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The error in estimating the separation of a pair of incoherent sources from radiation emitted by them and
subsequently captured by an imager is fundamentally bounded below by the inverse of the corresponding
quantum Fisher information (QFI) matrix. We calculate the QFI for estimating the full three-dimensional
pair separation vector, extending previous work on pair separation in one and two dimensions. We also
show that the pair-separation QFI is, in fact, identical to source localization QFI, which underscores the
fundamental importance of photon-state localization in determining the ultimate estimation-theoretic
bound for both problems. We also propose general coherent-projection bases that can attain the QFI in two
special cases. We present simulations of an approximate experimental realization of such quantum limited
pair superresolution using the Zernike basis, confirming the achievability of the QFI bounds.
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Rayleigh’s pair-resolution criterion [1] is routinely super-
seded by modern imaging systems. An approach that
entirely circumvents it employs PSF fitting and localization
of single fluorescent molecules by selective excitation in
which two closeby molecules are rarely, if ever, excited
simultaneously [2–4] in each frame, thus allowing a frame-
by-frame construction of a composite, superresolved image
of a collection of densely packed molecules. Another, more
direct approach uses computational image processing
with a priori constraints under sufficiently high pixel
brightness [5–10].
The covariance matrix, Vθ½O; θ̌�, for the unbiased esti-

mator, θ̌, of a set of quantities, θ¼deffθpjp ¼ 1;…; Pg,
parametrizing the density operator, ρ̂θ, of a system is
bounded below by the inverse of the quantum Fisher
information (QFI) matrix [11–15], namely the quantum
Cramér-Rao bound (QCRB),

Vθ½O; θ̌� ≥ J−1θ ½O� ≥ H−1
θ ; ð1Þ

in which O ¼ fÔðxÞjx ∈ Xg defines a positive-operator
valued measure (POVM) of non-negative operators defined
on a data set X and that sum to the identity operator, Î.
The classical FI matrix, Jθ½O�, is defined [16,17] in
terms of the probability distribution (PD) of the POVM,
POðx; θÞ ¼ Tr½ρ̂θÔðxÞ�, as

Jθ½O� ¼ EOð∇θ lnPOðx; θÞ∇T
θ lnPOðx; θÞÞ; ð2Þ

inwhich∇θ lnP is a columnvector representing the gradient
taken relative to θ, the superscript T denotes matrix trans-
pose, and EO the statistical expectation of its argument over
the PD. The inverse of the classical FI is the classical
Cramér-Rao lower bound (CRB).

Tsang et al. [18] proved that pair separation can achieve
QCRB in one dimension with classical wave-front projec-
tions. This has been generalized to a thermal source pair of
the same average but otherwise indefinite strength [19], to a
source pair in an arbitrary quantum state [20], to homodyne
and heterodyne detection [21], and to two dimensions [22],
and experimentally verified by a number of groups [23–26].
For an imager with a one-dimensional Gaussian point-
spread function (PSF), it is the Hermite Gaussian (HG)
basis [18] that perfectly achieves QCRB, which turns out to
be independent of the pair separation. By contrast, the
conventional image-based approach entails a quadratic
dependence of FI on the separation. This critical difference
implies dramatically different inverse-square vs inverse-
quartic power-law scalings of the minimum photon number
needed to resolve the pair as a function of their separation
using these two approaches.
Here we treat the problem of estimating the full three-

dimensional (3D) separation vector for a pair of incoherent,
equally bright point sources, when the pair centroid is
known and an imager with a circular aperture is used
[27]. We first calculate the 3 × 3 QFI matrix with respect
to (w.r.t.) the three components of the pair separation vector,
and show it to be diagonal and independent of the latter. We
also show that QFI is in fact the same as that for localizing a
single point emitter in 3D [28]. We then discuss projective-
measurement protocols that can achieve QCRB in two
special cases of vanishing axial and lateral separations.
We finally present simulations of an experimental proposal
to achieve quantum-limited 3D pair separation.
A photon emitted by an incoherent pair of equally bright

point sources and passing through an imaging aperture is
described by the density operator,

ρ̂ ¼ 1

2
ðjKþihKþj þ jK−ihK−jÞ; ð3Þ
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in which jK�i are pure one-photon states passing through
the aperture, corresponding to individual emissions by the
two sources located at 3D positions, �ðr⊥; rzÞ, w.r.t. their
centroid. The corresponding normalized transverse and
axial semiseparations, l⊥, lz, are defined as

l⊥ ¼ r⊥=σ0; lz ¼ rz=ζ0; ð4Þ

where σ0 ¼ λzO=R and ζ0 ¼ λz2O=R
2 denote the character-

istic transverse and axial resolution scales [29] for an
aperture of radius R, optical wavelength λ, and distance zO
from the aperture of the pair centroid, the latter taken to be
at the on-axis, in-focus position w.r.t. the aperture.
The coordinate representations, hsjK�i, of these states

are the image-plane amplitude PSFs. Their momentum-
space representations are the wave functions in the exit
pupil of the imager [29],

hujK�i ¼ expð�iϕ0ÞPðuÞ exp½∓ ið2πl⊥ · uþ πlzu2Þ�;
ð5Þ

in which the linear and quadratic phases of each wave
function represent, respectively, its tilt and curvature due
to the off-axis, defocused location of the corresponding
source, and PðuÞ denotes a general aperture function. For a
clear aperture, PðuÞ is simply 1=

ffiffiffi
π

p
times its indicator

function, corresponding to the Airy PSF, while in its
Gaussian form, it yields the Gaussian PSF. More generally,
PðuÞ need only obey the normalization condition,

Z
d2ujPðuÞj2 ¼ 1; ð6Þ

which follows from requiring hK�jK�i ¼ 1.
The two nonzero eigenvalues, e�, and the associated

orthonormal eigenstates, je�i, of ρ̂ given by Eq. (3) are

e� ¼ ð1� ΔÞ=2; je�i ¼ ½2ð1� ΔÞ�−1=2ðjKþi � jK−iÞ;
ð7Þ

where Δ is the inner product, Δ ¼ hK−jKþi, which we
render real and positive by a proper choice of the phase
constant, ϕ0.
The QFI matrix has elements, ReHμν, where Re denotes

the real part and Hμν¼defTrðρ̂L̂μL̂νÞ can be expressed [30]
in the eigenbasis of ρ̂ as

Hμν ¼
X
i∈R

X
j

4ei
ðei þ ejÞ2

heij∂μρ̂jejihejj∂νρ̂jeii; ð8Þ

in which L̂μ is the symmetric logarithmic derivative (SLD)
of ρ̂ w.r.t. parameter lμ, for brevity we denote ∂ρ̂=∂lμ as
∂μρ̂, and R denotes the set of values of an index for the
eigenstates that span the range space of ρ̂.

By decomposing the j sum into a sum over the range
space of ρ̂ and another over its null space, j ∉ R for which
ej ¼ 0, we may evaluate the latter sum via the complete-
ness relation,

X
j∉R

jejihejj ¼ Î −
X
j∈R

jejihejj:

We may thus express Hμν in Eq. (8) as

Hμν ¼
X
i∈R

4

ei
heij∂μρ̂∂νρ̂jeii

þ
X
i∈R

X
j∈R

�
4ei

ðei þ ejÞ2
−

4

ei

�
heij∂μρ̂jejihejj∂νρ̂jeii:

ð9Þ

For the present problem for which R ¼ fþ;−g, we
may simplify the derivatives in Eq. (9) by means of the
eigenvector identity, ∂μ½ðρ̂ − eiÎÞjeii� ¼ 0, and thus
express Hμν as [30]

Hμν ¼
X
i¼�

1

ei
∂μei∂νei þ 4

X
i¼�

1

ei
ð∂μheijÞðρ̂ − eiÎÞ2∂νjeii

þ 4Δ2
X
i≠j

�
1

ei
− ei

�
heij∂μjejihejj∂νjeii; ð10Þ

in which we used the identities eþ þ e− ¼ 1 and
eþ − e− ¼ Δ. The first sum in Eq. (10) may be regarded
as the classical part of QFI, the real part of the second sum
the contribution of quantum fluctuations of the photon
state to QFI, and the real part of the final sum an additional
contribution from the pair cross-coherence, Δ ≠ 0.
By evaluating the various state derivatives in Eq. (10),

we may reduce it further [30] to the form,

Hμν ¼ 4½ð∂μhKþjÞ∂νjKþi þ hKþj∂μjKþihKþj∂νjKþi�:
ð11Þ

By using Eq. (5) for hujKþi, we may evaluate Eq. (11) in
terms of the gradient of the phase function,

Ψðu; lÞ ¼ 2πl⊥ · uþ πlzu2; ð12Þ

independently of ϕ0 as

Hμν ¼ 4½h∂μΨ∂νΨi − h∂μΨih∂νΨi�; ð13Þ

where angular brackets now denote averages over the
modulus squared aperture function, jPðuÞj2.
The form of QFI found in Eq. (13) underscores the

fundamental role of the correlations of the wave-front
gradient in the aperture in controlling the error of estima-
tion of the pair separation. For a clear circular aperture, to
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which we restrict attention in the rest of the Letter and for
which jPðuÞj2 is 1=π times its indicator function, simple
integrations yield the following averages:

huii ¼ 0; huiuji ¼
δij
4
;

hu2i ¼ 1

2
; hu4i ¼ 1

3
; i; j ¼ x; y; ð14Þ

and thus the following purely diagonal form of the per-
photon 3D QFI matrix:

Hðlx; ly; lzÞ ¼

0
B@

4π2 0 0

0 4π2 0

0 0 π2

3

1
CA: ð15Þ

The reality and diagonal character of Hμν provide neces-
sary and sufficient achievability conditions for the simul-
taneous estimation of the three separation coordinates in
the asymptotic limit, with collective measurements involv-
ing an arbitrarily large number of copies of the state [31].
For special cases, however, we will show presently that
QCRB can be realized without the need for collective
measurements.
We next show that QFI for localizing a single source, say

the one located at þðl⊥; lzÞ, is identical to that we have just
obtained for 3D pair separation. For this problem, only the
middle term in Eq. (10) contributes, since ρ̂ ¼ jKþihKþj
has a single fixed nonzero eigenvalue, eþ ¼ 1, with
eigenstate jeþi ¼ jKþi, and ðρ̂ − ÎÞ2 ¼ Î − jKþihKþj. In
view of these relations and normalization, hKþjKþi ¼ 1,
which requires that ð∂μhKþjÞjKþi ¼ −hKþj∂μjKþi, the
resulting QFI becomes identical to Eq. (11) for QFI for
source-pair separation. The equality of the QFI matrices
for source localization and pair separation shows that the
general problem is one of estimating the photon state,
independent of the nature of its emitter.
The 3D source-localization QFI has been calculated

directly from the definition of SLD of the density operator
for a pure state in Ref. [28], but unlike that problem
estimating the separation between incoherent sources
requires use of a mixed state and thus the more general
Eq. (9) for QFI. For two incoherent sources, Eq. (9)
simplifies to Eq. (10), from which one can go further
and consider QFI limited error bounds on joint localization
and separation of the two [32].
QCRB is achievable via orthonormal wave-front pro-

jections in two special cases. For sources in the
same transverse plane, for which lz ¼ 0, consider an
orthonormal basis, A ¼ fAmnðuÞjm; n ∈ Zg, of states in
the aperture plane obeying the condition, jhKþjAmnij ¼
jhK−jAmnij; ∀ m; n. Since hujKþi ¼ hujK−i�, this

condition is met by any real basis. The probability PðAÞ
mn,

which is equal to hAmnjρ̂jAmni, may then be written as

PðAÞ
mn ¼ jhKþjAmnij2, from which follow the FI matrix

elements,

Jμν½A� ¼
X
m;n

∂μP
ðAÞ
mn∂νP

ðAÞ
mn

PðAÞ
mn

¼ 4
X
m;n

∂μjhAmnjKþij∂νjhAmnjKþij: ð16Þ

If we assume further that the phases of hKþjAmni are
independent of l⊥, then Eq. (16) simplifies to

Jμν½A� ¼ 4
X
m;n

ð∂μhKþjÞjAmnihAmnj∂νjKþi

¼ 4ð∂μhKþjÞ∂νjKþi; ð17Þ
with the second equality following from the completeness
relation,

P
m;njAmnihAmnj ¼ Î. For μ, ν ¼ x, y, Jμν½A�

matches QFI in Eq. (11) since for the choice, ϕ0 ¼ 0, that
we make to render the phases of hKþjAmni independent of
l⊥, hKþj∂μjKþi vanishes identically for any inversion
symmetric aperture.
The orthonormal sine-cosine Fourier basis states in polar

coordinates, ðu;ϕÞ,

CCmnðuÞ¼
ffiffiffiffiffiffiffiffiffiffi
cmcn
π

r
cosð2πmu2Þcosnϕ; m;n¼ 0;1;…;

CSmnðuÞ¼
ffiffiffiffiffiffiffiffiffiffi
cmcn
π

r
cosð2πmu2Þsinnϕ; m¼ 0;1;…;

n¼ 1;2;…;

SCmnðuÞ¼
ffiffiffiffiffiffiffiffiffiffi
cmcn
π

r
sinð2πmu2Þcosnϕ; m¼ 1;2;…;

n¼ 0;1;…;

SSmnðuÞ¼
ffiffiffiffiffiffiffiffiffiffi
cmcn
π

r
sinð2πmu2Þsinnϕ; m;n¼ 1;2;…;

ð18Þ
with cn ¼ 2 − δn0, constitute one such basis that achieves
QFI for the case of pure transverse pair separation as
their overlap integrals with the photon wave front of each
source can be readily shown [30] to have phases that are
independent of that separation.
For the source pair being on the optical axis, i.e., l⊥ ¼ 0,

only the n ¼ 0 subset of the sine-cosine basis, as we need
no angular localization, achieves QCRB w.r.t. lz, as we
show next. The relevant probability amplitudes are

hAm0jKþi

¼ 1ffiffiffi
π

p
Z

1

0

duuexpð−iπlzu2ÞAm0ðuÞ;

¼ 1

2
ffiffiffi
π

p exp

�
−iπ

lz
2

�Z
1=2

−1=2
dvcosðπlzvÞAm0ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vþ 1=2

p
Þ;

ð19Þ

with A ¼ CC, SC. We used the variable transformation,
v ¼ u2 − 1=2, followed by a symmetrization of the
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resulting integrand to reach the second equality in Eq. (19) that involves a purely real integral. It thus follows that up to a
sign jhAm0jKþij ¼ expðiπlz=2ÞhAm0jKþi, which allows us, analogously to Eq. (16) with μ ¼ ν ¼ z, to express FI w.r.t. lz as

Jzz½A� ¼ 4
X
m

j∂zjhAm0jKþik2

¼ 4
X
m

½∂zðhKþjÞjAm0i − iðπ=2ÞhKþjAm0i� × ½hAm0j∂zjKþi þ iðπ=2ÞhAm0jKþi�

¼ 4½∂zðhKþjÞj∂zjKþi − iðπ=2ÞhKþj∂zjKþi þ iðπ=2Þð∂zjKþÞjKþi þ ðπ=2Þ2�
¼ 4½∂zðhKþjÞj∂zjKþi − π2=4�
¼ 4½∂zðhKþjÞj∂zjKþi þ hKþj∂zjKþi2�; ð20Þ

in which we used the completeness of the jAm0i states over
the aperture for ϕ-invariant wave functions like hujKþi,
which is characteristic of an axially separated source pair,
and relations, hKþj∂zjKþi ¼ ð∂zhKþjÞjKþi� ¼ −iπhu2i ¼
−iπ=2, to derive the various expressions. We see from
Eq. (11) that the fAm0jA ¼ CC; SC; m ¼ 0; 1;…g basis
achieves QFI w.r.t. lz for an axially separated source pair.
More generally, any real basis of orthonormal projections,
fjBmig, for which the equality, jhBmjKþij ¼ jhBmjK−ij,
certainly holds, will achieve QFI.
Projections that are well matched to the linear tilt and

quadratic defocus parts of the aperture phase function,
ΨðuÞ, given by Eq. (12), can achieve full 3D QFI in the
limit of small separations, l⊥, lz ≪ 1. One need merely use
a few such projections, as noted in Ref. [18], to attain
quantum-limited estimation variance in this limit. In the 3D
case, we consider aperture-plane wave-front projections
into low-order orthonormal Zernike basis functions [33],
fZn; n ¼ 1; 2;…; Ng, with N ∼ 4–7. Here we only discuss
projections into the first four Zernikes,

Z1 ¼
1ffiffiffi
π

p ; Z2 ¼
2ffiffiffi
π

p u cosϕ;

Z3 ¼
2ffiffiffi
π

p u sinϕ; Z4 ¼
ffiffiffi
3

π

r
ð2u2 − 1Þ: ð21Þ

The second and third of these correlate perfectly, respec-
tively, with the tilt phases corresponding to the x and y
components of the transverse separation vector, l⊥, and
may thus be regarded as matched filters [34] for the latter.
By contrast, the first and last are only partially matched
to the quadratic pupil phase corresponding to the axial
separation, lz, with their probabilities remaining finite when
lz → 0. The imperfect match of the latter with a single
projection mode causes striking differences, as we shall
see, in the estimation error bounds that are achievable in the
limit of vanishing separation.
We now prove these assertions by evaluating [30] the

mode-projection probabilities, Pn ¼ hZnjρ̂jZni, for l⊥,
lz ≪ 1,

Pn ¼

8>>>><
>>>>:

1 − π2ðl2⊥ þ l2z=12Þ þOðl4⊥; l4zÞ n ¼ 1

π2l2x½1þOðl2⊥; l2zÞ� n ¼ 2

π2l2y½1þOðl2⊥; l2zÞ� n ¼ 3

π2l2z=12þOðl4⊥; l2zl2⊥; l4zÞ n ¼ 4

: ð22Þ

Since ð∂xP2Þ2=P2 ¼ ð∂yP3Þ2=P3 ¼ 4π2½1þOðl2zÞ�, we
see that each reaches QFI in the limit lz → 0. By contrast,
the Z4 projection contributes to FI w.r.t. lz the term,
ð∂zP4Þ2=P4, which is of form ðπ2=3Þ(l2z=fl2z ½1þOðl2⊥Þ�þ
Oðl4⊥Þg) and vanishes in the limit lz → 0 if l⊥ ≠ 0. The
same form implies, however, that for l⊥ ≪ 1, FI as a
function of lz rises to a value comparable to the QFI, π2=3
over an interval of order l2⊥. All other contributions to the
various matrix elements of FI are negligibly small in the
limit of vanishing l, so the inverse of the diagonal elements
of FI determine the corresponding CRBs to the most
significant order in l.
One can perform wave-front projections by digital

holography [23]. Specifically, consider encoding the
sum,

P
N
n¼1 ZnðuÞ cosðqn · uÞ, as the distribution of the

amplitude transmittance of a plate, with negative values in
the sum realized by a π phase retardation. Let the imaging
wave front, which is an incoherent superposition of the
photon wave functions hujK�i and carries M photons,
be incident on such a plate that is placed in the aperture
(or a conjugate plane thereof), and then optically focused
on a sensor. The M photons will divide into N pairs of
oppositely located spots, with the nth pair of spots
corresponding to an obliquely propagating wave pair that
carries the Zn projection of the incident wave front along
the spherical-angle pair, ðθn;�ϕnÞ, with θn ¼ sin−1ðqn=kÞ
and ϕn ¼ tan−1ðqny=qnxÞ. The numbers of photons
detected at the central pixels of the spots taken pairwise
furnish estimates of the probabilities of the wave front
being in the corresponding modes. The remaining photons
that are not detected provide an estimate of the wave front
being in the remaining states of a complete basis of which
the subset, fZn; n ¼ 1;…; Ng, defines the observed states.
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The probability of detectingm1;…; mN photons in the N
projective channels is given by the multinomial (MN)
distribution [30],

Probðm̄; fmngjfPngÞ ¼ M!
P̄m̄

m̄!

YN
n¼1

ðPnÞmn

mn!
; ð23Þ

in which m̄ ¼ M −
P

N
n¼1mn and P̄ ¼ 1 −

P
N
n¼1 Pn are,

respectively, the number and probability of undetected
photons. Expressing the Pn in terms of the separation
coordinates, lx, ly, lz, we performed their maximum-
likelihood (ML) estimation by numerically minimizing
− ln Prob over those coordinates using Matlab’s fminunc
minimizer, which we started with an initial guess of
lx ¼ ly ¼ lz ¼ 1=4, for a number of separations, 20 000
frames of noisy data, each with M ¼ 106 photons and
generated using Matlab’s mnrnd code.
We plot in Fig. 1 the per-photon CRBs w.r.t. lx (top

panels) and ly (bottom panels) for two different values
of their axial separation, lz ¼ 0.025 (left panels) and
0.25 (right panels). For each plot, we considered two
different values, 0.025 and 0.25, of the other transverse
coordinate, shown via the two different curves in each
figure. Note that CRB w.r.t. each transverse-separation
coordinate increases with increasing value of the other
coordinate due to a cross-talk between the two trans-
verse coordinates. Changing the longitudinal separation,
however, has a less pronounced effect on those curves.
As the pair separation increases, using only the first four
Zernikes is insufficient to estimate l⊥, which accounts in

part for the rising CRB curves.The discrete points identified
by marker symbols are the results of the sample-based
variance (per photon) of the ML estimate of the separation
coordinates that we obtained in our numerical simulations.
Note that the results of simulation are consistently lower
than the corresponding CRB curves, which is most dis-
cernible in the left panels (lz ¼ 0.025). This is because the
ML estimates of the separation coordinates are biased,
particularly that for lz, and standard CRBs do not provide
the correct lower bounds without including bias-gradient
based modifications [16,17].
In Fig. 2 we plot the per-photon CRBs w.r.t. lz for four

different values of l⊥. We observe divergent behavior as lz
approaches zero, corresponding to the vanishing of Jzz½Z�
whenver l⊥ ≠ 0 that we noted earlier. This behavior is quite
in contrast with the rather muted dependence on lz which
we observed in Fig. 1 for the CRBs w.r.t. l⊥. The cross-talk
between the uncertainties in simultaneously estimating the
three pair-separation coordinates, which is inherently
present in the small set of Zernike projections, increases
the CRB for lz estimation as l⊥ increases. The simulated
values of the variance of the estimator of lz, indicated
by marker symbols, agree well with the theoretical CRB
values.
This Letter has treated the fundamental error in estimat-

ing the full 3D separation vector for a source pair by
calculating the corresponding QFI and proposing specific
projection bases for which QFI is attainable. Simulations
using the Zernike basis confirm our theoretical assertions.

The work was partially supported by the US Air Force
Office of Scientific Research under Grant No. FA9550-15-
1-0286. The authors are grateful to G. Adesso for pointing
out his group’s very recent work [35] on the simultaneous
estimation of the angular and axial separations as well as
the coordinates of the centroid of an incoherent source pair
located in a single meridional plane.
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FIG. 1. Plots of CRBs w.r.t. lx for ly ¼ 0.025 (lower curve)
and ly ¼ 0.25 (upper curve) and for lz ¼ 0.025 (left panels) and
lz ¼ 0.25 (right panels). The roles of lx and ly are interchanged in
the bottom panels. Estimation variances obtained from simulation
are shown by different marker symbols.

0 0.05 0.1 0.15 0.2 0.25
l
z

10-1

100

101

102

CRB
z
 (l =0.05)

QCRB
z

CRB
z
 (l =0.125)

CRB
z
 (l =0.25)

CRB
z
 (l =0.025)

FIG. 2. Plots of CRB w.r.t. lz, for four different values of l⊥,
namely 0.025, 0.05, 0.125, and 0.25. Simulated estimation
variances are shown by different marker symbols.

PHYSICAL REVIEW LETTERS 121, 180504 (2018)

180504-5



*Also at School of Physics and Astronomy, University of
Minnesota, Minneapolis, Minnesota 55455, USA.
sprasad@unm.edu

[1] L. Rayleigh, XXXI. Investigations in optics, with
special reference to the spectroscope, Philos. Mag. 8, 261
(1879).

[2] W. E. Moerner and L. Kador, Optical Detection and
Spectroscopy of Single Molecules in a Solid, Phys. Rev.
Lett. 62, 2535 (1989).

[3] S. W. Hell and J. Wichmann, Breaking the diffraction
resolution limit by stimulated emission: Stimulated-
emission-depletion fluorescence microscopy, Opt. Lett.
19, 780 (1994).

[4] E. Betzig, Proposed method for molecular optical imaging,
Opt. Lett. 20, 237 (1995).

[5] C. Rushforth and R. Harris, Restoration, resolution, and
noise, J. Opt. Soc. Am. 58, 539 (1968).

[6] M. Bertero and C. De Mol, Superresolution by data
inversion, Prog. Opt. 36, 129 (1996).

[7] L. Lucy, Statistical limits to superresolution, Astron.
Astrophys. 261, 706 (1992).

[8] M. Shahram and P. Milanfar, Imaging below the diffraction
limit: A statistical analysis, IEEE Trans. Image Process. 13,
677 (2004).

[9] S. Ram, E. Sally Ward, and R. Ober, Beyond Rayleigh’s
criterion: A resolution measure with application to single-
molecule microscopy, Proc. Natl. Acad. Sci. U.S.A. 103,
4457 (2006).

[10] S. Prasad, Asymptotics of Bayesian error probability and 2D
pair superresolution, Opt. Express 22, 16029 (2014).

[11] C. Helstrom, Quantum Detection and Estimation Theory
(Academic Press, New York, 1976), Vol. 123.

[12] S. L. Braunstein and C. M. Caves, Statistical Distance and
the Geometry of Quantum States, Phys. Rev. Lett. 72, 3439
(1994).

[13] M. Paris, Quantum estimation for quantum technology,
Int. J. Quantum. Inform. 07, 125 (2009).

[14] M. Szczykulska, T. Baumgraz, and A. Dutta, Multi-
parameter quantum metrology, Adv. Phys. X 1, 621 (2016).

[15] D. Safranek, Simple expression for the quantum Fisher
information matrix, Phys. Rev. A 97, 042322 (2018).

[16] H. Van Trees, Detection, Estimation, and Modulation
Theory, Part I (Wiley, New York, 1968).

[17] S. Kay, Fundamentals of Statistical Signal Processing:
I. Estimation Theory (Prentice Hall, New Jersey, 1993).

[18] M. Tsang, R. Nair, and X.-M. Lu, Quantum Theory of
Superresolution for Two Incoherent Optical Point Sources,
Phys. Rev. X 6, 031033 (2016).

[19] R. Nair and M. Tsang, Far-Field Superresolution of Thermal
Electromagnetic Sources at the Quantum Limit, Phys. Rev.
Lett. 117, 190801 (2016).

[20] C. Lupo and S. Pirandola, Ultimate Precision Bound of
Quantum and Sub-Wavelength Imaging, Phys. Rev. Lett.
117, 190802 (2016).

[21] F. Yang, R. Nair, M. Tsang, C. Simon, and A. I. Lvovsky,
Fisher information for far-field linear optical superresolu-
tion via homodyne or heterodyne detection in a higher-
order local oscillator mode, Phys. Rev. A 96, 063829
(2017).

[22] S. Z. Ang, R. Nair, and M. Tsang, Quantum limit for
two-dimensional resolution of two incoherent optical point
sources, Phys. Rev. A 95, 063847 (2017).

[23] M. Paúr, B. Stoklasa, Z. Hradil, L. Sanchez-Soto, and J.
Rehacek, Achieving the ultimate optical resolution, Optica
3, 1144 (2016).

[24] Z. S. Tang, K. Durak, and A. Ling, Fault-tolerant and finite-
error localization for point emitters within the diffraction
limit, Opt. Express 24, 22004 (2016).

[25] F. Yang, A. Taschilina, E. S. Moiseev, C. Simon, and A. I.
Lvovsky, Far-field linear optical superresolution via hetero-
dyne detection in a higher-order local oscillator mode,
Optica 3, 1148 (2016).

[26] W. K. Tham, H. Ferretti, and A. M. Steinberg, Beating
Rayleigh’s Curse by Imaging Using Phase Information,
Phys. Rev. Lett. 118, 070801 (2017).

[27] Preliminary results appeared in S. Prasad and Z. Yu,
Quantum theory of three-dimensional superresolution
using rotating-PSF imagery, in Proceedings of Advanced
Maui Optical and Space Surveillance (AMOS) Technologies
Conference (Maui Economic Development Board, 2017),
https://amostech.com/TechnicalPapers/2017/Adaptive-
Optics_Imaging/Prasad.pdf.

[28] M. P. Backlund, Y. Shechtman, and R. L. Walsworth,
Fundamental Precision Bounds for Three-Dimensional
Optical Localization Microscopy with Poisson Statistics,
Phys. Rev. Lett. 121, 023904 (2018).

[29] J. Goodman, Introduction to Fourier Optics, 4th ed.
(Freeman, New York, 2017).

[30] See Supplemental Material at http://link.aps.org/
supplemental/10.1103/PhysRevLett.121.180504 for a deri-
vation of certain QFI expressions, useful properties of the
sine, cosine, and Zernike projections, and a derivation of the
likelihood function for the photon counts observed in
different projection channels.

[31] S. Ragy, M. Jarzyna, and R. Demkowicz-Dobrzański,
Compatibility in multiparameter quantum metrology, Phys.
Rev. A 94, 052108 (2016).

[32] S. Prasad and Z. Yu, Quantum limited super-localization and
super-resolution of a source pair in three dimensions,
arXiv:1807.09853 [Phys. Rev. A (to be published)].

[33] R. Noll, Zernike polynomials and atmospheric turbulence,
J. Opt. Soc. Am. 66, 207 (1976).

[34] G. Turin, An introduction to matched filters, IRE Trans. Inf.
Theory 6, 311 (1960).

[35] C. Napoli, T. Tufarelli, S. Piano, R. Leach, and G. Adesso,
Towards Superresolution Surface Metrology: Quantum
Estimation of Angular and Axial Separations, arXiv:
1805.04116 [Phys. Rev. Lett. (to be published)].

PHYSICAL REVIEW LETTERS 121, 180504 (2018)

180504-6

https://doi.org/10.1080/14786447908639684
https://doi.org/10.1080/14786447908639684
https://doi.org/10.1103/PhysRevLett.62.2535
https://doi.org/10.1103/PhysRevLett.62.2535
https://doi.org/10.1364/OL.19.000780
https://doi.org/10.1364/OL.19.000780
https://doi.org/10.1364/OL.20.000237
https://doi.org/10.1364/JOSA.58.000539
https://doi.org/10.1016/S0079-6638(08)70314-7
https://doi.org/10.1109/TIP.2004.826096
https://doi.org/10.1109/TIP.2004.826096
https://doi.org/10.1073/pnas.0508047103
https://doi.org/10.1073/pnas.0508047103
https://doi.org/10.1364/OE.22.016029
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1103/PhysRevLett.72.3439
https://doi.org/10.1142/S0219749909004839
https://doi.org/10.1080/23746149.2016.1230476
https://doi.org/10.1103/PhysRevA.97.042322
https://doi.org/10.1103/PhysRevX.6.031033
https://doi.org/10.1103/PhysRevLett.117.190801
https://doi.org/10.1103/PhysRevLett.117.190801
https://doi.org/10.1103/PhysRevLett.117.190802
https://doi.org/10.1103/PhysRevLett.117.190802
https://doi.org/10.1103/PhysRevA.96.063829
https://doi.org/10.1103/PhysRevA.96.063829
https://doi.org/10.1103/PhysRevA.95.063847
https://doi.org/10.1364/OPTICA.3.001144
https://doi.org/10.1364/OPTICA.3.001144
https://doi.org/10.1364/OE.24.022004
https://doi.org/10.1364/OPTICA.3.001148
https://doi.org/10.1103/PhysRevLett.118.070801
https://amostech.com/TechnicalPapers/2017/Adaptive-Optics_Imaging/Prasad.pdf
https://amostech.com/TechnicalPapers/2017/Adaptive-Optics_Imaging/Prasad.pdf
https://amostech.com/TechnicalPapers/2017/Adaptive-Optics_Imaging/Prasad.pdf
https://amostech.com/TechnicalPapers/2017/Adaptive-Optics_Imaging/Prasad.pdf
https://doi.org/10.1103/PhysRevLett.121.023904
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.180504
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.180504
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.180504
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.180504
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.180504
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.180504
http://link.aps.org/supplemental/10.1103/PhysRevLett.121.180504
https://doi.org/10.1103/PhysRevA.94.052108
https://doi.org/10.1103/PhysRevA.94.052108
http://arXiv.org/abs/1807.09853
https://doi.org/10.1364/JOSA.66.000207
https://doi.org/10.1109/TIT.1960.1057571
https://doi.org/10.1109/TIT.1960.1057571
http://arXiv.org/abs/1805.04116
http://arXiv.org/abs/1805.04116

