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We present a method to certify the entanglement of all entangled quantum states in a device-independent
way. This is achieved by placing the state in a quantum network and constructing a correlation inequality
based on an entanglement witness for the state. Our method is device independent, in the sense that
entanglement can be certified from the observed statistics alone, under minimal assumptions on the
underlying physics. Conceptually, our results borrow ideas from the field of self-testing to bring the
recently introduced measurement-device-independent entanglement witnesses into the fully device-
independent regime.
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Introduction.—The certification of entanglement is a
vital task in quantum information processing for which
much effort has been put into developing optimal methods
[1]. Typically, one uses an approach based on entanglement
witnesses [2]; since every entangled state violates a suitably
chosen entanglement witness, one can in principle certify
the entanglement of any entangled state. This approach,
however, requires the precise knowledge of the measure-
ments performed during the certification. At best, this
means that much effort has to be put into the characteri-
zation of the experimental setup and sources of error must
be known and accounted for. At worst, if the system under
investigation is highly complex or poorly understood, the
method may not be applicable or a false positive certifi-
cation may result [3].
A solution to this problem recently came from the field

of device-independent (DI) quantum information [4–7].
Here, the aim is to certify physical properties of quantum
systems without requiring precise knowledge of the under-
lying physics, that is, by treating all devices as black boxes
processing classical information. In the case of entangle-
ment certification, one requires that the state under inves-
tigation violates a Bell inequality [4,8], a linear function of
the observed experimental probabilities that is bounded for
all separable states. Since the Bell inequality is a function of
the observed probabilities only, and independent of the
specific physical realization, entanglement can be certified
without any assumptions on the performed measurements,
making this approach practically attractive.
The advantages of this approach, however, come at

a price: not all entangled states are capable of violating
a Bell inequality [9–17]. For example, the two-qubit
isotropic state,

ϱðpÞ ¼ pjΦþihΦþj þ ð1 − pÞ 1
4
; ð1Þ

where jΦþi¼ðj00iþj11iÞ= ffiffiffi
2

p
, is entangled for p ≥ 1=3;

however Bell inequality violation with projective measure-
ments is impossible if p≲ 0.68 [18] (p≲ 0.45 in the
case of general measurements [18,19]). For a large class
of states, a device-independent entanglement detection
method based on the violation of a standard Bell inequality
therefore cannot be used.
This naturally leads to the question of whether the

entanglement of all entangled states can be certified device
independent using an alternative approach. In this Letter,
we show the answer to be “yes” by considering networks
of quantum states. Network scenarios have already been
shown to be useful for DI entanglement certification,
through the phenomenon of activation of Bell nonlocality
[20–22]. In the present Letter, we propose a method of
entanglement certification where the state under investiga-
tion is placed in a network featuring additional bipartite
auxiliary states. The certification of entanglement is achieved
via the violation of a correlation inequality based on an
entanglementwitness for the state and borrows ideas from the
fields of self-testing, semiquantum games andmeasurement-
device-independent (MDI) entanglement witnesses [23–26].
Moreover, our construction is fully DI, requiring knowledge
of the observed statistics only.
Previous work.—In the standard scenario for DI entan-

glement certification, two parties, Alice and Bob, share a
bipartite quantum state ϱAB and wish to ensure that it is
entangled. As mentioned, one way to achieve this is via a
Bell test, in which each party treats his or her subsystem
as a black box on which he or she performs a number of
possible measurements labeled by the classical variables,
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x for Alice and y for Bob, obtaining outcomes a and b,
respectively [see Fig. 1(a)]. At the end of the experiment,
they estimate the joint probabilities pða; bjx; yÞ of
obtaining outcomes a and b for measurements x and y.
A DI certification of entanglement is a proof of the
entanglement of ϱAB, which follows from the probabilities
pða; bjx; yÞ alone, i.e., without requiring assumptions
about the specific physical system under investigation or
the form of the measurement operators. This is equivalent
to proving that the probabilities pða; bjx; yÞ cannot be
produced by any separable state, and can be achieved via
Bell inequality violation, since separable states always
produce local statistics, Bell inequality violation certifies
the entanglement of the state ϱAB.
As noted, there exist entangled states which do not

violate any Bell inequality [9–17]. Hence, the entanglement
of many states cannot be certified in this scenario. One
partial solution to this problem came in the form of MDI
entanglement witnesses (MDIEWs) [24,26]. Here, the Bell
test scenario is modified so that the measurement inputs
are given by quantum states ψx and ϕy, as opposed to the
classical labels x and y [see Fig. 1(b)]. In the general
construction, the set of quantum inputs for each party
should be informationally complete on the local Hilbert

spaces of the state under investigation. With this, a Bell-like
correlation inequality can be constructed from every
entanglement witness and the entanglement of all entangled
states can be certified.
However, this approach is not DI since it assumes the

knowledge of the input states. In what follows, we show
how one can remove this assumption and achieve a fully DI
certification for all entangled states. Here we concentrate on
the case of two-qubit systems for the sake of simplicity.
Generalizations to higher dimensions and multipartite
states will be discussed in a later section and more in
detail in a longer, technical version of this Letter [27]. For
two-qubit states, a convenient choice of a tomographically
complete set of states to use in an MDIEW protocol are the
eigenstates of the Pauli matrices, i.e.,

fψxg ¼ fϕyg ¼ fj0i; j1i; jþi; j−i; jRi; jLig; ð2Þ

being j þ =−i ¼ ð1= ffiffiffi
2

p Þðj0i � j1iÞ and jR=Li ¼
ð1= ffiffiffi

2
p Þðj0i � ij1iÞ. Our starting point is to see that the

inputting of the states ψx and ϕy is mathematically
equivalent to the following [see Fig. 1(c)]. Prepare two
ancilla states both in the state jΦþi and give one qubit of
each to Alice and to Bob. On the remaining two qubits,
perform one of the three Pauli measurements, specified by
z ¼ 1, 2, 3 and w ¼ 1, 2, 3. Conditioned on the choice of
Pauli measurements and the corresponding outcomes,
Alice and Bob’s qubits are projected in one of the states
in Eq. (2). This replacement is not DI, as it still assumes the
form of the maximally entangled states and measurements
on them. However, it is possible to use self-testing
techniques to achieve a DI certification of these states
and measurements [28,29]. The main idea of our protocol is
to incorporate these self-testing techniques into the MDI
protocol for entanglement detection and promote it into a
fully DI protocol that detects any entangled state.
DI entanglement certification in networks.—We are now

ready to define our scenario. We extend the standard Bell
scenario to involve two more parties, Charlie and Daisy
[see Fig. 1(d)]. As before, the aim is to certify the
entanglement of the state ϱAB shared between Alice
and Bob; however we now introduce two auxiliary
states, ϱCA0 , shared between Charlie and Alice and ϱB0D

shared between Bob and Daisy. Denoting the set of
linear operators on Hilbert space H by BðHÞ, we
have ϱAB ∈ BðHA ⊗ HBÞ, ϱCA0 ∈ BðHC ⊗ HA0

Þ, and
ϱB0D ∈ BðHB0

⊗ HDÞ. We work in a DI scenario in the
sense that we assume (i) the validity of quantum theory,
but not the precise form of the states and measurements,
and (ii) that the network of Fig. 1(d) correctly describes
the experimental setup. Note that since we are only
interested in certifying the entanglement of ϱAB, no
restrictions are placed on the states ϱCA0 and ϱB0D, in
particular they may (and indeed will) be entangled.
We now move to the central result of our work.

(a)

(c)

(d)

(b)

FIG. 1. Scenarios for entanglement certification. Red denotes
trusted states/devices. (a) Standard Bell scenario for device-
independent entanglement certification. The estimated probabil-
ities pðabjxyÞ are tested for the violation of a Bell inequality in
order to certify the entanglement of the state ϱAB. (b) Scenario for
MDI entanglement certification. Here, the inputs are given by
trusted quantum states ψx and ϕy. (c) Equivalent MDI scenario in
which the inputting of the states ψx and ϕy in scenario (b) is
replaced by giving Alice and Bob each one half of a maximally
entangled state and performing local measurements on them.
(d) Our proposal for DI entanglement certification. The entangled
state ϱAB to be detected is placed in a network containing
additional auxiliary entangled states. Using self-testing tech-
niques, these entangled states are certified to be maximally
entangled and perform the expected measurements as required
in (c).
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Main result

The entanglement of any entangled state ϱAB can be certified in
the scenario of Fig. 1(d) as follows:

(i) The parties perform local measurements on their subsystems to
obtain the statistics pðc; a; b; djz; x; y; wÞ.

(ii) The following is then verified:

Self-testing–The marginal distributions pðc; ajz; xÞ and
pðb; djy; wÞ maximally violate a Bell inequality that certifies
that the auxiliary states each contain a maximally entangled
state and that Charlie and Daisy each perform Pauli
measurements on their subsystems.

Entanglement certification–The correlations violate an additional
inequality I ½pðc; a; b; djz; x; y; wÞ� ≥ 0 that certifies ϱAB is
entangled.

Let us first discuss step (i), considering two-qubit systems.
Charlie and Daisy have a choice of three measurements z,
w ¼ 1, 2, 3 with outcomes c, d ¼ �1. Alice and Bob have
a choice of seven measurements x, y ¼ 1, 2, 3, 4, 5, 6, ⋆
with outcomes a, b ¼ �1. The auxiliary states are chosen
to be ϱCA0 ¼ ϱB0D ¼ jΦþihΦþj. Charlie’s measurements
are given by the three Pauli observables σz, σx, σy, for
z ¼ 1, 2, 3. Alice’s measurements for the inputs x ¼
1;…; 6 are given by the rotated Pauli observables
ðσz � σxÞ=

ffiffiffi
2

p
, ðσz � σyÞ=

ffiffiffi
2

p
, ðσx � σyÞ=

ffiffiffi
2

p
acting on

the HA0
space. For the input x ¼ ⋆, Alice’s measurement

is given by fjΦþihjΦþj; 1 − jΦþihΦþjg acting on the joint
space HA0

⊗ HA. Measurements for Bob and Daisy are
chosen analogously.
The Bell inequality we use for our self-testing in step (ii)

of the protocol is as follows (here we focus on Charlie and
Alice). Denote the expectation value of the measurements x
and y by Ex;y. Consider the Bell inequality

J ¼ E1;1 þ E1;2 þ E2;1 − E2;2

þ E1;3 þ E1;4 − E3;3 þ E3;4

þ E2;5 þ E2;6 − E3;5 þ E3;6 ≤ 6: ð3Þ
This bound follows from the fact that each line of the above
is a CHSH Bell inequality [30]: each is upper bounded by
2. Using the state ϱCA0 and measurements described above,
one achieves a maximal violation of each CHSH inequality
and so J ¼ 6

ffiffiffi
2

p
. Note that each of Charlie’s measure-

ments appears in exactly two of the lines. Since the
maximum violation of a single CHSH inequality requires
two anticommuting measurements [31–33], one would
expect that the maximum violation of Eq. (3) requires
three anticommuting measurements for Charlie. This is
indeed the case, as described in the following lemma (see
[34] for related results).
Lemma 1. Let Charlie and Alice share the state jψi ∈

HC ⊗ HA0
and denote by ZC, XC, YC three �1 outcome

observables for Charlie. If one observes a Bell inequality
violation of J ¼ 6

ffiffiffi
2

p
, then there exist local auxiliary states

j00i ∈ ½HC00 ⊗ HC0 � ⊗ ½HA0
00 ⊗ HA0

0 � and a local unitary
U ¼ UC ⊗ UA such that

U½jψi ⊗ j00i� ¼ jξi ⊗ jΦþiC0A0
; ð4Þ

U½XCjψi ⊗ j00i� ¼ jξi ⊗ σC
0

x jΦþiC0A0
; ð5Þ

U½ZCjψi ⊗ j00i� ¼ jξi ⊗ σC
0

z jΦþiC0A0
; ð6Þ

U½YCjψi ⊗ j00i� ¼ σC
00

z jξi ⊗ σC
0

y jΦþiC0A0
; ð7Þ

where jξi takes the form

jξi ¼ jξ0iCA ⊗ j00iC00A00 þ jξ1iCA ⊗ j11iC00A00
: ð8Þ

Here we use superscript to denote the Hilbert space on
which an operator acts nontrivially. For example
XCjψi≡ ðXC ⊗ 1A0Þjψi. The above lemma can be under-
stood as follows. The observation J ¼ 6

ffiffiffi
2

p
implies that

the state jψimust contain a two-qubit maximally entangled
subspace and that two of Charlie’s measurements must be
given by the observables σx and σz in this space [Eq. (4) to
(6)]. From Eq. (7), the third measurement of Charlie is
equivalent to first measuring the observable σz on the state
jξi, and then measuring either σy or −σy on his half of the
maximally entangled state depending on this first outcome.
We can therefore understand the above as Charlie meas-
uring either fσx; σy; σzg or fσx;−σy; σzg on the maximally
entangled state, with some unknown probability that
depends on the precise (unknown) form of jξi. This reflects
the fact that the only two nonunitarily equivalent sets of
mutually anticommuting measurements on a qubit are
given by fσx;�σy; σzg, which are related via transposition
(or equivalently complex conjugation) in the computational
basis. A full proof of Lemma 1 can be found in Ref. [27].
Strictly speaking we have not self-tested the three Pauli

measurements on the maximally entangled state due to the
additional σz measurement in Eq. (7). However, this does
not prevent us from using the MDIEW technique. The
intuitive reason for this is as follows. Since the measure-
ments fσx; σy; σzg and fσx;−σy; σzg are related via trans-
position, the states that Alice receives for the input to the
MDIEW protocol [see Eq. (2)] are essentially either ψx or
ψT
x with some unknown probability. Using transposed

quantum inputs ψT
x for Alice in a MDIEW protocol with

a product state ϱAB ¼ σA ⊗ σB is mathematically equiv-
alent to using the standard inputs ψx on the state σTA ⊗ σB.
However, since this state remains a separable, this cannot
lead to false positive entanglement detection.
We nowmove to entanglement certification part of step (ii)

of the protocol. Fix an entangled two-qubit quantum state
ϱ̃AB for which to perform the entanglement certification.
The correlation inequalities we consider are constructed
from an entanglement witness for the state ϱ̃AB and are

PHYSICAL REVIEW LETTERS 121, 180503 (2018)

180503-3



inspired from those found in [23,24,26]. For every entangled
ϱ̃AB there exists a Hermitian linear operator W, called an
entanglement witness, such that trðWϱABÞ ≥ 0 for every
separable state ϱAB and trðWϱ̃ABÞ < 0. Consider the pro-
jectors πcjj ¼ 1

2
½1þ cσj� with c ¼ �1 and j ¼ 1, 2, 3, that

is, projectors onto the plus and minus eigenspaces of the
Pauli observables. Since these form a basis of the set of
Hermitian matrices, any entanglement witness for a two-
qubit state may be decomposed as

W ¼
X

cdzw

ωzw
cdπcjz ⊗ πdjw: ð9Þ

The inequality we consider is then

I ¼
X

cdzw

ωzw
cdpðc;þ;þ; djz; x ¼ ⋆; y ¼ ⋆; wÞ ≥ 0; ð10Þ

which is satisfied if ϱAB is a separable state; however it can be
violated using ϱ̃AB. To see this, write the probabilities arising
from the network of Fig. 1(c) as

pðc;þ;þ; djz; x ¼ ⋆; y ¼ ⋆; wÞ
¼ tr½MC

cjz ⊗ MA0A
þj⋆ ⊗ MBB0

þj⋆ ⊗ MD
djwϱ

CA0 ⊗ ϱAB ⊗ ϱB0D�;
ð11Þ

where the Mijj are the local measurement operators. Since
there are no restrictions on the auxiliary states or measure-
ments, we may assume that these states are pure and the
measurements MC

cju and MD
djw projective without a loss of

generality. We may therefore write

pðc;þ;þ;djz;x¼⋆;y¼⋆;wÞ
¼ tr½1⊗MA0A

þj⋆ ⊗MBB0

þj⋆ ⊗1jψihψ jCA0

cjz ⊗ϱAB⊗ jψihψ jB0D
djw �;
ð12Þ

where jψicjz ¼ MC
cjzjψiCA0 and jψidjw ¼ MD

djwjψiB0D. From

step (ii), we may use Lemma 1 to replace the auxiliary states
and measurements in the above, e.g., jψicjz ¼ U†½jξi ⊗
πC

0
cjzjΦþi� for z ¼ 1, 2. After some work (see Supplemental

Material F of Ref. [27] for details) one obtains

I ¼ tr½WΛðϱABÞ�; ð13Þ

where Λð·Þ can be shown to be a local positive map on all
separable states. One thus has thatΛðϱABÞ is separable if ϱAB
is separable, and so I ≥ 0 for all separable ϱAB. The proof of
this follows the same structure as the MDIEW technique;
however one must take a bit more care due to the additional
complications implied by Lemma 1.

It remains to show that one can violate I using the
state ϱ̃AB. First generate auxiliary states ϱCA0 ¼ ϱB0D ¼
jΦþihΦþj and perform the measurements detailed in step
(i) so that the self-testing conditions of step (ii) are satisfied.
One then has

pðc;þ;þ; djz; x ¼ ⋆; y ¼ ⋆; wÞ ¼ ð14Þ

tr½πcjz ⊗ jΦþihΦþj ⊗ jΦþihΦþj ⊗ πdjwjΦþi
× hΦþj ⊗ ϱ̃AB ⊗ jΦþihΦþj�

¼ 1

4
tr½jΦþihΦþj ⊗ jΦþihΦþjπTcjz ⊗ ϱ̃AB ⊗ πTdjw� ð15Þ

¼ 1

16
tr½πcjz ⊗ πdjwϱ̃AB�; ð16Þ

where we have used trA½jΦþihΦþjπAijj ⊗ 1� ¼ 1
2
πTijj in the

second and third line. One thus has

I ¼ 1

16

X

czdw

ωzw
cd tr½πcjz ⊗ πdjwϱ̃AB� ð17Þ

I ¼ 1

16
tr½Wϱ̃AB� < 0; ð18Þ

hence certifying the entanglement of ϱ̃AB.
High dimension and multipartite states.—Our method

can be used to certify the entanglement of bipartite states
of any dimension. Every bipartite entangled state of
dimension d × d violates an entanglement witness of the
form

W ¼
X

ij

ωijπi ⊗ πj; ð19Þ

where the set fπig consists of (at least) d2 linearly indepen-
dent quantum states. As in the qubit case, states fπig can be
prepared in a device independent manner by distant parties
Charlie and Daisy, which now share with Alice and Bob,
respectively, a tensor product ofNmaximally entangled pairs
of qubits, whereN ¼ ⌈ logd⌉. Specifically, by performing a
parallel self-test of Lemma 1, one can certify tensor products
of the Pauli measurements for Charlie and Daisy, which
provide an informationally complete set of states fπig for
Alice and Bob (see Ref. [27]).
The same idea can also be utilized to certify the presence

of entanglement in multipartite states of any dimension.
Each party would share a suitablemaximally entangled state
with an auxiliary party, which is used to self-test the
preparation of an informationally complete set of states.
We stress however that this approach is not suitable to detect
genuine multipartite entanglement. This is because the set
of k-separable states is not closed under partial transposition
on individual parties, so the imprecision in the sign of the
self-tested �σy measurement may lead to false positive
results.
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Noise robustness.—It is important to ask whether our
protocol can be made robust to noise. Suppose that the
violations of the Bell inequality [Eq. (3)] in step (ii) of the
protocol differ from the maximum value. Since self-testing
protocols are robust, the observed violation guarantees that
the states and measurements must be close, though not
exactly equal to the desired ones. In particular, suppose
Eqs. (5)–(7) hold up to a small value θ in the l2 norm, i.e.,

kU½XCjψi ⊗ j00i� − jξi ⊗ σC
0

x jΦþiC0A0k ≤ θ; ð20Þ

and similarly for Eqs. (6) and (7). In Ref. [27] we show that
entanglement can still be certified if one changes the bound
of Eq. (10) to read I ≥ −OðθÞ. As a result, for nonmaximal
violations, a fraction of entangled states close to the
separable states is no longer detected.
Discussion.—A number of improvements to the self-

testing part of our protocol would strengthen our results.
For example, it may be possible to lower the requirement
on the number of inputs or outputs by self-testing more
efficient sets of informationally complete measurements in
a high dimension (e.g., by using mutually unbiased
bases or symmetric positive operator valued measures).
Additionally, the overall noise robustness of the entangle-
ment certification would benefit from improvements to the
robustness of self-testing statements, which at the moment
are typically weak. In principle, our technique can also be
applied to convex sets of bipartite quantum states other than
the separable set, provided that the set is closed under local
unitaries and local transpositions. Furthermore, one may be
able to apply our general method to other DI tasks such as
quantum key distribution and randomness certification
where MDI protocols already exist [37,38].
To conclude, our work opens new perspectives for

entanglement certification by connecting different concepts
such as self-testing andMDIprotocols in a quantumnetwork.
For weakly entangled states where optimal Bell inequalities
are not known, our method provides a general construction
that is easily applicable to all states. Furthermore, it allows for
DI entanglement certification of entangled states admitting a
so-called local hidden variable model for which the standard
approach fails. We hope that the present results motivate
further studies on DI protocols that could be boosted by the
use of quantum networks.
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