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The atomic dipole polarizability α and the van der Waals (vdW) radius RvdW are two key quantities to
describe vdW interactions between atoms in molecules and materials. Until now, they have been
determined independently and separately from each other. Here, we derive the quantum-mechanical
relation RvdW ¼ const × α1=7, which is markedly different from the common assumption RvdW ∝ α1=3

based on a classical picture of hard-sphere atoms. As shown for 72 chemical elements between hydrogen
and uranium, the obtained formula can be used as a unified definition of the vdW radius solely in terms of
the atomic polarizability. For vdW-bonded heteronuclear dimers consisting of atoms A and B, the
combination rule α ¼ ðαA þ αBÞ=2 provides a remarkably accurate way to calculate their equilibrium
interatomic distance. The revealed scaling law allows us to reduce the empiricism and improve the accuracy
of interatomic vdW potentials, at the same time suggesting the existence of a nontrivial relation between
length and volume in quantum systems.
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The idea to use a specific radius, describing a distance an
atom maintains from other atoms in noncovalent inter-
actions, was introduced by Mack [1] and Magat [2].
Subsequently, it was employed by Kitaigorodskii in his
theory of close packing of molecules in crystals [3,4]. This
opened a wide area of applications related to the geomet-
rical description of noncovalent bonds [5,6]. The currently
used concept of the vdW radius was formalized by Pauling
[7] and Bondi [8], who directly related it to vdW inter-
actions establishing its current name. They defined this
radius as half of the distance between two atoms of the
same chemical element, at which Pauli exchange repulsion
and London dispersion attraction forces exactly balance
each other. Since then, together with the atomic dipole
polarizability, the vdW radius serves for an atomistic
description of vdW interactions in many fields of science
including molecular physics, crystal chemistry, nanotech-
nology, structural biology, and pharmacy.
The atomic dipole polarizability, a quantity related to the

strength of the dispersion interaction, can be accurately
determined from both experiment and theory to an accuracy
of a few percent for most elements in the periodic table
[9–14]. In contrast, the determination of the atomic vdW
radius is unambiguous for noble gases only, for which the
vdW radius is defined as half of the equilibrium distance in
the corresponding vdW-bonded homonuclear dimer [7,8].
For other chemical elements, the definition of the vdW
radius requires consideration of molecular systems where
the corresponding atom exhibits a closed-shell behavior
similar to noble gases in order to distinguish the vdW
bonding from other interactions [5,6]. Hence, a robust
determination of vdW radii for most elements in the

periodic table requires a painstaking analysis of a sub-
stantial amount of experimental structural data [15].
Consequently, from an experimental point of view, the vdW

radius can only be considered as a statistical quantity and
available databases provide just recommended values. Among
them, the one proposed in 1964 by Bondi [8] has been
extensively used. However, it is based on a restricted amount
of experimental information available at that time. With the
improvement of experimental techniques and increase of
available data, it became possible to derive more precise
databases. A comprehensive analysis was performed by
Batsanov [15]. He provided a table of accurate atomic
vdW radii for 65 chemical elements serving here as a
benchmark reference [16]. For noble gases, missing in
Ref. [15], the vdW radii of Bondi [8] are taken in our analysis
[17]. As a reference data set for the atomic dipole polar-
izability, we use Table A. 1 of Ref. [12]. They are obtained
with time-dependent density-functional theory and linear-
response coupled-cluster calculations providing an accuracy
of a few percent, which is comparable to the variation among
different sets of experimental and theoretical results [14].
The commonly used relation between the atomic dipole

polarizability and the vdW radius is based on a classical
approach, wherein an atom is described as a positive point
charge q compensated by a uniform electron density
ð−3qÞ=ð4πR3

aÞ within a hard sphere. Its radius Ra is
identical to the classical vdW radius. With an applied
electric field Eext, the point charge undergoes a displace-
ment d with respect to the center of the sphere. From the
force balance, qEext − q2d=R3

a ¼ 0, and the definition of
the dipole polarizability via the induced dipole moment,
qd ¼ αEext, it follows that
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Ra ¼ α1=3: ð1Þ

This scaling law is widely used in literature relating the
vdW radius to the polarizability.
In this Letter, we show that the quantum-mechanical

(QM) relation between the two quantities is markedly
different from the classical formula. This result is obtained
from the force balance between the vdW attraction and
exchange-repulsion interactions considered within a sim-
plified, yet realistic, QM model. Our finding is supported
by a detailed analysis of robust data for atomic polar-
izabilities and vdW radii of 72 chemical elements.
Many properties of real atoms can be captured by

physical models based on Gaussian wave functions [20].
Among them, the quantum Drude oscillator (QDO) model
[21–23] serves as an insightful, efficient, and accurate
approach [11–13,24–27] for the description of the
dispersion interaction. It provides the dipole polarizability
α≡ α1 ¼ q2=μω2 expressed in terms of the three param-
eters [23]: the charge q, the mass μ, and the characteristic
frequency ω modeling the response of valence electrons.
The scaling laws obtained for dispersion coefficients within
the QDO model can quantitatively describe attractive
interactions between atoms and molecules [10–13,23].
Here, we introduce the exchange repulsion into this model
to uncover a QM relation between the polarizability and
vdW radius. Motivated by the work of Pauling [7] and
Bondi [8], we determine the latter from the condition of the
balance between exchange-repulsion and dispersion-attrac-
tion forces. The modern theory of interatomic interactions
[28] suggests that the equilibrium binding between two
atoms (including noble gases) results from a complex
interplay of many interactions. Among them, exchange
repulsion, electrostatics, polarization, and dipolar as well as
higher-order vdW dispersion interactions are of impor-
tance. However, it is also known that the Tang-Toennies
model [29–31], which consists purely of a dispersion
attraction and an exchange repulsion, reproduces binding
energy curves of closed-shell dimers with a high accuracy.
To express the vdW radius in terms of the dipole polar-
izability, our initial model presented here treats the repul-
sive and attractive forces by employing a dipole
approximation for the Coulomb potential. Such an approxi-
mation turns out to be reasonable to correctly describe the
equilibrium distance for homonuclear closed-shell dimers
via the condition of vanishing interatomic force. Our
dipolar QM model can also be generalized to higher
multipoles, as demonstrated by the excellent correlation
between higher-order atomic polarizabilities and the vdW
radius [see Eq. (13)].
A coarse-grained QDO represents response properties of

all valence electrons in an atom as those of a single oscillator
[23]. As a result, the usual prescriptions to derive the Pauli
exchange repulsion from the interaction of each electron
pair [30] are not straightforward within this model.

However, two QDOs with the same parameters are indis-
tinguishable. In addition, their spinless structure [23] is well
suited to describe closed valence shells of atoms, which
interact solely via the vdW forces. Considering two iden-
tical QDOs as bosons, we construct the total wave function
as a permanent and introduce the exchange interaction
following the Heitler-London approach [32], where it is
expressed in terms of the Coulomb and exchange integrals.
Let us consider a homonuclear dimer consisting of two

atoms separated by the distance R. As shown in the
Supplemental Material [33], the dipole approximation
for the Coulomb interaction provides the exchange integral
in the simple form

Jex ¼
q2S
2R

¼ q2

2R
e−ðμω=2ℏÞR2

; ð2Þ

whereas the corresponding Coulomb integral vanishes. At
the equilibrium distance R ¼ 2RvdW of homonuclear
dimers consisting of the species of Table I, the overlap
integral S in Eq. (2) is less than 0.02 [33]. In the first-order
approximation with respect to S, the exchange energy for
the symmetric state, related to the bosonic nature of the
closed shells, is given by Jex [33]. As follows from Table I,
for R ¼ 2RvdW, the condition μω=ℏ ≫ 1=R2 is fulfilled.
Then the corresponding force Fex ¼ −∇RJex can be
obtained as [33]

Fex ≈
q2

2

μω

ℏ
e−ðμω=2ℏÞR2 ¼ αℏω

2

�
μω

ℏ

�
2

e−ðμω=2ℏÞR2

: ð3Þ

The attractive dipole-dipole dispersion interaction and
the related force are known within the QDO model as [23]

Edisp ¼ −
3

4

α2ℏω

R6
and Fdisp ¼ −

9

2

α2ℏω
R7

; ð4Þ

respectively. From Fex þ Fdisp ¼ 0, we get the relation

RvdW ¼ Cðμω; RvdWÞα1=7: ð5Þ

TABLE I. For noble gases, the proportionality function of the
QDO model given by Eq. (6) is shown versus its counterpart of
real atoms. The results are obtained with the characteristic lengthffiffiffiffiffiffiffiffiffiffiffi

ℏ=μω
p

from Refs. [23,43] and the reference vdW radii [8,19]
and polarizabilities [12] (all in atomic units).

Species
ffiffiffiffiffiffiffiffiffiffiffi
ℏ=μω

p
Rref
vdW αref Cðμω; Rref

vdWÞ Rref
vdW=ðαrefÞ1=7

He 1.3897 2.65 1.38 2.33 2.53
Ne 1.4864 2.91 2.67 2.56 2.53
Ar 2.1339 3.55 11.10 2.33 2.52
Kr 2.3716 3.82 16.80 2.35 2.55
Xe 2.7638 4.08 27.30 2.28 2.54
Rn 3.0265 4.23 33.54 2.25 2.56
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Here, the proportionality function [44]

Cðμω; RvdWÞ ¼
1

2
ð3ℏ=μωÞ2=7 expð2μωR2

vdW=7ℏÞ ð6Þ

depends on both μω and RvdW. However, as shown by
Table I, the deviations of Cðμω; RvdWÞ from its mean value
of 2.35 are within 9% among different species. This is in
contrast to the strong variation of the model parameters by
themselves. Moreover, the actual ratio RvdW=ðαÞ1=7 is
practically constant for all noble-gas atoms, according to
the last column in Table I. By fitting the scaling law RvdW ∝
ðαÞ1=7 to the reference data for noble gases [8,19], we
obtain the following relation:

RvdWðαÞ ¼ 2.54α1=7 a:u:; ð7Þ

which is the central result of our work [45].
The function Cðμω; RvdWÞ corresponds to a universal

scaling law between the atomic volume and the electron
density at RvdW [44]. Its deviations from 2.54 can be
attributed to the model simplifications related to the coarse-
grained description of valence electrons by Gaussian wave
functions.
Figure 1 shows that Eq. (7) yields a relative error

R:E: ¼ ½ðRvdWðαÞ − Rref
vdWÞ=Rref

vdW� × 100% ð8Þ

of less than 1% for all noble gas atoms. In contrast, the fit of
the classical scaling law of Eq. (1) to the reference data is
clearly unreasonable. The relation RvdW ∝ α1=7 can also be
obtained [33] within the model approach based on the
Tang-Toennies potential, in addition to our quantum-
mechanical derivation from the QDO model. Moreover,

our extended statistical analysis of different possible power
laws [33] confirms both the scaling law and the propor-
tionality constant of Eq. (7).
Let us now assess the validity of the relation given by

Eq. (7) for atoms of other chemical elements. To this end,
we use the equilibrium vdW radii of Batsanov [15] as the
reference [16]. For hydrogen, we take the value of the vdW
radius from Ref. [10]. The results of our analysis are
illustrated in Fig. 2 separately for nonmetals or metalloids
(16 elements of Ref. [15] þH) and metals (49 elements).
Detailed information is provided in the Supplemental
Material [33]. We observe an excellent correlation between
RvdWðαÞ and its reference counterpart for a wide range
of input data: 1.38 ≤ αref ≤ 427.12 [12] and 2.65 ≤
Rref
vdW ≤ 6.24. Both the mean of the relative error, hR:E:i,

and its magnitude, hjR:E:ji, are within a few percent.
Moreover, hR:E:i for the complete database of Batsanov

FIG. 1. The van der Waals radius obtained for noble gases by
Eq. (7) is presented in comparison to its reference [15] counter-
part (black full dots). In addition, the results obtained by the fit of
the classical scaling law to the reference data, RvdWðαÞ ¼
1.62α1=3, are shown (gray circles). The relative errors calculated
with Eq. (8) are in parentheses.

(a)

(b)

FIG. 2. The vdW radius obtained by Eq. (7) using the reference
data for the polarizability [12] is shown separately for (a) non-
metals or metalloids and (b) metals in comparison to its reference
counterpart [15]. Here, hR:E:i and hjR:E:ji represent the mean of
the relative error and its magnitude, respectively, calculated with
Eq. (8) for the database of Batsanov [16] (for hydrogen, Rref

vdW is
taken from Ref. [10]).
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is just 0.61%, which means that positive and negative
deviations are almost equally distributed. Since the refer-
ence vdW radii are determined with a statistical error of up
to 10% [15], these results are already enough to support the
validity of Eq. (7).
The reliability of the obtained formula becomes even

more evident from a further detailed analysis based on our
separate treatment of the nonmetals or metalloids and
metals. The experimentally based determination of RvdW
is known to be more difficult for atoms with metallic
properties [15], because of the lack of structures where they
undergo vdW-bonded contacts with other molecular moi-
eties. The transition elements are even more problematic
since they exhibit a variety of possible electronic states.
Therefore, going from nonmetals via metalloids and simple
metals to transition metals, the statistical error increases.
Figure 2 clearly demonstrates such a situation. On one
hand, for the organic elements (C, N, O) the agreement is
better in comparison to the metalloids (As, Sb, Te). On the
other hand, the transition metals (V, Cr, Pd) show larger
deviations in comparison to the simple metals (K, Rb, Sr).
It is also worth mentioning that, among all the elements
from the used database [46], jR:E:j exceeds 10% only for V,
Cr, and Pd. Altogether, this justifies the universality of the
revealed relation between the vdW radius and the dipole
polarizability.
An important feature of Eq. (7) is its transferability to

vdW-bonded heteronuclear dimers. The equilibrium dis-
tance between two different atoms A and B can be obtained
by the arithmetic mean

DaðαÞ ¼ 2 × 2.54½ðαA þ αBÞ=2�1=7 a:u: ð9Þ
as a generalization of the equilibrium distance in
homonuclear dimers, DðαÞ≡ 2 × RvdW ¼ 2 × 2.54α1=7.
The box plot of Fig. 3 illustrates that the simple combi-
nation rule of Eq. (9) yields accurate equilibrium distances

of 15 vdW-bonded heteronuclear dimers of noble gases.
The corresponding jR:E:j with respect to the reference data
[31] is within 2.5%, whereas hR:E:i and hjR:E:ji are about
0.2% and 1%, respectively [33]. In comparison, the other
three possible combination rules based on simple means,

DaðRvdWÞ ¼ 2 × ðRA
vdW þ RB

vdWÞ=2; ð10Þ

DgðαÞ ¼ 2 × 2.54ð ffiffiffiffiffiffiffiffiffiffi
αAαB

p Þ1=7; ð11Þ

DgðRvdWÞ ¼ 2 × ðRA
vdWR

B
vdWÞ1=2; ð12Þ

underestimate the equilibrium distances with jR:E:j exceed-
ing 10% and both hR:E:i and hjR:E:ji of about 4%–5%.
Among its various possible applications, the proposed

determination of the atomic vdW radius and the equilib-
rium distance for vdW bonds provides a powerful way to
parametrize interatomic potentials. Many models, like the
Lennard-Jones potential, use a geometric and an energetic
parameter. The former, related to the equilibrium distance,
can now be determined via the polarizability according to
Eqs. (7) and (9). Since the remaining parameter corre-
sponds to the dissociation energy, the full parametrization
becomes now easily accessible by experiment. There are
also models, like the modified Tang-Toennies potential
[29], based just on one combined parameter, which can be
now directly evaluated from the extremum condition on the
known equilibrium distance.
Based on Eq. (7), one can also significantly improve the

efficiency of computational models for intermolecular
interactions by revising the determination of effective
vdW radii of atoms in molecules. According to the classical
result, the vdW radius is conventionally calculated as
Reff
vdW ¼ ðαeff=αfreeÞ1=3Rfree

vdW with the effective atomic polar-
izability obtained from the corresponding electron density
[10]. To apply this procedure, it is necessary to tabulate
empirical free-atom vdW radii. With Eq. (7), this problem
can now be overcome by a direct calculation
Reff
vdW ¼ 2.54ðαeffÞ1=7. We test the effect of using this

alternative definition of vdW radii for atoms in molecules
on the binding energies of molecular dimers contained in
the S66 database [47,48] by means of the Tkatchenko-
Scheffler model [10] in conjunction with DFT-PBE calcu-
lations [33]. With the alternative determination of Reff

vdW we
obtain an accuracy increase of about 30%, in comparison to
the conventional and more empirical computational scheme
[33]. Hence, the use of Eq. (7) improves the accuracy of
intermolecular interaction models as well as reduces their
empiricism.
We have also found that Eq. (7) can be generalized to

RvdWðαnÞ ¼ Cnα
2=7ðnþ1Þ
n ; n ¼ 1; 2;…; ð13Þ

for the multipole polarizabilities [49]. With the coefficients
C2 ¼ 2.45 and C3 ¼ 2.27 as well as accurate values for α2

FIG. 3. Statistical analysis of the results obtained with
Eqs. (9)–(12) for the equilibrium distance of 15 vdW-bonded
heteronuclear dimers of noble gases (all possible pairs among He,
Ne, Ar, Kr, Xe, and Rn) which is performed by comparison to the
references values [31].
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and α3 from Ref. [23], Eq. (13) provides RvdW for He, Ne,
Ar, Kr, and Xe within 1% and 1.4%, respectively. This
indicates that higher-order attractive and repulsive forces
related to each term in the Coulomb potential expansion are
mutually balanced as well, which justifies the model we
used to derive the scaling law of Eq. (7) [50].
In summary, the present work provides a seamless and

universal definition of the vdW radius for all chemical
elements solely in terms of their dipole polarizabilities,
which is given by RvdWðαÞ ¼ 2.54α1=7. Motivated by the
definition of the vdW radius of Pauling [7] and Bondi [8],
this relation has been evaluated by using the quantum
Drude oscillator model for valence electronic response.
Notably, our finding implies a significant departure
from the commonly employed classical scaling law,
RvdW ∝ α1=3. In-depth analysis of the most comprehensive
empirical reference radii [15] confirms the revealed quan-
tum-mechanical relation. Our derivation of the vdW radius
dispenses with the need for its experimental determination.
Moreover, the obtained relation is also successfully
extended to vdW-bonded heteronuclear dimers and
higher-order atomic polarizabilities. The presented results
motivate future studies towards understanding the depend-
ence of local geometric descriptors of an embedded atom
on its chemical environment as well as unveiling a non-
trivial relationship between length and volume in quantum-
mechanical systems [51].
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