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Bell’s theorem has been proposed to certify, in a device-independent and robust way, blocks either
producing or measuring quantum states. In this Letter, we provide a method based on Bell’s theorem
to certify coherent operations for the storage, processing, and transfer of quantum information. This
completes the set of tools needed to certify all building blocks of a quantum computer. Our method
distinguishes itself by its robustness to experimental imperfections, and so could be used to certify that
today’s quantum devices are qualified for usage in future quantum computers.
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Experimental research on quantum computing is pro-
gressing at an unprecedented rate [1]. Five-qubit quantum
computations combining around a dozen of quantum
logical gates can nowadays be performed with a mean
gate fidelity of ∼98% using trapped ions [2] or super-
conducting circuits [3]. However, for implementing large-
scale quantum computation, it is crucial to proceed in a
scalable way and certify that each new component is
qualified for use in a quantum computer, independently
of the purpose for which that larger device is used.
Such a certification must be device independent, that

is, it cannot rely on a physical description of the actual
implementation. Indeed, an exhaustive model of the setup
is challenging, if not impossible, to establish. Relying on
any particular model therefore amounts to making assump-
tions about the functioning of blocks. But seemingly
harmless assumptions can have dramatic consequences
when they are not perfectly satisfied. An assumption on
the Hilbert space dimension, for example, can completely
corrupt the security guarantees of a network of small
quantum computers used to communicate securely [4,5].
Blocks certified in a device-dependent way thus cannot be
used safely for arbitrary purposes.
Bell’s theorem [6] has lead to device-independent

certification schemes for components either producing
quantum states or performing quantum measurements
[7–18]. But these are just some of the elementary blocks
needed to build a quantum computer (see Fig. 1). In
particular, a device-independent method that can be used
in present-day experiments for assessing the quality of
components in charge of the transfer, processing, and
storage of quantum information is still missing. Together
with existing techniques, such a method would, in princi-
ple, allow for the certification of all kinds of elementary
building blocks needed in a quantum computer.
Here, we show how to certify a trace preserving quantum

channel acting on one or several systems, that is, a general

transformation taking quantum states and returning other
quantum states. Our approach involves no description of
the internal functioning of either the tested channel or the
certification setup, but relies on the device-independent
characterization of two entangled states, the first one
serving as input to the channel, the second one being
the output state. Interestingly, we can use state certifications
that are robust to experimental imperfections to certify
channels robustly.
Our goal is in sharp contrast with a line of research

aiming to certify quantum computations [21–25]. Our work
addresses elementary blocks of a quantum computer and
certifies that they are qualified for use in future larger
quantum devices. It builds on the work of Magniez et al.
[26], but differs (i) in its formulation, (ii) methodology, and
(iii) robustness. In particular, (i) we show how to use the
device to be certified to perform the desired operation
between well-identified subspaces and subsystems with

FIG. 1. Possible architecture of a future universal quantum
computer (see also Refs. [19,20]). Elements in yellow are
classical, and thus well characterized. Blue elements already
admit device-independent certification schemes. Here, we dem-
onstrate how to certify the components in red. In practice, several
blocks may be merged into a single physical unit.
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predefined Hilbert space dimensions, (ii) our recipe does
not require two copies of the box to be certified and (iii) the
robustness of our results is compatible with current
technological capabilities. In opposition to Ref. [27], we
provide lower bounds on the quality of the blocks. Detailed
recipes are given to certify the unitarity of one-qubit
channels as well as two-qubit entangling operations.
These recipes could be used in present-day experiments
to certify transmission lines between processing and
storage areas, storage devices, converters between various
information carriers, and arbitrary two-qubit controlled-
unitary gates independently of the details and imperfections
of the actual implementation.
Device-independent certification of a quantum channel.—

We start by providing a definition of the device-independent
certification of quantum channels. For this, we consider a
scenario with two sides A and ℬ, each side containing
potentially several parties depending on the channel to be
certified. Each party performs measurements on one part of a
shared state ρ ∈ LðHA ⊗ HℬÞ and records the result of
each experimental run. In addition, the parties on side A
have the freedom to decide whether or not to apply the
channel to be certified E, an endomorphism on states inHA,
before performing the measurements [see Figs. 3(a) and
3(c)]. The sources preparing the initial state, the measure-
ment devices, and the channel are treated as black boxes
and the parties do not communicate with each other. The
partial state prepared by the source at side A is
denoted ρA ¼ Trℬρ.
We say that the channel E is certified device independ-

ently if the sole knowledge of the results given the
measurement choices implies the existence of local iso-
metries Φi∶HA ⊗ Hi → HA ⊗ Hext

i and Φo∶HA →
Ho ⊗ Hext

o , such that

ðΦo ∘ E ∘Φi ⊗ 1Þ½ρA ⊗ jϕþihϕþj�
¼ ðĒ ⊗ 1Þ½jϕþihϕþj� ⊗ ρði;oÞext ;

where Ē is the reference channel mapping states fromHilbert
spaceHi to the Hilbert spaceHo. Here, jϕþi is a maximally

entangled state in Hi ⊗ Hi, and ρði;oÞext is some irrelevant
residual state onHext

i ⊗ Hext
o . We emphasize that in device-

independent certification, assumptions are made neither on
the system’s state on which E operates, nor on the dimension
of the underlying Hilbert space. The local isometries Φi and
Φo identify subspaces and subsystems in which the channel
E acts exactly as the reference channel Ē.
When the above equality does not hold exactly we

quantify the relation between the channels E and Ē through
the following fidelity

F ðE; ĒÞ ¼ max
Λi;Λo

FððΛo ∘ E ∘Λi ⊗ 1Þ½ρA ⊗ jϕþihϕþj�; ρ̄Þ:

ð1Þ

Here, Fðρ; σÞ ¼ Trð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
σ1=2ρσ1=2

p
Þ is the Uhlmann fidelity. 1

acts on the second half of jϕþi. Λi½·� ¼ TrHext
i
ðΦi½·�Þ traces

out all degrees of freedom which are not in the preimage
of E while Λo½·� ¼ TrHext

o
ðΦo½·�Þ traces out all degrees

of freedom which are not in the image of Ē:ρ̄ ¼
ðĒ ⊗ 1Þ½jϕþihϕþj�. (See Fig. 2 and Supplemental
Material A.1 for details [28].)
This fidelity, which is optimized over all maps, can be

understood as an extension of the Choi fidelity to device-
independent scenarios. It guarantees that the channel E can
be used to play the role of Ē in any circumstance with
fidelity F. The maps achieving this fidelity describe the
recipe for how to do that. Furthermore, the fidelity F of
Eq. (1) can be used to bound the distance between the two
channels through the diamond norm, which informs us on
the highest probability to distinguish the two channels in a
single shot upon acting on arbitrary states [31]; see the
Supplemental Material A.3 [28].
In the case where the target channel Ē acts on several

parties, we distinguish these parties fAðkÞg on the side A.
The input and output Hilbert spaces then have a tensor

structure Hi=o ¼⊗n
k¼1 H

ðkÞ
i=o and the same is required from

the maps Λi and Λo, as spelled out in Supplemental
Material A.2 [28].
A practical device-independent bound on the channel

fidelity.—We show that a channel certificate can be obtained
by combining two certifications, one for the state serving as
input of the channel and one for the output state, that is,

Fi ¼ F(ðΛ̃A
i ⊗ ΛℬÞ½ρ�; jϕþihϕþj); ð2Þ

Fo¼F(ðΛA
o ⊗ΛℬÞ½ðE⊗1Þ½ρ��;ðĒ⊗1Þ½jϕþihϕþj�): ð3Þ

FIG. 2. Comparison between an unknown channel E and a
reference channel Ē operating on a Hilbert space Hi. Half a
maximally entangled state belonging to Hi ⊗ Hi is presented to
E by a local map Λi, which can also act on the initial quantum
state ρA. Degrees of freedom that are not transmitted to the
channel at this point are discarded. A local map Λo is then used at
the output of the channel E to remove extra systems and extract
the state of a subsystem to be compared with the Choi state ρ̄ ¼
ðĒ ⊗ 1Þ½jϕþihϕþj� of the reference channel. The channel fidelity
F ðE; ĒÞ is then obtained by maximizing the overlap between ρ̄
and the channel output over all possible input isometries and
output maps.
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Fi corresponds to the fidelity of the input state ρwith respect
to the maximally entangled state jϕþi. Fo is the fidelity of
the output state with respect to the image of jϕþi under the
reference channel. As before, the role of the maps Λ̃A

i , ΛA
o ,

and Λℬ is to identify subspaces where the system states and
the reference states can be compared, and the underlying
isometries are enforced to have a product structure with
respect to the partition of A into separate parties.
The triangle and processing inequalities for the fidelity

as well as properties of the isometries in Eqs. (2)–(3) allow
one to show that the device independent Choi fidelity given
in Eq. (1) can be bounded by

F ðE; ĒÞ ≥ cos ½arccosðFiÞ þ arccosðFoÞ�: ð4Þ

Importantly, the bound holds for channels acting on several
parties, in which case the states in Eqs. (2)–(3) are
multipartite and the maps Λ̃A

i and ΛA
o are products of local

maps for each party, see Supplemental Material B [28].
Formula (4) shows how two channels can be compared

even though they operate on Hilbert spaces with (possibly
unknown) different dimensions. This relation is made
possible by the fact that the map Λℬ is identical in both
equations Eqs. (2) and (3). One way to guarantee that the
map is the same is to obtain certificates for both states
with the same measurement boxes on side ℬ. If this is
fulfilled, a robust bound on the channel fidelity is obtained
as soon as the input and output states are certified robustly.
Interestingly, there are several known results and methods
for state certification that are robust to noise [11–16,18].
We show how Eq. (4) can be used for the robust

certification of (i) a one-qubit unitary and (ii) two-qubit
quantum logical gates.
Device-independent certification of a single-qubit unitary

channel.—Memories such as hard drives and RAM units,
transmission lines between different units of a computer, and
converters between different information carriers are ele-
ments mappings input to output qubits, either separated in
time or space or carried by different physical systems, which
are all ideally modeled by the identity channel. Applying the
formalism presented earlier to Ē ¼ 1 in dimension two,
involves ideally a maximally entangled two-qubit state as
input state [see Fig. 3(a)]. As the reference channel does not
alter the input, we assess the fidelities of both input and
output with the Clauser-Horne-Shimony-Holt (CHSH) test
[32]. The condition that Λℬ is identical in both situation is
then naturally satisfied. Given the CHSH values βi=o, it is
possible to bound the state fidelity as [14]

Fi=o ≥ FCHSH ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
1þ βi=o − β�

2
ffiffiffi
2

p
− β�

�s
; ð5Þ

where β� ¼ ½2ð8þ 7
ffiffiffi
2

p Þ=17� ≈ 2.11. Inserting these fidel-
ities into Eq. (4), yields a robust device-independent

certification of one-qubit unitaries depicted in Fig. 3(b).
Examples confirming the robustness can be found in
Supplemental Material C.
Note that testing the input state is not necessary for the

certification of a unitary channel. Indeed one can see the
channel itself as part of the local isometry. Hence, it is
always possible to define Λ̃A

i such that the fidelity of the
input state is at least as large as the output fidelity, i.e.,
Fi ≥ Fo. This relation together with Eq. (4) give a bound
on the channel fidelity F ≥ 2ðFoÞ2 − 1 in terms of the
output fidelity alone.
Device-independent certification of two-qubit entangling

channels.—Entangling gates are necessary for any non-
trivial manipulation and sufficient to enable universal
quantum computation [33]. We present a setup that allows
for the certification of an arbitrary two-qubit controlled-
unitary gate. Such a gate can be put in the form

CUφ ¼ j0ih0j ⊗ 1þ j1ih1j ⊗ e−iφY: ð6Þ

CUðπ=2Þ is equivalent to the controlled-NOT gate while CU0

is the two-qubit identity channel.
In order to bound the fidelity of an actual gate with the

bipartite CUφ gate, we need to split sideA into two parties
Að1Þ and Að2Þ. Similarly, we also split side ℬ into Bð1Þ and
Bð2Þ so that sharing a maximally entangled state of
dimension 4 between A and ℬ amounts to sharing two-
qubit maximally entangled states jϕþ

2 i between Að1Þ and
Bð1Þ and between Að2Þ and Bð2Þ; cf. Fig. 3(c). As we show
now, four-partite statistics obtained after parties Að1Þ and
Að2Þ jointly decide to use the device which supposedly
performs the CUφ gate on their systems or not can lead to
the certification of this gate.
The first step consists of deriving a new family of Bell

inequalities suitable for the certification of the input jϕþ
2 i⊗2

and output state ðCUφ ⊗ 1ℬÞjϕþ
2 i⊗2, that is, for an

arbitrary state of the form jξφi ¼ ðCUφ ⊗ 1ℬÞjϕþ
2 i⊗2.

We consider the case where each party has a measure-
ment box with two inputs and two outcomes. Let Bφ be a
family of Bell expressions, i.e., a weighted sum of
expectation values of measurement outcomes whose coef-
ficients depend on φ. Let BQ

φ be the operator obtained by
replacing the inputs in Bφ by quantum observables corre-
sponding to projections into directions such that the
unique maxρTrðBQ

φ ρÞ is obtained for ρ ¼ jξφihξφj. To

construct BQ
φ , we consider a set of Hermitian operators

having the state jξφi for unique maximal eigenstate.
These operators are obtained by applying a gate LU
equivalent to ðCUφ ⊗ 1ℬÞ on convex sums of stabilizers
of the state jϕþ

2 i⊗2. We find Bφ, i.e., the proper corre-
spondence between the measurement inputs and the Pauli
matrices, by requesting the maximum eigenvalue of the
operator to be a local maximum with respect to small
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perturbations of the measurement inputs, see Supplemental
Material D.4 [28].
The resulting Bell expressions Bφ have two inputs and

two outputs per party. This allows us to make use of
Jordan’s Lemma in order to quantify their self-testing
property, that is, we look for bounds on the fidelity
assuming that qubit measurements are performed locally.
If the extraction isometries only depend on local measure-
ment settings and the square of the obtained fidelity bounds
are convex functions of the mean value of the Bell operator,
they automatically hold independently of the dimension
[34]; see the Supplemental Material D.2 [28].
We find such bounds by using the isometries proposed in

Ref. [14], which are known to provide very robust results
for the singlet state. To do so we look for the state and
measurement settings that minimize the fidelity of the
extracted four qubit state with respect to jξφi (jϕþ

2 i⊗2)
while keeping a fixed expectation value γo (γi) of the Bell
operator Bφ (B0), cf. Supplemental Material D.3 [28]. The
resulting bound on the fidelity is given by

Fi=o ≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

2

�
1þ γi=o − γ�

1 − γ�

�s
; ð7Þ

where γ� is a constant that could, in principle, depend on
the gate to be tested. This constant is upper bounded by
0.85 for all φ, cf. Supplemental Material D.5 [28]. Note that
our approach to find Bell inequalities and deduce the
corresponding robust fidelity bounds is applicable to other
N-qubit states.
Given the bounds on the fidelity Fi of the initial state and

on the fidelity Fo of the output state, and checking that they
have been obtained with common measurements for parties
Bð1Þ and Bð2Þ, we get from Eq. (4) a bound on the fidelity
between the actual gate E and the reference gate Ē ¼ CUφ.
The result is shown in Fig. 3(d) as a function of the
observed Bell values. Examples illustrating the robustness
can be found in Supplemental Material C [28].
In analogy with the one-qubit identity certification,

it is possible to prove that the actual two-qubit gate acts

FIG. 3. Certification of the one-qubit identity channel [(a) and (b)] and two-qubit entangling operation [(c) and (d)]. (a) The
certification of the identity in dimension 2 uses a source (yellow box) producing ideally a maximally two-qubit entangled state.
The measurement devices (white boxes) A and B are used to perform two CHSH tests, with and without the tested device (black box).
The sole knowledge of two CHSH values βi and βo gives a bound on the fidelity F of the tested device with respect to the identity.
(b) Robustness of the qubit identity certification as a function of the two CHSH values (color is a guide for the eye). (c) The
certification of a two-qubit entangling operation uses a source (here represented with two yellow boxes) ideally producing two
maximally entangled two-qubit states. Four measurement devices are used to perform Bell tests with and without the gate to be
certified. The two Bell values βi1 and β

i
2 obtained to certify the two states produced by the source and the one obtained at the output of

the gate (black box) γo are used to bound the fidelity of any two-qubit controlled-unitary gates. (d) Robustness of the certification
of two-qubit controlled-unitary operations (color is a guide for the eye). The best robustness is obtained for a class of gates
including the controlled-NOT gate (CNOT). The gray lines show the worst case. The greenish area thus includes all two-qubit
controlled-unitary gates.
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as a global unitary on side A from Fo only using
F ≥ 2ðFoÞ2 − 1. This information alone is, however, not
sufficient to identify the gates CUφ up to local isometries
without additional assumptions, because the final state jξφi
could be directly prepared by the source and merely
transmitted by the device to be certified.
Discussions.—We have introduced a framework for the

device-independent certification of quantum channels. We
applied our methods to individual elements of quantum
computers, namely, single qubit identity channels and two
qubit controlled unitary operations. Our technique does not
certify the proper functioning of composite circuits but is
the first necessary verification step and the relevant one
given the status of on-going experiments. This is also
relevant in the long term as our technique could be used to
identify the elements causing the failure of a quantum
computation.
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