
 

Oscillating Electric Fields in Liquids Create a Long-Range Steady Field
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We demonstrate that application of an oscillatory electric field to a liquid yields a long-range steady
field, provided the ions present have unequal mobilities. The main physics is illustrated by a two-ion
harmonic oscillator, yielding an asymmetric rectified field whose time average scales as the square of the
applied field strength. Computations of the fully nonlinear electrokinetic model corroborate the two-ion
model and further demonstrate that steady fields extend over large distances between two electrodes.
Experimental measurements of the levitation height of micron-scale colloids versus applied frequency
accord with the numerical predictions. The heretofore unsuspected existence of a long-range steady field
helps explain several long-standing questions regarding the behavior of particles and electrically induced
fluid flows in response to oscillatory potentials.
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Many systems of practical and scientific importance
involve application of an oscillatory electric potential to a
liquid, including dielectric and impedance spectroscopy
[1–3], cyclic voltammetry [4,5], electroacoustics [6,7],
dielectrophoresis [8,9], induced charge electrokinetics
[10–13], and electrohydrodynamic manipulation of col-
loids [14–18]. In contrast to perfect dielectrics, the presence
of mobile ions in the liquid phase complicates interpreta-
tion of the electric field. The “standard electrokinetic
model” [19,20] is a continuum level model widely used
to predict the behavior of charged ions in solution. It
couples Gauss’s law for the electric potential with the
Nernst-Planck conservation equations for each ionic spe-
cies, yielding a system of nonlinear coupled differential
equations. For most systems of interest, the model is
characterized by extremely sharp gradients in the non-
electroneutral ionic charge layer near any solid or liquid
interfaces [21]. Accordingly, most theoretical and numeri-
cal analyses of the standard electrokinetic model have
focused on asymptotic solutions in the limit of small
applied potentials [1,20,22,23], which, for sinusoidal
applied potentials, invariably yield a sinusoidal electric
field inside the liquid, albeit with phase lag and amplitude
that depend on the system properties.
Importantly, these linearized asymptotic solutions differ

qualitatively from recent numerical computations of the
fully nonlinear electrokinetic model by Olesen et al., who
found that the electric field assumes a much more com-
plicated shape at sufficiently high applied oscillatory
potentials [24]. This finding, which was further corrobo-
rated analytically by Stout and Khair [25] and Schnitzer
and Yariv [26], is significant because analyses of the
behavior of individual colloids or other objects in liquids
typically begin with the assumption that the electric field is
perfectly sinusoidal, and it is unclear what the influence

of a nonsinusoidal field will be. Further complicating
matters, the prior nonlinear analyses [24–26] restricted
attention to situations where the ionic mobilities of the
positive and negative ions were equal, which simplifies the
analysis but rarely pertains to actual liquids.
To consider the effect of nonequal ionic mobilities, first,

we introduce a two-ion model that illustrates how an ionic
mobility mismatch can yield a steady field nearby (Fig. 1).
Consider two isolated ions with charge numbers qþ and q−,
respectively, each oscillating in response to a one-
dimensional far-field sinusoidal electric field of magnitude
E0 cos ðωtÞ. The ions are treated as noninteracting points
(consistent with the continuum approximation) but with
mobilities that differ based on their drag coefficients in
liquid with viscosity μ. Neglecting inertia and balancing the
drag force with the electrostatic driving force yields

6πμai
dzi
dt

− qieE0 cos ðωtÞ ¼ 0; ð1Þ

FIG. 1. Two-ion harmonic oscillator model. (Top) Harmonic
trajectories of two ions moving in response to a far-field
sinusoidal electric field, for different ionic mobility ratios.
(Bottom) Corresponding perturbation to the electric field evalu-
ated at z ¼ zf.
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where zi denotes the instantaneous location of ion i with
size ai. Solving for the position yields

zi ¼
qieE0

ωð6πμaiÞ
sin ðωtÞ: ð2Þ

The obtained harmonic oscillators of the ions ziðtÞ are
shown schematically in Fig. 1, where δ ¼ aþ=a− is taken
as a measure for the ionic mobility mismatch. For δ ¼ 1,
ions oscillate with the same amplitude and the center of
charge remains stationary. However, when δ ≠ 1, the fast
moving ion exhibits a higher amplitude compared to the
slow moving one, causing the center of charge itself to
oscillate.
Now, we ask what happens at a point z ¼ zf far from

the ions due to their harmonic oscillation. Expansion of
Coulomb’s law in a Taylor series for zi=zf → 0, followed
by substitution of the harmonic solutions of Eq. (2) and
rearrangement, yields the perturbed electric field

ϵðzf; tÞ ¼
α

z2f
½2Êð1þ δÞ sinðωtÞ þ 3Ê2ð1 − δ2Þsin2ðωtÞ

þ 4Ê3ð1þ δ3Þsin3ðωtÞ þ…�; ð3Þ

where Ê ¼ eE0=ð6πμaþωzfÞ and α ¼ e=ð4πε∞ε0Þ. (See
Supplemental Material [27] for full derivation.) The
observed electric field versus time is multimodal with
frequency peaks at odd integer multiples of the imposed
frequency for ions with δ ¼ 1, but with frequency peaks
at both odd and even integer multiples of the imposed
frequency for δ ≠ 1. This mobility dependence has an
important consequence for the time average of the pertur-
bation field near the oscillating ions. Integrating Eq. (3)
yields the time average, to leading order,

hϵðzfÞi ¼
ω

2π

Z
2π=ω

0

ϵðzf; tÞdt ¼
3αÊ2ð1 − δ2Þ

2z2f
: ð4Þ

Provided δ ≠ 1, there is a nonzero time-average electric
field due to the uneven oscillation of the ions. This
phenomenon, which we denote as an “asymmetric rectified
electric field" (AREF), is depicted graphically along the
bottom of Fig. 1. The perturbation to the net electric field at
a location zf is dominated by the faster moving ion, since it
will be in closer proximity than the slower moving ion. This
imbalance yields a net electric field that, to leading order,
scales as the square of the applied field strength.
The preceding toy model is suggestive, but it omits ion-

ion interactions and the influence of thermal energy (i.e.,
diffusive motion). To capture these effects, one must invoke
the standard electrokinetic model. For simplicity, here,
we focus on the one-dimensional electric field between
parallel electrodes separated by a distance H. The liquid
contains two ionic species, each with concentration ni and

diffusivity Di ¼ kBT=ð6πμaiÞ, which defines the ionic
mobility mismatch δ ¼ D−=Dþ. The standard electroki-
netic model couples Gauss’s law

ε∞ε0
∂2ϕ

∂z2 ¼ −
X2
i¼1

eqini; ð5Þ

with Nernst-Planck continuity equations for each ionic
species

∂ni
∂t ¼ Di

∂2ni
∂z2 þ eqi

Di

kBT
∂
∂z

�
ni
∂ϕ
∂z

�
. ð6Þ

The first and second terms on the right-hand side of
Eq. (6) describe the ion diffusive motion and the electro-
migration in response to the local electric field, respec-
tively. To complete the problem statement, we impose an
oscillatory electric potential of amplitude ϕ0 and frequency
f ¼ ω=ð2πÞ on the lower electrode at z ¼ 0, while keeping
the upper electrode grounded. We further impose no flux
of ions through each electrode; i.e., the electrodes are
“blocking” and do not permit any electrochemical reac-
tions. This assumption might not pertain for sufficiently
large applied potentials; here, we focus on the limiting case
of negligible electrochemistry.
We emphasize that Eqs. (5) and (6) are the classical

starting point for analysis of the electrical behavior of fluids
with ionic charge. In contrast to prior work, however, here,
we make no assumptions about the magnitude of the
applied sinusoidal potential, nor about the values of the
ionic mobilities. The system of equations was solved via
finite difference methods with mesh refinement to capture
the extremely thin Debye layers (∼10 nm) near the boun-
daries (see Supplemental Material [27]).
Examining the case of equal ionic mobilities (δ ¼ 1)

first, the electric field varies sinusoidally versus time for
sufficiently low applied potentials [black curve, Fig. 2(a)
(ϕ0e=ðkBTÞ ¼ 1)], with magnitude and phase lag as
predicted by the linearized analytical solution ([1] and
Fig. S2 [27]). As the voltage increases, the contributions of
the nonlinear terms yield increasingly large multimodal
peaks, a behavior that linearized models fail to predict.
Qualitatively similar multimodal peaks were found pre-
viously [24–26], but here, our numerics show that the
multimodal peaks occur precisely at odd integer multiples
of the imposed frequency, consistent with the two-ion
model [cf. Eq. (3) and Fig. S3 [27]]. Note that the observed
left-right asymmetry of the harmonic solution is a direct
result of this multimodal behavior. In the case of nonequal
mobilities [Fig. 2(b)], for sufficiently low applied potential,
the electric field is again a simple sinusoid versus time,
and multimodal peaks grow in magnitude as the applied
potential increases. Unlike the case of equal mobilities,
however, for δ ¼ 4, the shape of the electric field versus
time is substantially shifted, with multimodal peaks
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occurring at both odd and even integer multiples of the
imposed frequency.
Numerical integration of the electric field to obtain the

time-average [cf. Eq. (4)] confirms that AREFs occur over
large length scales across the entire domain [Fig. 2(c)]. For
δ ¼ 1, the time average is identically zero everywhere
[solid red curve, Fig. 2(c)]. In contrast, for δ ¼ 2 [dotted
blue line, Fig. 2(c)], the time average electric field steeply
rises from negative values near z=H ¼ 0, passes through
zero and reaches a maximum near z=H ¼ 0.2, before
decaying to identically zero at z=H ¼ 0.5. The negative
mirror image of this functionality occurs for z=H > 0.5;
i.e., the AREF is antisymmetric with respect to position
around z=H ¼ 0.5. For the case of δ ¼ 1=2 [dashed black
line, Fig. 2(c)], the AREF has the same magnitude but
opposite sign everywhere as for the case of δ ¼ 2. The
long-range steady field results from the uneven oscillation
of the cations and anions, resulting in an augmentation or
depletion of charge across the domain, provided δ ≠ 1
(Figs. S6 and S7 [27]). Numerical calculations over a wide
range of values of δ confirm that the antisymmetric shape
of the AREF is robust, and further demonstrate that the
magnitude of the AREF increases with the difference
between δ and unity [Fig. 2(d)]. We emphasize that the
symmetry in the system is broken by the ionic mobility
mismatch, not the relative orientation of the electrodes; the
magnitude and sign of the AREF are independent of which
electrode is powered or grounded. In other words, near each

electrode the AREF is directed toward the electrode for
δ > 1, but away from the electrode for δ < 1.
Perhaps a surprising aspect of the results shown in

Figs. 2(c) and 2(d) is that the AREF occurs over such long
length scales, well outside of the Debye layers (located here
approximately at z=H < 0.0004 and z=H > 0.9996 for
Debye length of 10 nm). Systematic calculations of the
AREFover a range of applied field strengths and frequencies
confirm that this long-range behavior occurs over a wide
range of parameter space (Fig. 3). As the applied sinusoidal
potential increases [Fig. 3(a)], the shape of the AREF
versus position is conserved (i.e., the curves collapse),
but its magnitude increases as the 1.9 power of the local
peak-to-peak electric field, defined here as EppðzÞ ¼
max ½Ezðz; tÞ� −min ½Ezðz; tÞ�. This behavior is consistent
with the quadratic dependence predicted by the two-ion
model [cf. Eq. (4)]; the slight discrepancy is presumably due
to the more complicated shape of the actual local electric
field [cf. Fig. 2(b)] compared to the simple sinusoid
considered in the two-ion model. In contrast, the effect of
frequency is more complicated [Fig. 3(b)]. At very low
imposed frequencies, the AREF is small in magnitude but
peaks at locations relatively far from the electrodes. As the
frequency increases, the peak magnitude increases sharply,
scaling as ω1.4, while the peak location shifts closer to the
electrode, scaling as ω−0.5. Similarly, Fig. S5(a) [27] shows
that the position of the peak AREF outside the Debye layer
scales as the square root of the diffusivity. Taken together,
these observations indicate that the characteristic length
for AREFs outside the Debye layer scales as L=H ∼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D=ðωH2Þ

p
. As the frequency increases, and this character-

istic length scale decreases, there are an increasing number
of positions where the AREF reverses direction. At low
frequencies, the AREF only changes direction once before
the midplane [cf. Fig. 2(c)], but at higher frequencies,
it changes direction multiple times [cf. green curve in
Fig. 3(b) (f ¼ 500 Hz)].
The existence of a long-range steady field has significant

implications for the behavior of colloids and electrically
driven flows at the microscale. Even for a relatively small
applied potential of 0.5 V, applied at 100 Hz in water
with δ ¼ 4, the AREF-induced electrophoretic force on a
1-μm particle at z ¼ 1 μm is a factor of 103 to 105 larger
than the Brownian, gravitational, and dielectrophoretic
forces acting on it (Table S1 [27]). A key experimental
prediction, then, is that a particle placed between parallel
electrodes will levitate upward against gravity provided the
ions present have a sufficiently large mobility mismatch.
Indeed, recent work [32,33] has established that oscil-

latory fields do cause microscale colloids in millimolar
NaOH (δ ¼ 3.96) to levitate many particle diameters
upward against gravity, while the same particles in milli-
molar KCl (δ ¼ 1.04) do not. The mechanism for this
levitation has been obscure, but the behavior is consistent
with our AREF hypothesis: the long-range steady field

(a) (b)

(c) (d)

FIG. 2. Effects of applied voltage and ionic mobility mismatch
on the electric field between parallel electrodes. (a) and
(b) Harmonic solutions of the normalized electric field Ezκ

−1=ϕ0

at z ¼ 1 μm (z=H ¼ 0.04) for different applied voltages: (a) δ ¼ 1,
(b) δ ¼ 4. (c) Dimensionless time average electric field Ẽz ¼
Ezeκ−1=ðkBTÞ versus z for different δ values. (d) Dimensionless
time average electric field versus δ value at different locations.
Parameters: ϕ0 ¼ 5kBT=e (c) and (d), f ¼ 50 Hz, H ¼ 25 μm,
min ½Dþ; D−� ¼ 1 × 10−9 m2=s, c∞ ¼ 1 mM.
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causes the particles to move upward until the AREF
magnitude diminishes sufficiently for the electrophoretic
force to balance with gravity. The complicated spatial
dependence of the AREF also explains why some particles
were observed to move upward against gravity, while
others moved downward [32,33]. Note in Fig. 3(a) that
the AREF is negative for z=H < 0.1, but positive for
0.1 < z=H < 0.35; the direction of motion depends on
the initial particle position (Fig. S8 [27]). Our additional
experiments reveal that the levitation height scales with
frequency precisely as h ∝ ω−0.5 [(Fig. 4(b)], in accord
with the frequency dependence predicted numerically
[cf. Fig. 3(b)]. Simultaneously, the magnitude of the
applied voltage had little impact on the levitation height
[Fig. 4(c)], again in accord with the numerical predictions
[Fig. 3(a)]. These observations provide strong experimental

evidence for the existence of AREFs in response to
oscillatory potentials.
A previously unrecognized driving force of this magni-

tude will necessitate reconsideration of prior experimental
studies involving oscillatory fields; here, we note two other
systems of interest where AREFs help resolve outstanding
questions. First, there has been long-standing controversy
regarding the aggregation of micron-scale particles near
electrodes in response to oscillatory fields. Early workers
[14–16] established that colloids aggregated laterally
near the electrode, in the direction perpendicular to the
applied field, and attributed the aggregation due to electro-
hydrodynamic (EHD) flows generated on the electrode
surface near each particle [Fig. 5(a)]; nearby particles were

(a)

(b)

FIG. 3. Effects of voltage and frequency on the AREF.
Distribution of the dimensionless time average electric field
for different voltages (a) and frequencies (b). Parameters: ϕ0 ¼
5kBT=e (b), f ¼ 100 Hz (a), H ¼ 25 μm (a) and 50 μm (b),
δ ¼ 4, Dþ ¼ 1 × 10−9 m2=s (a) and 1.3 × 10−9 m2=s (b),
c∞ ¼ 1 mM.

(a) (b)

(c)

FIG. 4. Experimental evidence for AREFs: colloids levitating
against gravity in response to an oscillatory field. (a) and
(b) Stable levitation height versus frequency for 2-μm diameter
polystyrene particles in 1 mMNaOH with a 4 Vapplied potential.
(c) Levitation height versus applied potential at different frequen-
cies. See Supplemental Material [27] for details.

(a) (b)

(c) (d)

FIG. 5. Impact of AREFs on electrically induced fluid flows
around (a) and (b) a charged nonconducting sphere near an
electrode and (c) and (d) an isolated metallic cylinder. (See
Supplemental Material [27] for streamline calculations).
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mutually entrained in the flows, resulting in aggregation.
Other workers noted, however, that the particle behavior
depended sensitively on the type of electrolyte in the liquid
[34–38]. Despite a great deal of experimental and theo-
retical investigation, there is still no consensus as to the
mechanism underlying the electrolyte type dependence
[38]. The existence of AREFs provides a new explanation:
the flow field around each particle will be the superposition
of the EHD flow generated on the electrode [39], and
an electro-osmotic flow due to the steady AREF field
generated on the particle surface. If the ionic mobility
mismatch is sufficiently large, then the AREF-induced
electro-osmotic flow dominates, and the resulting flow
pattern will favor separation of nearby particles [Fig. 5(b),
and Table S1 [27]].
Second, there are several unresolved aspects of “induced

charge electrokinetics" (ICEK), a type of electrically driven
fluid flow first elucidated in 2004 by Bazant and Squires
[10,11] that triggered much research aimed at using applied
electric fields to manipulate flow and objects in lab-on-a-
chip devices [12,13]. The archetypal example of ICEK is
the quadrupolar flow induced around a metallic cylinder in
response to the applied field [Fig. 5(c)]. Scaling up this
phenomenon for use as electrokinetic pumps in micro-
fluidic devices, however, revealed experimental observa-
tions that ICEK theory fails to address [12,13,40].
Specifically, a reversal in fluid flow direction occurs at
high frequencies; the standard ICEK theory predicts no
such frequency effect. Similarly, the effect of ionic strength
is unclear: fluid flows effectively cease at ionic strengths
above 10 millimolar, again at odds with the theory. The
existence of AREFs provides potential insight for both
dilemmas. Taking the archetypal case of fluid flow around a
conducting cylinder, the actual flow field will be the
superposition of the ICEK flow and electro-osmotic slip
along the cylinder surface due to the AREF [Fig. 5(d)].
Depending on the frequency and position of the cylinder,
the AREF electro-osmotic velocity can dominate the flow
pattern. Moreover, the AREF-induced slip velocity scales
as c−1∞ [cf. Fig. S5(b) [27]]. Therefore, any experiments
aimed at elucidating the ionic strength dependence of ICEK
would need to take into account the confounding effect of
AREF-induced flows. More research is needed; the analy-
sis presented here should serve as a starting point for
consideration of the influence of AREFs in these and more
complicated systems.
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