that
the walk lengths are decreased compared with criticality.
On the complete graph, it can be shown [15] that at a
pseudocritical point zVðζÞ ¼ zc − aV−ζ we have NSAW ≍
V1=2 if ζ ≥ 1=2, while NSAW ≍ Vζ if ζ ≤ 1=2. Considering
a RLRW on a high-dimensional torus, whose mean walk
length scales in this way, the Green’s function and
susceptibility then scale as in Eqs. (1) and (2) with μ ¼
ζd≕ λ for any 0 < λ ≤ d=2, and μ ¼ d=2 for λ ≥ d=2. By
universality, we then expect the same behavior to hold
for both the SAW and the Ising model at the pseudocritical
point zLðλÞ on high-dimensional tori.
Taking λ ¼ 2, the above argument predicts that the

pseudocritical two-point functions display the mean-field
behavior gðxÞ ≍ kxk2−d. Figure 1(b) shows an appropri-
ately scaled version of the two-point functions of the Ising
model and SAW onto the ansatz in Eq. (1) with μ ¼ 2.
The excellent data collapse provides strong evidence for
the predicted existence of standard mean-field behavior
at zLð2Þ.
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FIG. 2. Two-point functions of the Ising model and SAW on
five-dimensional hypercubic lattices with free boundaries.
(a) Standard mean-field scaling gðxÞ ≍ kxk2−d at zc. (b) Anoma-
lous FSS at the pseudocritical point z̃L ¼ zc þ aLL−2 onto the
scaling variable y ¼ kxk=Lðd−μÞ=ðd−2Þ with μ ¼ d=2. The two-
point functions collapse except at distances close to the boundary.
This shows that gðxÞ displays the same FSS behavior as on
periodic boundaries at criticality.
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FIG. 1. Appropriate scaled two-point functions of the
Ising model and SAW on five-dimensional hypercubic lattices
with periodic boundaries onto the scaling variable y ¼
kxk=Lðd−μÞ=ðd−2Þ. (a) Anomalous FSS scaling at zc onto the ansatz
in Eq. (1)with μ ¼ d=2.When kxk ≈ L=2, the two-point functions
display the anomalous FSS behavior gðxÞ ≍ L−d=2, in contrast to
the standard mean field prediction gðxÞ ≍ L2−d. (b) Standard
mean-field scaling at the pseudocritical point zL ¼ zc − aL−2 onto
the ansatz inEq. (1)with μ ¼ 2. In contrast to the critical PBCcase,
the two-point functions display the standard mean-field scaling
behavior gðxÞ ≍ L2−d when kxk ≈ L=2.
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We emphasize that, despite appearances, the two-point
functions in Fig. 1(a) and (b) do not display the same FSS
behavior. In particular, it follows from the scaling ansatz in
Eq. (1) that ifkxk ≈ L=2, then thecritical two-point functions
scale as gðxÞ ≍ L−d=2, while gðxÞ ≍ L2−d at zLð2Þ.
Considering more general values of λ, Fig. 3(a) shows

the scaling of NSAW at zLðλÞ on five-dimensional tori for
λ ¼ 1, 1.5, 2, 2.5. Our fits lead to the exponent values
0.998(2) for λ ¼ 1, 1.499(2) for λ ¼ 1.5, 2.01(1) for λ ¼ 2,
and 2.47(4) for λ ¼ 2.5, in excellent agreement with the
corresponding results on the complete graph. Figure 3(b)
then shows the scaling behavior of the susceptibility for
λ ¼ 1, 1.5, 2, 2.5. Our fits for the SAW lead to the exponent
values 1.005(6) for λ ¼ 1, 1.503(5) for λ ¼ 1.5, 2.00(1) for
λ ¼ 2, 2.46(5) for λ ¼ 2.5. For the Ising model, our fits lead
to 1.00(1) for λ ¼ 1, 1.51(2) for λ ¼ 1.5, 2.05(7) for λ ¼ 2,
and 2.4(1) for λ ¼ 2.5. These estimates are all in excellent
agreement with above predictions.
Finally, we consider pseudocritical behavior with free

boundary conditions. There has been considerable debate
[4,7,10] concerning the existence of critical PBC FSS
behavior on lattices with FBC at a pseudocritical point which
maximizes χðT; LÞ on a box of linear size L. It has been
numerically established that this pseudocritical point has
shift exponent λ ¼ 2 [4,7,10]. A simple methodology to
gauge the possibility of observing χ ≍ Ld=2 at such a
pseudocritical point is to define a sequence aL such that

χFBC;z̃LðLÞ ¼ χPBC;zcðLÞ with z̃L ≔ zc þ aLL−2, and to then
show that aL converges. If such a convergent sequence exists,
this approach forces χFBC;zL to scale as Ld=2, where zL ¼
zc þ a∞L−2. The inset of Fig. 4 shows the sequence aL in the
Ising and SAW models. For the SAW, the series aL clearly
appears to converge, and our fits predict aSAW;∞ ¼ 0.824ð2Þ.
The Ising data are roughly consistent with the SAW data,
albeit over a much smaller range of L values.
Fitting the FBCdata forNSAW at z̃L produces an exponent

estimate of 2.48(6), suggesting thatNSAW ≍ Ld=2, compared
withNSAW ≍ L2 at zc; see Fig. 4. Universality then suggests
that the Ising and SAW two-point functions should follow
Eq. (1) with μ ¼ d=2. Figure 2(b) shows the appropriately
rescaled two-point functions. We observe excellent data
collapse, except at distances close to the boundary. This
strong boundary effect may explain the apparent discrepan-
cies [4,7,10] in determining the correct scaling behavior for
the pseudocritical Ising model with FBCs. Regardless, we
conclude from Fig. 2(b) that the anomalous FSS behavior,
observed on periodic boundaries at criticality, can be
observed on free boundaries, in agreementwith Refs. [7,10].
Discussion.—In this Letter, we have introduced a ran-

dom-length randomwalk model to clarify a number of open
questions regarding the FSS behavior of the Ising model
above dc. For periodic boundaries, by combining the
RLRW model with the scaling of the mean walk length
of the SAWon the complete graph, we were able to predict
the asymptotic scaling of the Ising and SAW two-point
functions on high-dimensional tori at a family of pseudoc-
ritical points zLðλÞ ¼ zc − aL−λ, and showed that the
scaling exponents vary continuously with λ when
0 < λ ≤ d=2. As special cases, at zc we recovered the
behavior conjectured in Ref. [19], while at zLð2Þ we
showed the Ising two-point function displays standard
mean-field behavior.
On free boundaries, combining the RLRW model with

the numerical scaling of NSAW predicts that the critical
Ising two-point function displays standard mean-field
decay. It follows that the susceptibility scales as L2, in
agreement with the numerical observation in Ref. [9]. We
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FIG. 3. FSS behavior of the mean walk length NSAW (a) and the
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FIG. 4. FSS behavior of the mean walk length NSAW with free
boundary conditions in five dimensions. The inset shows the
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PHYSICAL REVIEW LETTERS 121, 185701 (2018)

185701-4



also studied the actively debated FSS behavior at the
pseudocritical point zL ¼ zc þ aL−2. We established that
the Ising two-point function displays the same FSS
behavior as on periodic boundaries at criticality, in agree-
ment with the numerical observations in Refs. [7,10].
Recently, three-dimensional quantum spin models,

which are related to the corresponding four-dimensional
classical counterpart [26], have been the subject of inten-
sive theoretical, experimental and numerical studies
[27–29]. Our work has focused on the FSS behavior of
the n-vector model above dc ¼ 4. Although at dc the
situation is likely complicated by logarithmic corrections,
we believe that our results for d > dc are a necessary first
step in understanding the correct scaling behavior for
applications to three-dimensional quantum spin models.
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