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We study cooperative phenomena in the fluctuation-induced forces between a surface and a system
of neutral two-level quantum emitters prepared in a coherent collective state, showing that the total
Casimir-Polder force on the emitters can be modified via their mutual correlations. Particularly, we find that
a one-dimensional chain of emitters prepared in a super- or subradiant state experiences an enhanced or
suppressed collective vacuum-induced force, respectively. The collective nature of dispersion forces can be
understood as resulting from the interference between the different processes contributing to the surface-
modified resonant dipole-dipole interaction. Such cooperative fluctuation forces depend singularly on the
surface response at the resonance frequency of the emitters, thus being easily maneuverable. Our results
demonstrate the potential of collective phenomena as a new tool to selectively tailor vacuum forces.
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Introduction.—Collections of atoms and solid-state quan-
tum emitters coupled to waveguides and nanophotonic
structures offer a promising platform for scalable quantum
information processing [1–4]. The applications of such
systems range frombuilding long-ranged quantumnetworks
[5,6], quantum memory devices [7–9], and metrology [10],
to facilitating new experimental regimes with exotic light-
matter interactions [11–13]. When interfacing small quan-
tum systems and surfaces at nanoscales, fluctuation-induced
phenomena such as vacuum forces [14], surface-modified
dissipation [15,16], and decoherence [17] become important
considerations. The need to achieve the control and coher-
ence of photonic systems at that scale requires a detailed
understanding of these phenomena, so as to determine the
extent to which they can be tailored and controlled. In this
work, we consider the possibility of using cooperative
effects [18–20], as arising from having atoms or emitters
in correlated quantum states, to modify fluctuation-induced
forces, or Casimir-Polder (CP) forces [21,22].
The study of cooperative effects has a long history in

the context of spontaneous emission from a collection
of atoms in optical cavities and free space [23–31], and
more recently near waveguides [7,32,33]. Considering that
surface-modified spontaneous emission is the dissipative
counterpart to the dispersive vacuum forces [34], one can
expect to observe collective effects in dispersion forces as
well. When considering vacuum forces, however, the role of
quantum coherence within or between the interacting bodies
is seldom discussed. While there have been some inves-
tigations into the effect of correlations on the van der Waals

forces between two atoms [35,36], the effect of spatial wave
function coherence on CP forces [37–39], the effect of
surface modes on dipole-dipole correlations [40–44],
and interference effects in vacuum forces in a three-level
system [45], a general analysis of fluctuation-induced
forces between an N-particle system prepared in a coherent
collective state and a macroscopic body is yet to be explored
in detail. The goal of this Letter is to analyze a proof of
concept that illustrates cooperative effects in Casimir-Polder
forces between a surface and a system of N two-level
quantum emitters prepared in a Dicke state [23].
Model.—We consider a one-dimensional chain of N two-

level quantum emitters with ground and excited levels jgin
and jein at a distance z0 from the surface of a planar half-
space medium, with the emitters separated by a distance x0
from one another [see Fig. 1(a)]. We assume that the half-
space z < 0 is occupied by a medium of dielectric permit-
tivity ϵðωÞ, while the upper half-space is vacuum. The levels
jgin and jein are coupled via an electric-dipole transition
with resonance transition frequency ω0 and spontaneous
emission rate Γ0, with σ̂þn ¼ ðσ̂−n Þ† ¼ jeinhgjn being the
ladder operators for the corresponding transition. Defining
the collective spin operators Ĵk ≡P

N
n¼1 σ̂

k
n (k ∈ fx; y; zg),

the Dicke states jJ;Mi correspond to [23]

Ĵ2jJ;Mi ¼ JðJ þ 1ÞjJ;Mi and

ĴzjJ;Mi ¼ MjJ;Mi: ð1Þ
The total Hamiltonian for the system of emitters and the

electromagnetic (EM) field is Ĥ ¼ ĤS þ ĤF þ Ĥint, where
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ĤS ¼
P

N
n¼1 ℏω0σ̂

þ
n σ̂

−
n is the Hamiltonian for the two-level

emitters and ĤF is the Hamiltonian for the medium-assisted
EM field, which we assume to be in the vacuum state.
The electric-dipole interaction Hamiltonian between the
emitters and the EM field is Ĥint ¼ −

P
N
n¼1 d̂n · ÊðrnÞ,

where d̂n ¼ dnσ̂
þ
n þ d�

nσ̂
−
n is the electric-dipole operator for

the nth emitter and ÊðrnÞ is the electric field at the position
rn of the nth emitter in the presence of the surface (see
Ref. [46] for further details). We assume the dipole
moments of all the emitters dn ≡ d0ez to be equal in
magnitude and aligned along the z direction [46].
The dynamics of the density matrix ρ̂S of the emitters,

after tracing out the EM field, is described by the Born-
Markov master equation [48],

dρ̂S
dt

¼ −
i
ℏ
½Ĥ0

S; ρ̂S� þ L0
S½ρ̂S�; ð2Þ

where Ĥ0
S is the effective Hamiltonian for the emitters in the

interaction picture:

Ĥ0
S ¼ ℏ

�XN
n¼1

ΩðþÞ
n σ̂þn σ̂−n þΩð−Þ

n σ̂−n σ̂
þ
n þ

X
m>n

Ωmnσ̂
−
mσ̂

þ
n

�
:

ð3Þ

Here, Ωð−Þ
n ¼ ½μ0ω0=ðℏπÞ�

R
∞
0 dξ½ξ2=ðξ2 þω2

0Þ�d�
n ·

¯̄Gscðrn;
rn; iξÞ · dn and ΩðþÞ

n ¼ −Ωð−Þ
n þΩðresÞ

n are the Casimir-
Polder shifts for the ground and excited states of the nth
emitter, respectively. These shifts correspond to processes
wherein the nth dipole emits and reabsorbs a photon that is
scattered off the surface, with the photon propagator given
by the scattering Green’s tensor ¯̄Gscðr; r0;ωÞ defined as the
solution to the homogeneous Helmholtz equation [49,50]:

∇ × ∇ × ¯̄Gscðr; r0;ωÞ − ϵðr;ωÞω
2

c2
¯̄Gscðr; r0;ωÞ ¼ 0: ð4Þ

Here, ϵðr;ωÞ is the space-dependent permittivity of the
medium. Note that in addition to the broadband off-

resonant contribution Ωð−Þ
n , the excited state has a resonant

contribution [51],

ΩðresÞ
n ≡ −

μ0ω
2
0

ℏ
Re½d�

n ·
¯̄Gscðrn; rn;ω0Þ · dn�; ð5Þ

that depends on the response of the environment at the
transition frequency ω0 of the emitters.
The surface-modified resonant dipole-dipole interaction

frequency Ωmn between the emitters n and m can be

expressed [52,53] as the sum of a contribution ΩðfreeÞ
mn from

the resonant exchange of excitation between the two
dipoles via a photon propagating in free space, and a

contribution ΩðscÞ
mn from a photon scattered off the surface,

see Fig. 1(b), with

Ωðsc;freeÞ
mn ¼ −

μ0ω
2
0

ℏ
Re½d�

m · ¯̄Gsc;freeðrm; rn;ω0Þ · dn�: ð6Þ

Finally, the surface-modified Liouvillian is given by

L0
S½ρS� ¼

X
m;n

Γmn

2
ð2σ̂−mρSσ̂þn − σ̂þmσ̂−nρS − ρSσ̂

þ
mσ̂

−
n Þ; ð7Þ

where Γnn is the spontaneous emission rate for the excited

state of the nth emitter, and Γmn ¼ ΓðfreeÞ
mn þ ΓðscÞ

mn is the
dissipative coupling coefficient between emitters n and m,
with

Γðsc;freeÞ
mn ¼ 2μ0ω

2
0

ℏ
Im½d�

m · ¯̄Gsc;freeðrm; rn;ω0Þ · dn�: ð8Þ

From Eqs. (5) and (8) we see that the dissipative coef-

ficients ΓðscÞ
nn and Γðsc;freeÞ

mn are related to the resonant

dispersive shift ΩðresÞ
n and the dipole-dipole interactions

Ωðsc;freeÞ
mn , respectively, being the real and imaginary parts

of the same response function [58,59]. As we show below,
this implies that a collective enhancement or suppression of
resonant van der Waals forces is concomitant with the
cooperative behavior of spontaneous emission.
Results.—We define the total CP force for the system

of emitters in a state ρ̂S as FCP½ρ̂S� ¼ −ð∂=∂zÞTr½Ĥ0
Sρ̂S�,

so that

FCP½ρ̂S� ¼ −ℏ
XN
n¼1

� ∂
∂zΩ

ðþÞ
n hσ̂þn σ̂−n i þ

∂
∂zΩ

ð−Þ
n hσ̂−n σ̂þn i

�

− ℏ
X
m>n

∂
∂zΩ

ðscÞ
mn hσ̂−mσ̂þn þ σ̂−n σ̂

þ
mi; ð9Þ

FIG. 1. (a) Schematic representation of N two-level quantum
emitters prepared in a collective state, interacting with the
vacuum EM field in the presence of a planar half-space medium.
(b) Constructive (destructive) interference between the two
processes shown in green and red leads to superradiance
(subradiance) in the surface-mediated resonant dipole-dipole
interactions.
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where all the averages are taken over the density operator
ρ̂S. The first term corresponds to the CP forces on the
individual emitters and the second term to the contribution
from surface-modified dipole-dipole interactions.
Focusing on that term we observe that while the operator

average ðhσ̂−mσ̂þn þ σ̂−n σ̂
þ
miÞ depends on the correlations

between the dipoles in the state ρ̂S, the surface-modified

dipole-dipole frequency ΩðscÞ
mn depends on the distance of

the emitters from the surface. Hence, by preparing the
emitters in a suitable collective state ρ̂S, the CP force on an
ensemble can be modified. Since this modification depends
only on the resonant frequency response of the surface,
as evident from Eq. (6), it can thus be tailored easily by
engineering surface resonances around the resonance
frequency of the emitters. This is one of the main results
of this Letter.
As a first illustration consider two emitters prepared near

a metal surface in one of the four internal states jΨgi≡ jggi,
jΨei≡ jeei, jΨsupi≡ðjegiþjgeiÞ= ffiffiffi

2
p

, or jΨsubi≡ ðjegi−
jgeiÞ= ffiffiffi

2
p

. We assume the surface to be described by the
Drude model with permittivity ϵðωÞ ¼ 1 − ω2

p=ðω2 þ iωγÞ,
where ωp and γ are the plasma frequency and loss
parameter for the metal, respectively. From Eq. (9) it
follows that the force FgðeÞ for the state jΨgðeÞi is the
sum of the forces on the individual emitters in the ground
(excited) state:

Feg ¼ −ℏ
∂
∂z ½Ω

ð�Þ
1 þΩð�Þ

2 � ≈ −
9ωpℏΓ0k0

32ðωp ∓ ffiffiffi
2

p
ω0Þz̃40

: ð10Þ

Here the approximate second expression corresponds to
the nonretarded, or near-field, limit of the CP force valid in
the emitters-surface distance regime z̃0 ≡ k0z0 ≪ 1, with
k0 ≡ ω0=c [22,46,49].
In contrast, the force on the super- and subradiant states,

Fsup sub ¼ −
ℏ
2

∂
∂z

h
ΩðresÞ

1 þΩðresÞ
2 � 2ΩðscÞ

12

i
; ð11Þ

includes a contribution that depends on the surface-
mediated dipole-dipole interaction in addition to the
resonant CP shifts of the individual emitters. In the
nonretarded limit, it can be written as

Fsup
sub
≈ F∞½1� fðx̃0; z̃0Þ�; ð12Þ

where we have introduced the asymptotic force for infi-
nitely separated emitters,

F∞ ≡ −
9ω2

pℏΓ0k0
16ðω2

p − 2ω2
0Þz̃40

; ð13Þ

and

fðx̃0; z̃0Þ≡8z̃40
3

Z
∞

0

dκκe−2κz̃0ðκ2þ1ÞJ0
�
x̃0

ffiffiffiffiffiffiffiffiffiffiffiffi
κ2þ1

p �
ð14Þ

quantifies the cooperativity due to geometric configuration
of the dipoles, with x̃0 ≡ k0x0. For coincident dipoles and
to lowest order in z̃0, limx0→0fðx̃0; z̃0Þ ≈ 1.
As illustrated in Fig. 2(a), at small emitter separa-

tions ðx0 ≲ z0Þ the cooperative contribution leads to an
enhanced and suppressed CP force for the super- and
subradiant state, respectively. For larger separations,
limx0→∞fðx̃0; z̃0Þ ≈ 0 and the interference effect in the
resonant dipole-dipole interaction is attenuated, such that
the super- and subradiant states experience an incoherent
average of the ground and excited state forces, i.e.,
Fsup;sub ≈ ðFg þ FeÞ=2 ¼ F∞. This is generally true for a
state jΨθ;ϕi≡ cos θjegi þ eiϕ sin θjgeiwith a single shared
excitation between the emitters. We note that the total force

FIG. 2. (a) Collective Casimir-Polder force (in units of ℏΓ0k0)
and (b) spontaneous emission (in units of Γ0), on a system of two
emitters near a gold surface, as a function of the separation
between the emitters. Here the distance of the emitters from the
surface is assumed to be k0z0 ¼ 0.01. (c) [(d)] Collective
Casimir-Polder force and (e) [(f)] spontaneous emission on
two emitters as a function of their distance from the surface
and their mutual separation, for the dipoles prepared in the
superradiant [subradiant] state jΨsupi [jΨsubi]. For reference, the
ground state Casimir-Polder force on the two emitters at point P
is roughly jFgj ∼ 104ℏΓ0k0. The surface is described by the
Drude model with a plasma frequency ωp ≈ 1.37 × 1016 Hz
(9 eV) and loss parameter γ ≈ 5.31 × 1013 Hz (35 meV) for
gold [60].
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on the state jΨθ;ϕi is given by Fθ;ϕ ¼ −ℏð∂=∂zÞ½ΩðresÞ
1;2 þ

ΩðscÞ
12 sinð2θÞ cosϕ�, which can vary between the super- and

subradiant values in Eq. (12), depending on the relative
amplitudes ðtan θÞ and phase ðcosϕÞ between the states
jegi and jgei. The collective spontaneous emission for the
superradiant (subradiant) state, given by Γsup ¼ 1=2½Γ11þ
Γ22 þ 2Γ12� ðΓsub ¼ 1=2½Γ11 þ Γ22 − 2Γ12�Þ is depicted in
Fig. 2(b) [46].
Figures 2(c)–2(f) give a more comprehensive picture of

the collective CP forces and spontaneous emission as a
function of the geometrical configuration of the dipoles.
Assuming the emitter resonant wavelength to be λ0 ≡ 2πc=
ω0 ∼ 700 nm, we see from the points R and S in Figs. 2(d)
and 2(f), respectively, that a subradiant state of two emitters
separated by x0 ∼ 1 nm, and at a distance z0 ∼ 10 nm
from a gold surface, experiences a total force that is
suppressed by a factor of Fsub=Fg ∼ 10−2 relative to the
ground state van der Waals force, with a spontaneous
emission Γsub=Γ0 ∼ 10−2. Hence, subradiant CP forces
provide a potential way to avoid both dissipation and
undesirable CP attraction.
For a system of N dipoles the CP force on the Dicke

superradiant state jJ ¼ N=2;M ¼ 0i can be written as

Fsup ¼ −
ℏ
2

XN
n¼1

∂ΩðresÞ
n

∂z − 2ℏ
ð N−2
−1þN=2Þ
ð N
N=2Þ

X
m>n

∂ΩðscÞ
mn

∂z ; ð15Þ

where ðNkÞ is a binomial coefficient. In the limit of super-
posed dipoles, x0 → 0, it reduces to

lim
x0→0

Fsup ¼ −
9ω2

pℏΓ0k0
32ðω2

p − 2ω2
0Þz̃40

�
N þ N2

2

�
; ð16Þ

which demonstrates the characteristic N2 scaling of the
collective CP force on the superradiant state, depicted in
the inset of Fig. 3, similar to free-space superradiant
spontaneous emission at small emitter separations ðx̃0 ≪ 1Þ
[24]. We also remark that, for N > 2, multiple states
in the degenerate subspace of subradiant Dicke states
with jJ ¼ 0;M ¼ 0i exhibit a suppressed CP force;
see Ref. [46].
Discussion.—We have identified collective effects in

vacuum-induced dispersion forces that result from the
interference between the different channels contributing
to the surface-modified resonant dipole-dipole interaction,
as sketched in Fig. 1(b). Such cooperative enhancement or
suppression of fluctuation forces occurs for the resonant
contribution to the total CP force, and can be physically
understood as the dispersive counterpart to super- or
subradiance in spontaneous emission [see Eq. (12)]. In
addition to the quantum correlations [63] in the state of the
emitters this contribution to the totalCP force depends only
on the surface response at the resonance frequency of the
emitters; see Eq. (6). It can thus be controlled by suitably

tailoring the response of the surface around the resonant
frequency of the emitters.
Given that cooperative effects in optical dipole forces on

solid-state emitters in nanodiamonds have been discussed
both theoretically and experimentally [67–69], we suggest
that it should be possible to observe a boost in the
cooperative vacuum-induced forces by placing a similar
nanodiamond doped with emitters near a surface. To
estimate the feasibility of observing the collectively
enhanced CP force, we consider a system of N silicon-
vacancy (SiV) centers embedded in a cantilever near a metal
surface [70,71]. We assume that they are initially prepared in
the excited state, and solve the superradiance master
equation Eq. (2) numerically [72]. As the system decays
in a collective manner, it occupies the superradiant manifold
transiently and experiences an enhanced CP force, as shown
in Fig. 3. For a system of N ¼ 10 SiV centers at a distance
of z0 ≈ 10 nm from a gold surface, we find a superradiant
boost in the collective CP force of ΔFCP ≈ 20 fN over a
timescale of Δτ ≈ 0.5 ns [73,75]. The numerical results for
the N ¼ 10 case are from a trajectory simulation averaged
over 1000 trajectories, whereas for the smaller N ≤ 6,
a direct simulation of the master equation Eq. (2) was
performed. While the magnitude of the enhanced force is
large enough to be observable with current technologies
[76], the time resolution required to sense the enhancement
would appear to pose an experimental challenge.
While we have concentrated here on the specific case of a

fully inverted ensemble, a thorough analysis of different
initial states will be considered in the future (see Ref. [68]
for a pulsed excitation scheme used to observe superradiant
emission). We also anticipate that the effects described here

FIG. 3. Superradiant boost of the time-dependent total attrac-
tiveCP force on a linear chain ofN SiVemitters initially prepared
in the excited level of the 737 nm transition with a lifetime of
1.7 ns [61], placed z0 ≈ 10 nm from a gold surface [47,62]. The
inset shows the absolute value of the maximum boost as a
function of the number of emitters, illustrating the N2 scaling of
the force for the superradiant state jJ ¼ N=2;M ¼ 0i.
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will be relevant and possibly observable in a variety of
other platforms such as van der Waals shifts on atoms
placed near optical fibers [32], quantum dot systems
[77,78], and superconducting qubits [31].
In terms of potential applications one can speculate that

superradiant states could be used to boost hard to observe
weak fluctuation forces such as the ones discussed in
Ref. [79], as well as a probe of surface properties [80].
More interestingly perhaps, given that subradiant states
suppress undesirable Casimir-Polder attraction and exhibit
long lifetimes with respect to the single-atom excited states
[Fig. 2(f)], they can be a useful resource for trapping
particles near surfaces, with potential applications in terms
of quantum computation given their robustness to envi-
ronmental decoherence [81,82].
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