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We study a swimming undulating sheet in the isotropic phase of an active nematic liquid crystal. Activity
changes the effective shear viscosity, reducing it to zero at a critical value of activity. Expanding in the sheet
amplitude, we find that the correction to the swimming speed due to activity is inversely proportional to the
effective shear viscosity. Our perturbative calculation becomes invalid near the critical value of activity;
using numerical methods to probe this regime, we find that activity enhances the swimming speed by an
order of magnitude compared to the passive case.
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Recent years have seen many advances in the study of
swimming at themicron scale inviscous fluids [1], including
the creation of artificial microswimmers [2–4], measure-
ments of flows induced by single swimmers [5–7], and the
development of hydrodynamic theories [8–10] and simu-
lations [11–13]. The field has expanded to include
swimmers in non-Newtonian fluids, such as viscoelastic
polymer solutions [14–19] and liquid crystals [20–22]. All
of these studies involve passive fluids, in which the energy
that drives the flow is added by the internal motors of the
swimmer or an external source such as a rotating magnetic
field. In active fluids, on the other hand, the energy that
drives the flow is added to the system at the level of the
microscopic constituents of the fluid [23]. For example, a
suspension of molecular motors and cytoskeletal filaments
shows spontaneous flows due to the consumption of ATP in
the suspension by the molecular motors [24,25]. It is natural
to ask if an active fluid can dowork on a swimmer, causing it
to swim faster than it would in a passive fluid with the same
stroke. In this Letter we investigate this question with the
Taylor model of awaving sheet [26] in the isotropic phase of
an active nematic liquid crystal (Fig. 1).
We use the Taylor sheet because it is one of the simplest

models for a flagellated swimmer for which analytical
calculations of swimming speed are possible. The isotropic
state of the fluid is also chosen for simplicity. Below a
critical activity, the undisturbed stable state of the active
liquid crystal is isotropic with no flow. The motion of a
swimmer induces flows around the swimmer, which in turn
lead to local order; the simple nature of the base state allows
us to treat the swimmer problem perturbatively. An
example of an experimental system with activity and
isotropy is the suspension of microtubules, kinesin, and
depleting polymers studied by Wu et al. [27]. An uncon-
fined active nematic in the nematic phase is unstable to
spontaneous flow at any value of activity [28], making an
analytic approach difficult.

We model the isotropic phase of an active nematic
by adding activity to de Gennes’ hydrodynamic model
[29–31] for the isotropic phase of a passive nematic. Our
work is complementary to but different from a recent study
of swimming in an active transversely isotropic medium
[32,33], which does not have an entropic force driving the
system back to isotropy. Our governing equations are
similar to those used in other studies of active matter
[34–36]. A striking feature of the active isotropic phase of
extensile prolate particles (or contractile oblate particles) is
that activity reduces the effective shear viscosity (Fig. 2)
[34] and can even cause the apparent shear viscosity to
vanish [37–41]. We find that the swimming speed for a
small-amplitude Taylor sheet in our active medium is
inversely proportional to the effective shear viscosity.
Since our perturbative calculation breaks down when the
effective shear viscosity gets too small, we use numerical
finite-element methods to show that the swimming speed
for small effective viscosity can be an order of magnitude
larger than the speed in a passive medium for the same
stroke. The outline of this Letter is as follows: After
introducing the governing equations, we find the critical
value of the activity at which the quiescent isotropic state in
an infinite domain becomes unstable. Then we calculate the

FIG. 1. A Taylor sheet (blue wavy line) with wave number q
and amplitude b swimming in an active nematic fluid (double-
headed arrows) in the isotropic phase.

PHYSICAL REVIEW LETTERS 121, 178002 (2018)

0031-9007=18=121(17)=178002(5) 178002-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.121.178002&domain=pdf&date_stamp=2018-10-25
https://doi.org/10.1103/PhysRevLett.121.178002
https://doi.org/10.1103/PhysRevLett.121.178002
https://doi.org/10.1103/PhysRevLett.121.178002
https://doi.org/10.1103/PhysRevLett.121.178002


swimming speed using perturbation theory, which is valid
when the activity is sufficiently smaller than the critical
value for instability. Finally, we numerically calculate the
flow, order parameter field, and swimming speed, again
assuming that the activity is less than the critical value.
To motivate the governing equations, we begin with the

nematic degrees of freedom. For simplicity, we suppose
there is no variation in the spatial direction perpendicular to
the x-y plane (Fig. 1). Thus, the local nematic ordering is
characterized by a symmetric traceless order parameter
tensor Qαβ, with α, β ¼ x, y. To leading order in Qαβ, the
Landau–de Gennes free energy density is [30]

F ¼ A
2
QαβQαβ; ð1Þ

where we sum over repeated indices and A > 0 in the
isotropic phase. Frank elasticity can be neglected in the
isotropic phase, as can higher-order terms in Qαβ (note that
a cubic term is identically zero in two dimensions). We also
disregard a quartic term, which plays little role in our
expansion about the isotropic state, but would be required
to limit the amplitude of the order parameter when the
isotropic state is unstable. Thus, the molecular field is
Φαβ ≡ −∂F=∂Qαβ ¼ −AQαβ in the isotropic phase. The
equilibrium stress is the Ericksen stress, σeαβ ¼ Fδαβ −
∂F=∂ð∂βQμνÞ∂αQμν [29,42].
The rate of entropy production per volume is [30]

T _S ¼ σ0αβeαβ þΦαβRαβ; ð2Þ
where T is temperature, S is entropy per volume, σ0αβ is
the viscous stress tensor, eαβ ¼ ð∂αvβ þ ∂βvαÞ=2 is the
strain rate tensor, vα is the velocity field, and Rαβ is the
rate of change of Qαβ relative to the local rate of
rotation ωαβ ¼ ð∂αvβ − ∂βvαÞ=2 of the background fluid,

Rαβ ¼ ∂tQαβ þ v · ∇Qαβ þ ωαγQγβ −Qαγωγβ. Following
de Gennes [29], we take the forces in the entropy source
to be the molecular field Φαβ and the viscous stress tensor
σ0αβ, and the corresponding fluxes to be eαβ and Rαβ.
Assuming that the forces are linear functions of the fluxes,
the phenomenological equations relating the forces to the
fluxes are

σ0αβ ¼ 2ηeαβ þ 2ðμþ μ1ÞRαβ þ aQαβ; ð3Þ

Φαβ ¼ 2μeαβ þ νRαβ; ð4Þ

where η is the shear viscosity, μ and μ1 couple shear and
alignment, and ν is the rotational viscosity. We neglect
higher-order terms such as QαγeγδQδβ, since the magnitude
of the order parameter is small in the isotropic phase; again,
such terms should be retained when the order parameter is
nonvanishing [36]. The coefficients μ1 and a arise from
activity. When a ¼ 0 and μ1 ¼ 0, the Onsager reciprocal
relations [43] hold, and the rate of entropy production is
positive, implying ην − 2μ2 > 0. Thus, the active parameter
μ1 determines the degree of violation of the Onsager
relations, and, when it is sufficiently positive, can lead
to a negative rate of entropy production.
The active stress is aQαβ [34], with a < 0 for extensile

particles and a > 0 for contractile particles. The coupling μ
controls the orientation of the particles in shear flow, leading
to shear birefringence. For example, nematic order develops
in aweak steady shear flow, withQαβ ¼ −ð2μ=AÞeαβ to first
order in the strain rate [29]. Independent of the value of μ1,
particles align their symmetry axes with one of the principal
axes of the shear, with prolate particles (μ < 0) and oblate
particles (μ > 0) aligning along different axes (Fig. 2).
The governing equations are the director equation (4)

and the force balance equation ∂βσαβ ¼ 0, with σαβ ¼
−pδαβ þ σeαβ þ σ0αβ. We define the effective viscosity
ηeff and the effective coupling μeff by using Eq. (4) to
eliminate Qαβ from the stress, Eq. (3), to find σ0αβ ¼
2ηeffeαβ þ 2μeffRαβ, where ηeff ¼ η − μa=A and μeff ¼
μþ μ1 − νa=ð2AÞ. Thus, activity gives rise to an effective
shear viscosity ηeff, which vanishes at a critical value of the
activity ac ¼ Aη=μ.
Next, we turn to the linear stability analysis of the state

with vα ¼ 0 and Qαβ ¼ 0, in an infinite unbounded
domain. To linear order, the force balance equation is
−∂αpþ 2ηeff∂βeαβ þ 2μeff∂β∂tQαβ ¼ 0. The pressure p is
determined by the incompressibility constraint, ∂αvα ¼ 0.
It is convenient to enforce incompressibilty with the stream
function ψ , defined so that v ¼ ∇ × ψ ẑ. Also, in two
dimensions, the tensor-order parameterQαβ is related to the
scalar-order parameter S and the director n via Qαβ ¼
Sð2nαnβ − δαβÞ. The linearized equations for the stream
function and the order parameter are

(a) (b)

(c) (d)

FIG. 2. Effect of activity a on the effective shear viscosity. The
large arrows represent the flow, and the small arrows represent the
active forces. (a) Extensile prolate particles and (b) contractile
oblate particles reduce the shear viscosity [34]. The force axis is
assumed along the particle axis of symmetry. (c) Contractile
prolate particles and (d) extensile oblate particles increase the
shear viscosity [34].
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Δ2ψ − 2
μeff
ηeff

½ð∂2
x − ∂2

yÞ∂tQxy − 2∂x∂y∂tQxx� ¼ 0; ð5Þ

2μ∂x∂yψ þ AQxx þ ν∂tQxx ¼ 0; ð6Þ

−μð∂2
x − ∂2

yÞψ þ AQxy þ ν∂tQxy ¼ 0; ð7Þ

where Δ ¼ ∂2
x þ ∂2

y.
For perturbations of the velocity and order-parameter

tensor proportional to expðiq · xþ σtÞ, the characteristic
equation for this problem yields two roots (see the
Supplemental Material [44]):

σ1 ¼ −A=ν; ð8Þ

σ2 ¼ −Aηeff=ðηeffν − 2μμeffÞ: ð9Þ

The first root σ1 is always negative; inserting expðiq · xþ
σ1tÞ into Eq. (6) or Eq. (7) reveals that this mode has no
flow, with the director n always parallel to q, and the scalar-
order parameter relaxing to zero with rate A=ν.
The second root corresponds to a mode in which there is

a shear flow with a velocity perpendicular to q (due to
incompressibility q · v ¼ 0), with n at 45° to the flow. The
numerator in Eq. (9) is precisely the quantity that deter-
mines whether or not the entropy production T _S is positive.
If μ1 is small enough that ηeffν − 2μμeff > 0, then the
isotropic state is unstable when ηeff < 0; i.e., a > ac ¼
Aη=μ for positive μ [Fig. 2(b)], or a < ac ¼ Aη=μ for
negative μ [Fig. 2(a)]. The quiescent isotropic state is
unstable against shear flow and local ordering when the
shear-induced orientation of the particles leads to greater
shear flow, as in Figs. 2(a) and 2(b).
We now consider a Taylor swimmer with y ¼ hðx; tÞ≡

b cosðqx − ωtÞ (Fig. 1) in the stable phase of an isotropic
active nematic. Our approach is the same as Lauga’s
calculation for a dilute polymer solution [14]. To calculate
the swimming speed of the sheet, we work in the rest frame
of the swimmer and solve the governing Eqs. (3) and (4)
with no-slip boundary conditions on the velocity at the
swimmer, vðx; y ¼ hÞ ¼ ∂thðx; tÞŷ. The unknown velocity
at y → ∞ is the negative of the swimming velocity U. No
boundary conditions are imposed on the order parameter,
because we have disregarded the Frank energy. We assume
that ϵ ¼ bq ≪ 1 and expand in powers of ϵ, so that, e.g.,
ψ ¼ ϵψ ð1Þ þ ϵ2ψ ð2Þ. To first order in ϵ, the Eqs. (5)–(7)
yield

ψ ð1Þ ¼ ðω=q2Þð1þ qyÞe−qy cosðqx − ωtÞ;

Qð1Þ
xx ¼ −2qyωμe−qy

A2 þ ω2ν2
½ων cosðqx − ωtÞ þ A sinðqx − ωtÞ�;

Qð1Þ
xy ¼ −2qyωμe−qy

A2 þ ω2ν2
½A cosðqx − ωtÞ − ων sinðqx − ωtÞ�:

ð10Þ

The velocity field is the same as the Stokes flow found by
Taylor [26] for a Newtonian fluid, and the order parameter
is independent of the activity. Note that the direction of n is

independent of y to first order in ϵ, since the ratioQð1Þ
xy =Q

ð1Þ
xx

is independent of y.
The power Ps supplied by the swimmer is equal to the

sum of the rate of change of the free energy and the net
power dissipated in the fluid, Ps ¼ dF=dtþ Pf, where
F ¼ R

d3xF and

Ps ¼
Z �

vασαβ þ
∂F

∂ð∂βQμνÞ
dQμν

dt

�

NβdS; ð11Þ

Pf ¼
Z �

eαβðσαβ − σeαβÞ þΦαβ
dQαβ

dt

�

d3x: ð12Þ

Here dQαβ=dt ¼ ∂tQαβ þ vγ∂γQαβ, dS is the area element
of the swimmer, and N̂ is the downward-pointing normal to
the swimmer. Note that the net power dissipated in the fluid
may be negative due to activity. The first-order solutions
allow us to calculate the leading-order rate of working of
the swimmer per unit area of the sheet,

Ps ≈ b2qω2

�

ηeff −
2νμμeffω

2

A2 þ ν2ω2

�

ð13Þ

(note that Ps ¼
R
dSPs). The power supplied by the

swimmer decreases linearly with activity a (Fig. 3, green
solid line). The fluid does net positive work on the
swimmer when a > a0 ¼ ac þ ½ην − 2μðμþ μ1Þ�ω2=ðAμÞ.
The value of a0 can be less than ac and in the regime where
our perturbative calculation is valid when μ1 is sufficiently

FIG. 3. Dimensionless rate of work Ps of the swimmer [green
solid line from theory, Eq. (13), blue stars from simulations] vs
dimensionless activity a=ac; and dimensionless rate of dissipa-
tion of energy Pd (blue dashed line from theory, red dots from
simulation) vs dimensionless activity a=ac, for ϵ ¼ bq ¼ 0.1,
μ ¼ η ¼ ν=3, A ¼ νω, and μ1 ¼ 0.
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large and positive. We denote the power dissipated in the
fluid per unit area of the sheet by Pd ¼

R ½eαβð2ηeαβ þ
2μRαβÞ þΦαβdQαβ=dt�d3x=

R
dS. To leading order, Pd is

positive and independent of activity (Fig. 3, blue dashed
line), and is given by Eq. (13) with ηeff replaced by η and
μeff replaced by μ. Near the critical activity, nonlinear
effects become important, and Pd depends on a, since the
dependence of v and Φ on a becomes discernible (Fig. 3,
red dots).
To find the swimming speed, it is convenient to write the

time average of the x component of momentum balance in
terms of the velocity and expand to Oðϵ2Þ:

ηeff
d2

dy2
hvð2Þx iþ4e−2qyðqy−2Þyq2ω3

2μνμeff
A2þν2ω2

¼0: ð14Þ

Enforcing the no-slip boundary condition to second order

leads to hvð2Þx ðx; 0Þi ¼ ω=ð2qÞ. Solving for the flow leads
to the swimming speed

U ¼ cϵ2

2

�

1 −
2νμμeffω

2

ηeffðA2 þ ν2ω2Þ
�

; ð15Þ

where c ¼ ω=q is the wave speed of the deformation of the
swimmer, and we are using the convention that a positive
U means the swimmer moves left in the laboratory frame.
In the Supplemental Material [44], we show that the
swimming speed of a two-dimensional squirmer has a
similar dependence on the material parameters ν, μ, μeff ,
ηeff , and A. The swimming speed diverges when a → ac,
since the effective shear viscosity vanishes at the critical
activity, indicating a breakdown of the perturbative calcu-
lation. Analyzing the form of the next-order terms reveals
that they are of the order of ϵ4=ðac − aÞ3, indicating that the
perturbative approach requires ϵ2 ≪ ðac − aÞ2. Also, when
a < ac, U is positive. Thus, as long as the fluid is stable,
activity cannot make the swimmer swim in the direction of
the propagating waves.
To go beyond the restriction ϵ2 ≪ ðac − aÞ2, we solve

the force balance equation ∂βσαβ ¼ 0 and the director
equation (4) numerically using the COMSOL Multiphysics
software [46]. We scale length by 1=q and time by 1=ω, and
we choose ϵ ¼ 0.1, μ ¼ η ¼ ν=3, A ¼ νω, and μ1 ¼ 0. To
approximate the infinite system, we choose a size for the
simulation box much larger than the decay length 1=q. The
simulation box has dimensions 32π and 60 along the x and
y directions, respectively, with periodic boundary condi-
tions along the x direction. The Taylor sheet is represented
by the top wall (see Fig. 2 of the Supplemental Material
[44]), which deforms and has a no-slip boundary condition.
In order to ensure that the sheet is subjected to no net force
along the x direction, we choose the slip boundary con-
dition σxy ¼ 0 on the bottom wall. More details of the

numerical method are discussed in the Supplemental
Material [44].
Figure 4 shows the numerically calculated U vs a for

a < ac. The speed U increases with a monotonically, with
good agreement between the simulations and theory when
a < 0.9ac. At a ¼ 0.99ac, U is enhanced up to around 12
times the swimming speed of the Taylor case (see the inset
of Fig. 4). We do not perform numerical studies much
closer to the critical activity because the decay length
increases as a → ac, requiring a larger simulation box.
Note that a robust feature of our result is that although we
have chosen A ¼ νω for Fig. 4, the sharp rise in swimming
speed only relies on the vanishing of ηeff at a ¼ ac. In
Fig. 2 of the Supplemental Material [44], we show the flow
profile around the Taylor sheet superposed with a heat map
of the nematic order parameter. The latter attains its greatest
values in the regions where the shear is greatest.
The numerically calculated power exerted by the

swimmer and the power dissipated in the fluid are shown
in Fig. 3. The power exerted by the swimmer decreases
with increasing activity (blue stars), whereas the rate of
dissipation increases with increasing activity (red dots).
When a ¼ 0, the power exerted by the swimmer equals the
power dissipated in the fluid. However, in the presence of
activity, the swimmer does not work as hard, since part of
the power generated by activity contributes to work on the
swimmer, and part is dissipated in the fluid.
Wehave studied the swimming of amodelmicroorganism

in the isotropic phase of an active nematic liquid crystal. It
would be natural to look for the predicted increase in
swimming speed in an isotropic active microtubule system
[27]. We found that the waving sheet and the squirmer both
have a similar dependence of speed on activity, and that the
sharp increase in speed with activity only requires the speed
to depend inversely on the effective shear viscosity. Thus,we

FIG. 4. Dimensionless swimming speed vs dimensionless
activity from theory [Eq. (15)] (blue line) and simulations (green
dots). The parameters used are the same as in Fig. 3. The inset
shows the critical region a ≈ ac.
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expect that the increase is robust against changes in the
swimmingmechanism, and that the increase could be seen in
experimentswith undulatory swimmers such asCaenorhab-
ditis elegans [17] or synthetic microswimmers such as
rotating helices [47]. An important extension of this work
would be to study a swimmer in polar active matter, such as
C. elegans in a suspension of Escherichia coli bacteria [48].
It would also be interesting to generalize our work to the
unsteady regime above the critical activity.
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