
 

Observation of a Space-Time Crystal in a Superfluid Quantum Gas
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Time crystals are a phase of matter, for which the discrete time symmetry of the driving Hamiltonian is
spontaneously broken. The breaking of discrete time symmetry has been observed in several experiments in
driven spin systems. Here, we show the observation of a space-time crystal using ultracold atoms, where the
periodic structure in both space and time is directly visible in the experimental images. The underlying
physics in our superfluid can be described ab initio and allows for a clear identification of the mechanism
that causes the spontaneous symmetry breaking. Our results pave the way for the usage of space-time
crystals for the discovery of novel nonequilibrium phases of matter.
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Wilczek proposed the idea of time crystals in 2012 [1],
where in analogy to space crystals continuous time sym-
metry is broken spontaneously. Since that time there has
been discussion on what should constitute a time crystal
[2,3] and how to create them. Watanabe and Oshikawa [4]
showed that, in principle, continuous time symmetry
cannot be broken spontaneously into discrete symmetry
in the ground state. However, there have been proposals
to realize instead a discrete time crystal by breaking of
discrete time translation symmetry [5–9]. Following a
theoretical model by Yao et al. [10], several experiments
[11–14] realized this particular symmetry breaking in
driven spin systems. These experiments were limited to
probing a very restricted number of particles [11] or
an ensemble of particles without any spatial resolution
[12–14], preventing the direct observation of spatial
ordering.
In this Letter, we report the direct observation of a space-

time crystal exhibiting not only periodic oscillations in time
with double the period of the driving force, but also an
oscillatory spatial structure; i.e., both discrete time trans-
lation symmetry as well as continuous spatial translation
symmetry are broken. Because of the small dissipation in
our superfluid gas, we can study the space-time crystal over
an extensive period of time, showing the collapse and
revival of the oscillating long-lived spatially ordered state.
Superfluid quantum gases are the ideal system to study
discrete time-crystals. Because of the low viscosity and
heat conduction, excitations in the system can be induced
without the associated heating of the system. Periodic
driving of the excitations in the system can easily be
arranged due to the harmonic confinement of the atoms in
the trap. Crucial in the driven spin systems [11,12,15]
has been the occurrence of strong disorder, where either

many-body localization or some other mechanism is the
cause for the small dissipation in the experiments.
However, as shown by Else, Bauer, and Nayak [16], time

crystals can also exist in the prethermal regime, if the drive
frequency is sufficiently large compared to the excitation
frequency. Following these experiments, there have been a
large number of proposals [17–22] for the observation of
time crystals using several different systems (see also the
review in Ref. [23]). In superfluid quantum gases, disorder
is absent. Since superfluid quantum gases can be imaged
using phase-contrast techniques, which allows the accumu-
lation of several tens of images of the same superfluid cloud,
the dynamics of the system can be studied over many cycles.
Moreover, as the conditions of the space-time crystal are not
very sensitive to the initial drive of the excitations, the
superfluid cloud can be studied over a prolonged period of
time by combining multiple measurement series together,
extending the observation period to several seconds. Finally,
the dynamics of the superfluid quantum gas in a radial
symmetric trap can be simulated using time-splitting
spectral methods [24], which allows us to compare our
experimental findings with simulations to elucidate the
mechanisms behind the space-time crystal formation.
The superfluid is produced in the trap in a cigar-shaped

form, where the ratio between the trap frequencies causes
the axial size to be about 40 times larger than the radial
size. After sample preparation [25], the radial trap fre-
quency is suddenly perturbed, and this induces a radial
breathing mode of the cloud with a frequency of fD ¼
104.691ð16Þ Hz, which is only weakly damped and has a
decay time of several seconds. This radial breathing mode
with a period TD ¼ 1=fD acts as the drive for the excitation
of the cloud in the axial direction. After many radial
oscillations, a high-order excitation emerges in the axial
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direction, which has been observed previously and inter-
preted in that paper as “Faraday waves” [35]. By observing
the spatiotemporal long-range order, we show that an
interpretation as a space-time crystal is more appropriate
using the modern language of nonequilibrium phase tran-
sitions. Figure 1 shows several images of the pattern
displaying the large variety in radial size and axial excita-
tion. This axial pattern is observed only if the radial
breathing mode is strongly excited and the perturbation
of the cloud is in the nonlinear regime.
To study the axial pattern, the density profile is inte-

grated over the radial direction, and the result is shown in
Fig. 2 as a function of the time. A lattice of maxima in the

density is observed in both the temporal and spatial
directions, a clear signature of a space-time crystal. The
wave number of the pattern increases slightly towards the
edges of the superfluid, which is attributed to the finite
extent of the cloud. The period of the pattern is determined
to be almost 2TD over the entire detection period, and this
subharmonic response to the drive is a requirement for the
symmetry breaking implied by a discrete time crystal.
In Figs. 3(a) and 3(c), the central part of the axial profile

of Fig. 2 is shown just after the start of the drive [Fig. 3(a)]
and after the axial excitation pattern emerged [Fig. 3(c)].
Figure 3(c) shows that the space-time crystal has a centered
cubic lattice structure with a period 2TD in time. To
determine the long-range temporal and spatial order, these
patterns are Fourier transformed and shown in Figs. 3(b)
and 3(d), respectively. The Fourier signal for the axial
excitation pattern in Fig. 3(d) contains four Fourier peaks at
ðk=kc; f=fDÞ ¼ ð�1;�1=2Þ, where the temporal fre-
quency is half the driving frequency fD ¼ 1=TD. This
again shows that we are dealing with a discrete time crystal.
The spatial periodicity 2π=kc is 57.3 μm as determined
from the axial mode that we excite [25]. The appearance of
the narrow peaks in the (momentum-frequency) Fourier
plane is a clear indication of the simultaneous spatial and
temporal long-range order in our system and manifestly
indicates that we can truly speak of a space-time crystal.
The Fourier signals in Figs. 3(b) and 3(d) also contain two
peaks in the temporal signal for nonzero frequencies at
f ≃�fD, indicating the excitation of a weakly excited
scissor mode. Such a mode can easily be induced due to
small imperfections in the fabrication of the magnetic trap.
In order to further check the validity of our experimental

findings, we have numerically simulated the evolution of a
Bose-Einstein condensation using a time-splitting spectral
method under the same conditions regarding the number
of atoms, the trap frequencies, and the drive assuming
a radial-symmetric trap [25]. The results are shown in
Figs. 3(e)–3(h) and show excellent agreement with the
experimental results apart from the weak scissor mode,
which is absent in the simulations. This agreement shows
that the physics of the space-time crystal for our exper-
imental conditions is fully encapsulated in the Gross-
Pitaevskii equation.
To demonstrate the longevity of the space-time crystal,

we compare the amplitude of the driving mode to the
crystal fraction. The amplitude of the drive and emergence
of the crystalline phase are shown in Fig. 4. Over a full
experimental run of 2.6 s, the pattern is seen to appear and
disappear two times. The appearances of the space-time
crystal occur at times t ¼ 350 and 1350 ms, while
the disappearance of the crystalline phase coincides with
the decrease of the driving mode amplitude to near zero.
The space-time crystal lasts, in each individual appearance,
for over 500 ms or 50TD. The decrease of the driving
mode is caused by the coupling to the scissor mode.

FIG. 1. Schematic representation of the experimental setup, the
timeline, and the imaging sequence. (a) Schematic view of the
imaging system and atomic cloud. (b) Experimental sequence and
schematic representation of the driving. (c) Imaging sequence
showing the first six and the last image of a selected run. In total,
50 images are taken each run with 3.28 ms between images.

FIG. 2. Line density nl as a function of the time and position
starting 500 ms after the onset of the drive. Time slices are taken
from a single experimental run. In both space and time, a
recurring pattern is observed. The (temporal) period of the
pattern corresponds to twice the breathing period TD. The
diagonal streaks in the image are caused by a correction for
the uncoupled axial center-of-mass motion and darker areas in the
imaging. The decrease of the signal is attributed to a slight
particle loss (3% per shot) due to interactions of imaging light
with the atoms.
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The periodicity in the occurrence of the space-time crystal
coincides approximately with the period that we extract
from our simplified model describing the coupling between
scissor and breathing mode [25]. The scissor mode has a
period of about TD=2 and is not linearly coupled to the
axial excitation pattern due to parity conservation.

Theoretically, we treat the space-time crystal variation-
ally as a multimode system with the mode functions
P4jþ2ðz̃Þ−P4jðz̃Þ, with z̃ ¼ z=RzðtÞ in terms of Legendre
polynomials, and frequencies fj excited by the drive due to
the time dependence of the Thomas-Fermi radii RxðtÞ,
RyðtÞ, and RzðtÞ, for which RiðtÞ ¼ Riðtþ TDÞ and i ¼ x,
y, and z. After substituting this ansatz in the action for the
Gross-Pitaevskii equation and neglecting nonlinear mode
coupling, we ultimately obtain the Hamiltonian

Ĥ¼
X

j

½2πℏfjaj†ajþgjðtÞðaj†aj†þajajþ2aj†ajÞ�; ð1Þ

where ajð†Þ are the annihilation (creation) operators for
quanta in the mode j and gðtÞ is the coupling with the
periodicity of the drive. By moving to the rotating frame
and applying the rotating-wave approximation to eliminate
the time dependence of the drive gðtÞ, we find the effective
Hamiltonian

Ĥeff ¼
X

j

½2πℏðfj − fD=2Þaj†aj þ gj;0ðaj†aj† þ ajajÞ�;

ð2Þ
where gj;0 is proportional to the amplitude of the drive. Note
that this yields a Hamiltonian which is time independent in

FIG. 3. Fourier analysis and comparison of the experiment with the simulation. (a) Line density at the center of the cloud before the
onset of the space-time crystalline phase, directly after the excitation. (b) Fourier transform of the data in (a). Peaks at f=fD ¼ �1 are
associated with a weakly excited scissor mode. The signal around the origin is associated with the equilibrium profile of the condensate.
(c) Take-out of Fig. 2. Line density at the center of the cloud after the transition to the space-time crystalline phase, after a driving time of
500 ms. A lattice has formed. (d) Fourier transform of the data in (c), with the appearance of four additional peaks due to the space-time
crystal at ðk=kc; f=fDÞ ¼ ð�1;�0.5Þ, where kc is the center wavelength [25]. (e) Simulated line density for a modulation depth of 0.02,
after a wait time of 25TD. (f) Fourier transform of the data in (e). Notice that in the simulation only the equilibrium profile is visible.
(g) Simulated line density for a modulation depth of 0.2 after a wait time of 25TD. A pattern similar to the experimental data of (c) is
observed. (h) Fourier transform of (g). Note the appearance of the four additional peaks at ðk=kc; f=fDÞ ¼ ð�1;�0.5Þ attributed to the
space-time crystal. The line density in (a), (c), (e), and (g) is in units of 1011 atoms=m. Fourier images in (b), (d), (f), and (h) are
truncated and normalized to 1 for the experimental data.

FIG. 4. Long-term behavior of the amplitudes of the drive and
crystal fraction. (a) Relative amplitude of the radial breathing
mode derived by fitting a two-dimensional profile to the data.
(b) Crystal fraction determined from each measurement run. The
dashed line indicates the background signal from shot-to-shot
noise. Notice that the crystalline phase appears a certain time after
the driving mode revives [25].
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the rotating frame and that represents the appropriate
Hamiltonian for prethermalization of the system.
The mode that is observed depends on the driving

frequency fD and the driving amplitude hδAD=ĀDi [36].
In Fig. 5, the minimum required amplitude is shown as a
function of the driving frequency. In the absence of
damping, as shown in Fig. 5(a), a mode j can be driven
with an arbitrary small amplitude, if the resonance con-
dition 2fj ¼ fD is fulfilled. In the case of damping, the
threshold for exciting the pattern becomes finite. Applying
the analysis of Ref. [36] to our experimental conditions [see
Fig. 5(b)] shows that the driving amplitude used in our
experiment is sufficient to excite several modes j and the
competition between these modes causes one of the modes
to grow exponentially and thus dominate the observed
pattern.
The Hamiltonian of Eq. (2) explicitly breaks the Uð1Þ

symmetry a → aeiϑ. This implies that in the laboratory
frame hajaji ∝ e−2πifDt is always nonzero and oscillates
with the period of the drive. However, there is an additional
Z2 symmetry aj → −aj, which is spontaneously broken
when haji ≠ 0, which occurs when the mode is Bose

condensed. This leads to the appearance of the time
dependence haji ∝ e−πifDt in the laboratory frame. The
breaking of this Z2 symmetry thus leads to an oscillation
with period 2TD. We propose that for low occupation
(haji ≃ 0) the system is in a state dominated by a descrip-
tion based on the evolution of the pair correlation hajaji.
As occupation in the mode grows, i.e., the occupation
number of the mode haji goes up, there is a phase transition
from the paired state to a state dominated by dynamics in
haji, breaking the Z2 symmetry. We identify this transition
as the phase transition to the time crystal.
In summary, we have shown the existence of a space-

time crystal which is robust against fluctuations in exper-
imental parameters and long-lived. Future experiments are
aimed at studying elementary excitations such as solitons
and sound in the presence of a space-time crystal, as our
system is an excellent testing ground for these excitations.
Moreover, it can be explored whether this spatially ordered
state has supersolid properties, as this would allow the
study of out-of-equilibrium supersolids [37,38], combining
the fields of time crystals and supersolids and exploring a
currently unknown corner of physics.
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