
 

Generation of a Lattice of Spin-Orbit Beams via Coherent Averaging
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We describe a highly robust method, applicable to both electromagnetic and matter-wave beams, that can
produce a beam consisting of a lattice of orbital angular momentum (OAM) states coupled to a two-level
system. We also define efficient protocols for controlling and manipulating the lattice characteristics. These
protocols are applied in an experimental realization of a lattice of optical spin-orbit beams. The novel
passive devices we demonstrate here are also a natural alternative to existing methods for producing single-
axis OAM and spin-orbit beams. Our techniques provide new tools for investigations of chiral and
topological materials with light and particle beams.
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Since their experimental demonstrations a quarter-
century ago [1,2], there has been great progress in generation,
detection, and applications of “structured waves” of light and
quantum particles, where the wave front is patterned to attain
nontrivial propagation characteristics such as orbital angular
momentum (OAM), nondiffraction, and self-healing [3–7].
Beams of light [2], neutrons [8,9] and electrons [10,11] can
carry orbital angular momentum parallel to their propagation
axis. Furthermore, lattices of optical OAM beams have been
produced and studied [12–15]. The structured OAM waves
have demonstrated a number of applications in microscopy,
encoding and multiplexing of communications, and manipu-
lation of matter [16–18].
Of particular interest are “spin-orbit” beams where the

orbital degree of freedom (d.o.f.) is coupled to a two-level
system such as polarization for light or spin for electrons
and neutrons. These beams have found applications in high
resolution optical imaging, high-bandwidth communica-
tion, and optical metrology [19–21]. Spin-orbit states of
light beams may be prepared by an interferometric method
using a spatial light modulator [22], or via q plates [23].
The latter method is similar to preparing spin-orbit states

via a space-variant Wien filter for electrons [24] or via a
quadrupole magnetic field for neutrons [25].
The utility of the spin-orbit beams may be enhanced by

producing a periodic lattice of such states. For example,
matching the lattice constants to the characteristic length
scales of target materials would extend the OAM selection
rules across a region proportional to the area of the fully
structured wave front [26–30]. Another potential applica-
tion would be the use of a lattice beam structure to increase
the bandwidth of data transfer using OAM modes [31–33].
Furthermore, another application to explore would be the
use of optical lattices of spin-orbit states to provide novel
optical potentials for trapping atoms [34].
Here, we describe a universal parallel multiplexing

technique that produces a beam consisting of a lattice of
OAM states coupled to a two-level system. Our protocols
use coherent averaging and spatial control methods bor-
rowed from nuclear magnetic resonance [35–38] to prepare
a general pulse sequence for producing the lattices. Spin
and polarization enter here as natural manifestations of the
2 d.o.f. of light and spin −1=2 particles. The approach
could be extended to systems with more degrees of internal
freedom, such as atoms with higher spin.
To describe the protocols for creating and optimizing the

lattices of spin-orbit beams, we first analyze a single spin-
orbit state. It is convenient to consider a (light or particle)
wave packet traveling along the z direction with momen-
tum ℏkz and expectation values of momentum in the
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transverse ðx; yÞ plane equal to zero. When the transverse
coherence lengths are equal σx ¼ σy ≡ σ⊥, where
σx;y ¼ 1=ð2Δkx;yÞ, and Δkx;y are the x and y spreads of
the wave packet’s transverse momentum distributions, the
eigenstates in cylindrical coordinates ðr;ϕÞ can be
expressed as

jnr;l; pi ¼ N ξjlje−ξ2=2Ljlj
nr ðξ2ÞeilϕZðzÞjpi; ð1Þ

where N ¼ 1=σ⊥
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

nr!=πðnr þ jljÞ!p

is the normalization
constant, ξ ¼ r=σ⊥ is the dimensionless radial coordinate,
ϕ is the azimuthal coordinate, nr ∈ f0; 1; 2;…g is the
radial quantum number, l ∈ f0;�1;�2;…g is the azimu-

thal quantum number, Ljlj
nr ðξ2Þ are the associated Laguerre

polynomials, ZðzÞ is the longitudinal wave function often
approximated by a Gaussian wave packet, and p ∈ f↻;↺g
is the polarization state of light (or as per Fig. 1(a) we may
use s ∈ f↑z;↓zg in the case of spin −1=2 particles).
Applying the OAM operator L̂z ¼ −iℏð∂=∂ϕÞ shows that
the wave packet carries an OAM of lℏ. The coherence
length σ⊥ is important when dealing with particle beams
where the beam is generally an incoherent mixture of
coherent wave packets, whereas for light one may simply
consider the beam waist and the Laguerre-Gaussian modes.
However, although the spin-orbit beam can cleanly be
described via Laguerre-Gaussian modes, the beam carrying
a lattice of spin-orbit states can not due to the translational
symmetry.
When considering beams carrying OAM, of major

importance is the one fixed axis in space about which

the OAM is quantized. In the case of beams carrying a
lattice of OAM states there is a two-dimensional array of
such axes and we are interested in what happens locally
within each cell. Particularly, when this beam interacts with
a material then the region around the local OAM axes
becomes important.
To prepare states with coupled polarization and OAMwe

can start with circularly polarized light,

jψ ini ¼ j0; 0;↻i; ð2Þ

and apply a coupling operator of the form [25]

Û ¼ eiðπr=2rcÞ½cosðϕÞσ̂xþsinðϕÞσ̂y� ð3aÞ

¼ cos

�

πr
2rc

�

1þ i sin

�

πr
2rc

�

ðl̂þσ̂− þ l̂−σ̂þÞ: ð3bÞ

Here, l̂� ¼ e�iϕ are the raising and lowering OAM
operators, σ̂x and σ̂y are the Pauli operators, and
σ̂� ¼ ðσ̂x � iσ̂yÞ=2. The length rc is defined as the smallest
radial distance at which the polarization d.o.f. undergoes a
π rotation. At radii different than r ¼ rc, other rotation
angles will occur producing the spin-orbit state

jΨSOi ¼
e−r

2=2

ffiffiffi

π
p

�

cos

�

πr
2rc

�

j↻i þ ieiϕ sin

�

πr
2rc

�

j↺i
�

; ð4Þ

where we have set σ⊥ ¼ 1. jΨSOi describes a vector vortex
beam where the OAM is induced via Pancharatnam-Berry
geometrical phase [39,40]. The intensity (postselected on

(a) (b)

FIG. 1. (a) The isomorphism between the Bloch sphere representing the spin states of fermions f↑x;↓x;↑y;↓y;↑z;↓zg and that of the
Poincaré sphere representing the polarization states of light fH;V;D; A;↻;↺g. The corresponding eigenvectors are chosen as shown to
ensure that ðr;ϕÞ are the transverse coordinates of the incoming beam. (b) The lattices of optical spin-orbit beams are produced by
passing a circularly polarized light beam through N sets of Lattice of Optical Vortices (LOV) prism pairs. A LOV prism pair consists of
two perpendicular optical birefringent prisms where one prism has the optical axis along the prism incline and the second prism has the
optical axis offset by 45°. The lattice constant is given by a ¼ λ=ðne − noÞ tanðθÞ, where θ is the prism incline angle, ne and no are the
extraordinary and ordinary refractive indices, and λ is the wavelength of the incoming light.
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the right circularly polarized light) and the polarization
distribution (before the polarization postselection) are
depicted on the zoomed-in plot of Fig. 1(b). It has been
shown that there is a correlation between the 2 d.o.f.
whereby postselecting on 1 d.o.f. determines the value for
the other, and that this correlation is maximized under the
condition rc ¼ 1.82σ⊥ [25].
Our proposed procedure for producing a beam with a

lattice of optical spin-orbit states consists of a sequence of
linear birefringent gradients that are equal in magnitude and
perpendicular to each other and the polarization axis of the
incoming light. This procedure may be motivated by
applying the Suzuki-Trotter expansion to Eq. (3a), i.e.,

eiðπ=2rcÞðxσ̂xþyσ̂yÞ ¼ lim
N→∞

ðeiðπ=2rcÞxσ̂x=Neiðπ=2rcÞyσ̂y=NÞN; ð5Þ

where we have switched from polar to Cartesian coordi-
nates, x ¼ r cosðϕÞ and y ¼ r sinðϕÞ. Examining and
truncating the right-hand side of this relation, we see that
it can be interpreted as a sequence ofN perpendicular linear
gradients. Generalizing to put the origin of the gradients at
ðx0; y0Þ and choosing that the gradients be independent of
N, we define the operators

Ûx ¼ eiðπ=2rcÞðx−x0Þσ̂x ; Ûy ¼ eiðπ=2rcÞðy−y0Þσ̂y : ð6Þ

In the case of photons one way to produce the operators is
via optical birefringent prisms as shown in Fig. 1(b).
Placing one prism with an optical axis along the prism
incline and a second prism with an optical axis offset by 45°
results in the product operation ÛxÛy. We term such a set a
“Lattice of Optical Vortices (lov) prism pair.” The LOV
prism pairs induce spin-orbit beams as they approximate
the spin-orbit coupling operator of Eq. (3). In addition, they
induce a 2D periodic structure in the output beam due to
their periodic nature, where after a certain distance along
the prism incline the polarization is brought back to the
initial state. This induces a periodic lattice structure as
shown in Fig. 1(b).
A sequence of N sets of LOV prism pairs generates a

lattice of optical spin-orbit beams, calculated as

jΨN
LOVi ¼ ðÛxÛyÞN jψ ini: ð7Þ

This process is shown in Fig. 1(b) for N ¼ 2.
Equation (6) shows that a physical shift by a distance,
d, of a prism along its incline direction (x or y) results in a
simple phase shift of dπ=2rc around the corresponding
axis. If the incline angles of the horizontal and vertical LOV
prisms are not equal, then that will result in a stretching or
compressing of the lattice structure in the output beam. In
that scenario there would be a different lattice constant
along the x and y directions. If one particular LOV prism
has a different incline angle than all the other LOV prisms,
then there will be a beating in the output beam in the form

of a Moiré pattern corresponding to the difference in incline
angles.
The spin-orbit states in these lattices form a two-dimen-

sional array with a lattice constant of

a ¼ 2rc ¼
λ

Δn tanðθÞ ð8Þ

where Δn and θ are the birefringence and the incline angle
of the LOV prism pairs. The OAM structure of the resulting
beam can be analyzed by looking at the phase profile of the
polarization state which is correlated with the OAM:

arg ðh↺jΨN
LOViÞ ¼ −tan−1

�

cot
�

πy
a

�

tan
�

πx
a

��

: ð9Þ

By analyzing Eq. (9) it can be observed that the lattice cells
are centered on a lz ¼ 1 phase structure, while the lattice
cell corners are on a lz ¼ −1 structure. Although the
number (N) of LOV prism pairs does not affect the phase
profile, in any lattice cell the number of well-defined
intensity rings is equal to N=2. Therefore, N provides
control over the mean radial quantum number nr in a lattice
cell, and even expansions of Eq. (5) should be used. In the
N ¼ 1 case both polarization states are similarly coupled to
the OAM forming vortex-antivortex structures, and both
lz ¼ 1 and lz ¼ −1 phase structures are illuminated.
Similar vortex-antivortex structures can also be obtained
via Wollaston prisms [41,42]. Wollaston prisms have been
shown to generate a vortex-antivortex structure which can
be interpreted as a lattice of spin-orbit states with non-
integer radial quantum numbers and where the orbital
quantum number vary across the lattice cells. With LOV
prism pairs a well-defined lattice of spin-orbit states can be
generated where both quantum numbers are integer values
and are the same for every lattice cell.
The simulated and observed polarization profiles for

N ¼ 2 and N ¼ 4 are plotted in Fig. 2. We find strong
agreement between the simulated and observed intensity
profiles. The slight distortions can be attributed to nonideal
preparation and postselection of polarization states. For our
LOV prism pairs the lattice constant given by Eq. (8) comes
out to be 1.68 mm, though it was measured to be slightly
larger due to beam divergence. The birefringent gradient of
the LOV prism pairs determines the lattice constant of the
output beam while the size of the lattice is limited by the
size of the beam which can go through the LOV prisms.
The period of the lattice can span a large range. LOV

prism pairs fabricated from TiO2 (birefringence of ∼0.29)
with an incline angle of 60° would produce a lattice period
of a ∼ 1 μm for a light wavelength of 532 nm. Furthermore,
if birefringent materials which exhibit the Pockel’s
effect are used then with the addition of external electric
field control, a variable period may be obtained via the
electro-optic effect.
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The doughnut structure intensity shown in Fig. 2 is
indicative of the polarization profile of the spin-orbit state
[Eq. (4)] and not the OAM structure. To show that there is a
lattice of OAM states we measure the phase profile of the
beam using an interferometer. The schematic of the setup is
shown in Fig. 3 where a linear phase gradient in one path
has been introduced to observe the characteristic fork
structure hologram indicative of OAM. A lattice of fork
structures can clearly be seen, indicating an lz ¼ 1 at each
lattice center. The intensity map from Fig. 2 and the
azimuthal phase structure from Fig. 2, indicate the azimu-
thally varying polarization structure in the inset of Fig. 1(b).
Lattices of lz ¼ −1 spin-orbit states may be obtained by

orienting the first prism of the LOV prism pairs along the
negative y direction. While various sequences of LOV

prism pairs and polarization filters may be used to achieve
higher order OAM structures in the outgoing beam. For
example, to increment the OAM values to which the
polarization states are coupled to by an integer “m,” the
following sequence may be used:

ððÛxÛyÞNe−iðπ=2Þσ̂x j↺ih↺jÞm−1ðÛxÛyÞN jψ ini ð10Þ

where j↺ih↺j is the operator for a polarization filter along
the j↺i direction. Lastly, using LOV prism pairs which
produce different lattice constants results in a “superlattice”
which has an overlay of the distinct lattice constants.
The described protocols provide a two-dimensional

control of the characteristic length scale of the single
spin-orbit features. It may be possible to create a lattice

FIG. 3. Phase imaging of the N ¼ 2 lattice of optical spin-orbit beams where we postselect on the polarization carrying the OAM. The
N ¼ 2 sets of LOV prism pairs are placed in one path of the interferometer and a linear phase gradient is applied in the other path
(Gy ∼ 20 rad=mm) by tilting a mirror in order to pronounce the well-known fork structure holograms in the lattice, which indicate the
presence of OAM beams.

FIG. 2. Intensity profiles postselected on a particular polarization state of the lattices of optical spin-orbit beams. Top are the simulated
profiles and the bottom are the observed images. The lattice constant specified by Eq. (8) for λ ¼ 532 nm light and our 2° quartz LOV
prism sets is a ¼ 1.68 mm; the measured lattice constant at the camera being slightly larger due to beam divergence. If desired, the
lattice constant can easily be pushed into the μm range by fabricating prisms with a larger incline angle out of a high birefringent material
such as TiO2.
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of ring-shaped optical atomic traps, individual instances of
which have figured prominently in recent studies of atom-
tronic circuits [34]. One can also envisage vortex pinning in
Bose-Einstein condensates via these beams [43]. Lattices of
polarization coupled optical vortices may also be fruitful in
microscopy or basic studies of the interaction of structured
light [26–30] with individual atoms or molecules. This is
because OAM is defined with respect to a single axis
perpendicular to the wave front. Thus, in studies using a
single OAM axis, only atoms or molecules in the region of
a fraction of a wavelength about that axis are subject to the
OAM selection rules [44,45]. This technique extends those
rules across a region proportional to the area of the fully
structured wave front.
Our technique is particularly useful for matter-wave

beams where the beam is generally an incoherent mixture
of coherent wave packets. In the case of spin-1=2 particles,
to create a lattice of spin-orbit states one requires a
magnetic prism set with the magnetic field along the
direction of the prism incline, and where the prisms are
perpendicular to each other and the spin state of the
incoming particles. Matter-wave lattices of spin-orbit
beams may thus be generated where the OAM axis is
specified along the coherent wave packet rather than the
beam axis. This opens the door for new types of studies of
chiral and topological materials via particle beams.
Experimental methods.—A laser of wavelength 532 nm

was used, along with standard polarizers, wave plates, and
optical components. The LOV prism pairs were circular
quartz wedges (birefringence of ∼0.0091) with a wedge
angle of 2° and diameter of 2.54 cm. One wedge had the
optical axis aligned with wedge angle while the other
wedge had the optical axis aligned 45° to wedge angle.
For images shown in Fig. 2 the setup consisted of a laser, a

linear polarization filter, a quarter-wave plate, N LOV prism
pairs, a quarter-wave plate, a linear polarization filter, and a
CMOS camera. For beam phase imaging shown in Fig. 3, a
four-mirror interferometer [46] was used because it allowed
for compensation of the beam deviation due to the LOV
prism pairs. An alternative method would have been to add a
non-birefringent prism after each prism of the LOV prism
pair in order to compensate for the beam deviation. A linear
phase gradient in Fig. 3 was introduced to obtain the fork
structure holograms by tilting the mirror of the interferom-
eter path which did not contain the LOV prism pairs.
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