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Beliaev damping provides a fundamental mechanism for dissipation of quasiparticles. Previous research
has shown that the two-component internal degrees of freedom has no nontrivial effect on Beliaev damping.
Here we provide the first example where the spinor nature of Bose gases can manifest itself in the Beliaev
damping by way of spin-obit coupling. We identify novel features of the Beliaev decay rate due to spin-
orbit coupling; in particular, it shows an explicit dependence on the spin-density interaction and diverges at
the interaction-modified phase boundary between the zero-momentum and plane wave phases. This
represents a manifestation of the effect of spin-orbit coupling in the beyond-mean-field regime, which by
breaking Galilean invariance couples excitations in the density and spin channels. We further show that the
measurement of the Beliaev damping rate is experimentally feasible through the measurement of spin
polarizability susceptibility, which has been already achieved in spin-orbit-coupled Bose gases.
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The dissipation of quasiparticles through their mutual
interactions lies at the foundational aspect of quantummany-
body physics [1]. A paradigmatic example is Beliaev damp-
ing [2,3] in a superfluid [4], where a quasiparticle disinte-
grates into two quasiparticles at zero temperature. The
investigation of the Beliaev damping rate can offer crucial
insights into the basic properties of different many-body
systems, e.g., transport and thermalization, as has been
demonstrated in a wide variety of systems, ranging from
the Bose [5–8] and Fermi superfluids [9–11] and the mixture
of Bose-Einstein condensates (BECs)with normal Fermi gas
[12–15] to dipolar BECs [16–18] and nonequilibrium polar-
iton BECs [19]. However, previous research on spinor Bose
gases have concluded that the two-component internal
degrees of freedom (d.o.f.) [20,21], a key ingredient playing
out in modern physics, seems to play no role in affecting
Beliaev damping, as the damping rates in one- and two-
component Bose gases are formally the same. Instead, the
aim of this Letter is to show that, by the mechanism of spin-
orbit coupling, the two-component internal d.o.f. can mani-
fest itself in Beliaev damping.
The second motivation of this Letter comes from recent

experimental realizations of spin-orbit coupling (SOC) with
ultracold quantum gases [22–29], which opens new routes
toward exotic quantum many-body systems in gauge fields
[30–36]. The SOC, where the motion of particles are
coupled to their spin, breaks the Galilean invariance
[35,37–39], giving rise to a double-minimum single-par-
ticle energy spectrum. Thus, a SOC BEC has the crucial
novelty already at the mean-field level compared to the
SOC-free counterpart [8], which has been intensively
studied [22–25,28–32,35,36]. In particular, (i) in the
ground state, an exotic stripe phase [29,40–42] sponta-
neously breaking translational symmetry can emerge, and

(ii) for noninteracting quasiparticles, a softening of phonon
or roton modes occurs [43]. More importantly, the critical
superfluid velocity cannot be well defined [35,38,39]
without a priori choice of reference frame. Beyond the
mean field, however, the consequence of SOC coupling the
spin and motional d.o.f. on the dissipation of quasiparticles,
such as Beliaev damping, remains unexplored.
In this Letter, we present the first analytical result on the

Beliaev decay of phonons in a SOC BEC [see Eq. (7)].
Moreover, we show that this decay rate is of immediate
experimental relevance, as it has a direct connection with the
spin polarizability susceptibility, for whichmeasurement has
already been achieved [26] in SOC BEC. Specifically,
considering the condensate in the zero-momentum phase
[23],we find that the dampingof phonons,whilemaintaining
the familiar q5 scaling with momenta, exhibits two novel
features in contrast to the SOC-free counterpart. First, the
damping rate becomes explicitly dependent on the inter-
action constant—to be precise, the strength of the spin-
density interaction. Remarkably, the damping rate diverges at
the critical point that exactly corresponds to the interaction-
modified phase boundary between the plane wave and
zero-momentum phases. Second, the damping of phonons
becomes strongly anisotropic. The former is a result of
SOC coupling the density and spin-density excitations due to
an absence of Galilean invariance, while the latter is a
manifestation of the SOC-induced anisotropic effective
mass. While SOC-induced lacking Galilean invariance and
anisotropy have been previously investigated in BECs, our
present Letter reveals their manifestations beyond the mean-
field framework.
Beliaev Damping—For a quasiparticle carrying momen-

tum q, its decay rate in the Beliaev process at zero temper-
ature can be computed by (see Supplemental Material [44])
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γBðqÞ ¼
π

2

X
p;p0

jBpp0 j2δðϵq-ϵp-ϵp0 Þδq;pþp0 : ð1Þ

Here, Bpp0 is the matrix element associated with the scatter-
ing process wherein a quasiparticle having momentum q
collides with the condensate creating two quasiparticles
with momenta p and p0 [see Fig. 1(a)]. The summation is
performed over all possible states allowed by the energy and
momentum conservation conditions specified in the δ func-
tion and δq;pþp0 , respectively.
To gain insight into how SOC affects Beliaev damping of

low-energy excitations of BEC, we recall the classic result
of the decay rate in a uniform one-component BEC with
condensate density n0 [45–47], i.e.,

γ0 ¼
3q5

640πℏ3mn0
; ð2Þ

which exhibits the well-known q5 scaling. Notice that the
formula does not contain the interaction strength between
bosonic atoms, rather, the role of interaction comes in
only implicitly via n0 [48]. Equation (2) also holds for a

two-component BEC without SOC in the unpolarized
phase [20,21]. There, the density excitation is decoupled
from the spin-density excitation; hence both the scattering
matrix element and the conservation condition in Eq. (1)
bear the same form as the one-component case apart from a
renormalized interaction constant, which, according to
Eq. (2), does not alter the formal result. We remark that
a two-component BEC is different from a three-component
BEC in that the latter exhibits a spin-flip process [49,50].
By contrast, as we will elaborate below, adding SOC will

bring two fundamental differences: (i) the SOC breaks
Galilean invariance, resulting in hybridized excitations in
density and spin channels, so that the wave functions of
low-energy quasiparticles and thus the Beliaev scattering
matrix are strongly modified, and (ii) the SOC renders a
spatially anisotropic distribution of scattering states
allowed by energy and momentum conservation.
Model Hamiltonian—We consider a 3D spatially uni-

form BEC with a spin-orbit coupling along the x axis. The
relevant grand-canonical Hamiltonian is [32,35]

K ¼
Z

d3rψ̂†ðr; tÞðH0 − μNÞψ̂ðr; tÞ

þ 1

4

Z
d3rðgþ g12Þn̂2ðr; tÞ þ ðg − g12ÞŜ2zðr; tÞ: ð3Þ

Here, ψ̂†ðr; tÞ ¼ ðψ̂†
1; ψ̂

†
2ÞT and ψ̂ðr; tÞ ¼ ðψ̂1; ψ̂2Þ are the

creation and annihilation operators for the two-component
bosonic atoms; n̂ðr; tÞ ¼ jψ̂1j2 þ jψ̂2j2 and Ŝzðr; tÞ ¼
jψ̂1j2 − jψ̂2j2 denote the total and spin-density operators,
respectively. The g and g12 denote the intra- and interspe-
cies coupling constant, respectively, with g ≠ g12 in view of
relevant experiments [23]. The single-particle Hamiltonian
H0 contains a Zeeman term and an equal contribution of
Rashba and Dresselhaus spin-orbital coupling in the x
direction [23,41,42,51–53], i.e.,

H0 ¼
1

2m
½ðpx − ℏk0σzÞ2 þ p2⊥� þ

ℏΩ
2

σx; ð4Þ

where m is the bare mass of bosonic atoms, σi are standard
Pauli matrices, and k0 labels the strength of the SOC.
The Hamiltonian of such form has been recently realized
in atomic setup [22–29] employing two counterpro-
pagating Raman lasers, where Ω is the Raman coupling
constant and k0 is themomentum transfer between the lasers.
We will moreover denote G1 ¼ ðgþ g12Þn0=4 and G1 ¼
ðg − g12Þn0=4 with n0 as the condensate density.
Before continuing, let us briefly describe the ground-

state properties of the Hamiltonian (3). For ℏΩ < 2ℏ2k20=m,
the single-particle dispersion H0 exhibits degenerate
double minima at momenta px ¼ �ℏk1 with k1 ¼
k0

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −m2ðℏΩÞ2=4ℏ4k40

p
. In this regime, the ground state

can exhibit a stripe phase [29] or a plane wave phase [23].
For ℏΩ > 2ℏ2k20=m, the single-particle dispersion features

(a) (b)

(c) (d)

FIG. 1. (a) Dispersion of density mode in the SOC BEC [see
Eq. (3)] in the zero-momentum phase. Arrows schematically
show the Beliaev decay of a Bogoliubov mode with momentum q
into two modes with momenta p and q-p, respectively. (b) The
momentum p manifold allowed by the energy and momentum
conservations in the px-pz plane, considering various directions
of the initial momentum q. Specifically, we fix the modulus of q
as qξ ¼ 0.8, while varying its angle θ with respect to the SOC
direction along the x axis. For SOC strength, we take k0ξ ¼ 0.5.
(c) Density and (d) spin-density static structure factor as a
function of q for various k0. Here, θ ¼ 0 is taken for illustration.
Insets plot the asymptotic behavior of corresponding static
structure factors at large momenta. In all plots, the momentum
is measured in units of the inverse coherence length
(ξ−1 ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

ℏ=mΩ
p

). For other parameters, we take G1=ℏΩ ¼
0.1 and G2=ℏΩ ¼ 0.025.
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a global minimum at k1 ¼ 0 and is anisotropic. In this
case, the condensate is in the zero-momentum phase [41],
described by the familiar order parameter ϕ0 ¼ ðϕ0

1;ϕ
0
2Þ ¼ffiffiffiffiffiffiffiffiffiffi

n0=2
p ð1;−1Þ.
Beliaev damping in presence of SOC—Our goal is to

investigate the Beliaev damping of the model system. We
will assume ℏΩ > 2ℏ2k20=m − 4G2 [41] when the BEC is
in the zero-momentum ground-state phase, which repre-
sents the simplest case capturing the essential effect of SOC
on the dissipation of quasiparticles as mentioned earlier.
We will first discuss the energy conservation condition in

Eq. (1), since here a mean-field dispersion relation for the
density excitation is sufficient. Writing ΦðrÞ≡ hψ̂ðrÞi ¼
ϕ0ðrÞ þ δϕðrÞ, with ϕ0ðrÞ being the ground-state wave
function and noting that the relevant process involvesmainly
phonons in the low-momentum regime, we can write ϵk ¼
cθkk for a phonon carrying momentum k, with k ¼ jkj.
Here, cθk is the sound velocity, which for theHamiltonian (3)

is found as cθk ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi
1=κm�p

[54], where κ−1 ¼ 2G1 is
the compressibility [55] and m� is the effective mass [56]
given by

m
m� ¼ 1 −

2ℏ2k20 cos
2 θk

mð4G2 þ ℏΩÞ : ð5Þ

Here θk measures the angle between the direction of
momentum k of a quasiparticle and the x axis (along which
SOC is applied). A crucial feature of the effective mass (5) is
its spatial anisotropy:m� ¼ mwhenk is perpendicular to the
SOC direction, while m� > m otherwise, as experimentally
demonstrated [43]. Notice that m� exhibits dependence on
the spin-dependent interactionG2, which forG2 ¼ 0 reduces
to the result in Ref. [55]. Thus, the energy conservation
condition becomes strongly anisotropic, which for phonons
takes the form cθqq ¼ cθppþ cθq-p jq-pj [57].
The anisotropic energy condition results in an aniso-

tropic distribution of scattering states contributing to
Beliaev decay. To visualize this, we numerically solve
the condition ϵq ¼ ϵp þ ϵq-p. We will hereafter denote
θq ¼ θ, i.e., the angle between the initial momentum q
and the x direction. Figure 1(b) presents the results of an
energetically allowed scattered momentum p manifold for
various θ on the px − pz plane (qy ¼ py ¼ 0 is taken).
Interestingly, we see that the counterclockwise rotation of
the manifold is accompanied by an increase of the manifold
size with θ, indicating anisotropic distribution of contrib-
uting states, in contrast to the SOC-free counterpart where
the contour size stays invariant [5].
Next, we discuss the scattering matrix in Eq. (1), which

instead requires beyond-mean-field treatment. We follow
the approach in Ref. [46], which, by decomposing the total
field operator ψ̂ ¼ Φþ ψ̃, where ψ̃ annihilates noncon-
densate atoms and is treated perturbatively, allows for the
account of couplings between Bogoliubov quasiparticles

and noncondensate atoms. In this framework (see
Supplemental Material [44]), the matrix element Bpp0 in
terms of usual Bogoliubov amplitudes uðvÞ reads Bpp0 ¼
B̃pp0 þ B̃p0p, with

B̃pp0 ¼
ffiffiffiffiffiffi
n0
2V

r X
α¼1;2

ð−1Þαþ1f½gð2uα;pvα;p0 þ uα;puα;p0 Þ

þ g12ðuᾱ;pvᾱ;p0 − uᾱ;puα;p0 − uα;pvᾱ;p0 Þ�uα;q
þ ½gð2uα;pvα;p0 þ vα;pvα;p0 Þ
þ g12ðuᾱ;pvᾱ;p0 − vᾱ;pvα;p0 − vα;puᾱ;p0 Þ�vα;qg: ð6Þ

We will now take an experimental viewpoint by describ-
ing Eq. (6) in terms of the dynamic structure factors [4], as
inspired by Ref. [6]. In cold atom experiments, the dynamic
structure factor can be directly measured by means of
Bragg spectroscopy [7,58–60] or in situ imaging [61,62], as
in recent studies of SOC BECs [43,63,64], which gives
experimental access to the Bogoliubov amplitudes uðvÞ
[65,66]. A SOC BEC has two types of dynamic structure
factor [42,55], i.e., the density and spin-density dynamic
structure factors, describing the system response to the
density and spin-density perturbations, respectively.
Formally, the density dynamic structure factor is given
by Sdðq;ωÞ ¼ N−1P

njh0jρqjnij2δðω − ωn0Þ, where ρq ¼P
ie

iq·xi is the density operator with momentum q and
ωn0 is the excitation frequency of the nth state, while the
spin-density dynamic structure factor is Ssðq;ωÞ ¼
N−1P

njh0jsqjnij2δðω − ωn0Þ, with sq ¼ P
iσzie

iq·xi being
the standard spin-density operator. The static density
and spin-density structure factor are thus SdðsÞðqÞ ¼R
dωSdðsÞðq;ωÞ, with Sd þ Ss ¼ 1.
Without SOC, the density and spin-density excitations of a

two-component BEC are decoupled, so that an external
density perturbation δρ̂ acting on BECs only induces a
density response in the form of the density dynamic structure
factor. Instead, due to the absence of Galilean invariance in a
SOCBEC, a density perturbation along the x direction in the
system, which formally corresponds to a gauge transforma-
tioneiqxx [4],will concomitantly induce avelocity-dependent
Zeeman-energy term −qxℏk0σz, resulting in generations of
both density and spin-density responses.
Figures 1(c) and 1(d) compare SdðqÞ [Fig. 1(c)] and

SsðqÞ [Fig. 1(d)] for various SOC strength k0, taking θ ¼ 0.
Without SOC, it is well known that Sd asymptotically
approaches unity at large momenta, while Ss is pinned to
zero (see blue solid curves). In contrast, the most prominent
feature in the presence of SOC is that Ss becomes finite at
all momenta, signaling the coupling of density and spin-
density excitations. In particular, at large momenta, both Sd
and Ss unanimously approach 1=2 [see insets of Figs. 1(c)
and 1(d)]. Such different asymptotic behavior compared
to the SOC-free case can be analytically understood as
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follows: the static structure factor can be written
as Sd ¼ N−1jPα¼1;2

ffiffiffi
n

p
i0ðuαq þ vαqÞj2 and Ss ¼

N−1jPα¼1;2
ffiffiffi
n

p
α0sgnðαÞðuαq þ vαqÞj2, with sgnð1Þ ¼

−sgnð2Þ ¼ 1. For q → ∞, when k0 ¼ 0, we have u1q ¼
v1q ¼ 1=

ffiffiffi
2

p
and u2q ¼ v2q ¼ 0. On the other hand, when

k0 ≠ 0, we have u1q → 1, v1q → 0, and u2q ¼ v2q ¼ 0. At
small momenta, we see that the increase rate Ss enhances
with k0 as expected. For arbitrary momenta, the
Bogoliubov amplitudes u and v in Eq. (6) can be related
to Sd and Ss as [67]

uα;q ¼ f þ ð−1Þαþ12βqf½
ffiffiffiffiffi
Sd

p þ ð−1Þαþ1
ffiffiffiffiffi
Ss

p �2 þ 1g
4

ffiffiffi
2

p ½ ffiffiffiffiffi
Sd

p þ ð−1Þαþ1
ffiffiffiffiffi
Ss

p �βq
;

vα;q ¼ −f þ ð−1Þαþ12βqf½
ffiffiffiffiffi
Sd

p þ ð−1Þαþ1
ffiffiffiffiffi
Ss

p �2 − 1g
4

ffiffiffi
2

p ½ ffiffiffiffiffi
Sd

p þ ð−1Þαþ1
ffiffiffiffiffi
Ss

p �βq
:

Thus, by measuring the dynamic structure factor and hence
accessing Bogoliubov amplitudes [65,66], one can access
the matrix element in Eq. (6) for the SOC BEC, along the
lines of the Beliaev damping experiments in the one-
component BEC [6].
Finally, in performing the summation in Eq. (1), we will

assume all momenta are along the same direction [5,7], i.e.,
θq ¼ θp ¼ θp−q ¼ θ, as collisions at zero temperature
dominantly occur in the low-momentum regime, where
the energy and momentum conservation conditions require
the scattered momentum p be parallel with the initial
momentum q. This way, straightforward evaluation gives
(see Supplemental Material [44])

γB ¼ γ0

�
1 −

2ℏ3Ωk20 cos2 θ
mð4G2 þ ℏΩÞ2

�
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χM

ℏ2k20
m

sin2 θ

r
: ð7Þ

Here χM is the spin polarizability susceptibility [54,55],
which takes the form

χM ¼ 2

ðℏΩþ 4G2Þ − 2ℏ2k20=m
: ð8Þ

Equation (7) is the key result of this Letter. Apparently,
γB for k0 ¼ 0 reduces to γ0 of the SOC-free counterpart [see
Eq. (2)]. While maintaining the familiar q5 dependence [see
Fig. 2(a)], γB displays the following distinguishing features
in contrast to γ0:
(i) γB is explicitly interaction dependent, which comes in

only via g − g12 (contained in G2) characterizing the
strength of spin-density interaction [see Eq. (3)]. This
presents a clear manifestation of the coupled density and
spin-density excitations due to SOC on phonon dissipa-
tions. Interestingly, γB at θ ≠ 0 exhibits a characteristic
divergence at the critical point 4G2 þ ℏΩ ¼ 2ℏ2k20=m,
which is just the aforementioned phase boundary between
the zero-momentum and planewave phases. This divergence

of γB comes from the divergence of spin polarizability
susceptibility χM. As discussed earlier, a density perturbation
due to presence of SOC is necessarily accompanied by a
perturbation ∼σz. This induces a system response in form of
the spin polarizability susceptibility, which has been shown
to be able to distinguish the unpolarized zero-momentum
phase and the spin-polarized planewave phase. Note that the
measurement of spin polarizability for the considered SOC
BEC has been recently reported [26]. By contrast, γB at
θ ¼ 0 always stays finite. This can be understood by noticing
that the effective mass along the SOC direction diverges [see
Eq. (5)], giving rise to the so-called phonon softening [43],
which at the phase boundary effectively cancels the diver-
gence of χM. We note that the determination of condensate
density n0 in Eq. (7) relies on the density interaction constant
gþ g12 [33].
(ii) γB is strongly anisotropic depending on the angle

between initial momentum q of quasiparticle and SOC
direction, which can be understood in terms of the SOC-
induced anisotropic effective mass. In fact, Eq. (7) can be
cast into a more transparent form by ignoring G2, i.e.,

γB ¼
�

3q5

640πℏ3m�n0

�
m
m�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ χM

ℏ2k20
m

sin2 θ

r
: ð9Þ

Thus, for a fixed SOC strength k0, the decay of the
quasiparticle is most significant when q is perpendicular
to the SOC direction, but is strongly suppressed when the
two are parallel [see Fig. 2(b)]. In addition, when increasing

(b)(a)

(c) (d)

FIG. 2. The Beliaev damping rate γB as a function of (a) the
modulus of momentum q ¼ jqj, fixing θ ¼ 0; (b) the angle θ,
taking qξ ¼ 0.8; (c) the SOC strength k0 with G1=ℏΩ ¼ 0.1;
G2=ℏΩ ¼ 0.025 (d) the ℏΩ, taking θ ¼ π=3, G2 ¼ 0, and
ER ¼ ℏ2k20=2m. The solid lines and black dots in (d) correspond
to the theoretical predictions and the experimental data in
Ref. [26], respectively.
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SOC [see Fig. 2(c)], the decay along the SOC direction is
increasingly suppressed, while that in the perpendicular
direction is enhanced, although for other directions, γB is
generally nonmonotonic with respect to k0.
Experimental realization and discussions.—In experi-

ments on SOC BEC [26], the measurement of spin polar-
izability susceptibility χM in Eq. (8) had been performed by
variations of Raman coupling, i.e., ℏΩ; see black dots in the
inset of Fig. 2(d). Equation (7) therefore allows immediate
experimental access of the Beliaev decay rate through the
measurement of χM. In Fig. 2(d), we demonstrate how the
Beliaev damping rate varies with the ℏΩ, where the black
dots correspond to the experimental data of χM [26].
Further, in view of the fact that the measurement of bare
damping rate γ0 has been achieved [5–7] and that γB > γ0,
we anticipate the phenomena discussed in this Letter should
be observable within the current experimental capabilities.
We have shown how the effect of SOC can manifest itself

in the Beliaev damping of low-energy excitations of a
BEC, even when the ground state is in the zero-momentum
phase, and the essential features such as anisotropy and the
dependence on the spin density should also be seen in the
plane wave phase and the stripe phase. In the latter phases,
since the ground-state wave functions and the single-particle
dispersions already bear clear signatures of the SOC effect
(unlike the zero-momentum phase), the explorations of the
unique features of quasiparticle decay there remain an open
challenge. In addition, our analysis connects the damping
ratewith the presently detectable dynamical structure factors,
and thus opens the possibility for experimental access, e.g.,
by means of Bragg spectroscopy [43]. While many-body
quantum systems with SOC have been intensively studied
within the mean-field framework, observing the Beliaev
damping in a SOC BEC would present an important step
toward revealing the interplay between the non-Abelian
gauge fields and the beyond-mean effects. Along this
direction, further investigations include, e.g., the lifetime
of quasiparticles at finite temperatures in SOC BECs.
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