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Kagome antiferromagnets are known to be highly frustrated and degenerate when they possess simple,
isotropic interactions. We consider the entire class of these magnets when their interactions are spatially
anisotropic. We do so by identifying a certain class of systems whose degenerate ground states can be
mapped onto the folding motions of a generalized “spin origami” two-dimensional mechanical sheet. Some
such anisotropic spin systems, including Cs2ZrCu3F12, map onto flat origami sheets, possessing extensive
degeneracy similar to isotropic systems. Others, such as Cs2CeCu3F12, can be mapped onto sheets with
nonzero Gaussian curvature, leading to more mechanically stable corrugated surfaces. Remarkably, even
such distortions do not always lift the entire degeneracy, instead permitting a large but subextensive space
of zero-energy modes. We show that for Cs2CeCu3F12, due to an additional point group symmetry
associated with the structure, these modes are “Dirac” line nodes with a double degeneracy protected by a
topological invariant. The existence of mechanical analogs thus serves to identify and explicate the robust
degeneracy of the spin systems.

DOI: 10.1103/PhysRevLett.121.177201

Frustrated condensed matter such as kagome Heisenberg
antiferromagnets (KHAFs) possesses many degenerate
ground states that can be either delicate or robust, despite
being accidental in the sense of not being protected by a
symmetry. Isotropic KHAFs have been mapped onto
triangulated sheets of “spin origami” [1–3], revealing that,
at the classical level, these materials can have as many
ground states [4] as there are ways to fold a sheet of paper
with one crease for each atomic spin [5]. Splitting this
degeneracy by making the magnetic moments spin 1=2
would permit the formation of a quantum spin liquid [6,7],
but “clearly the KHAF is a problem where competing states
of very different character lie very close in energy” [8].
Like many other strongly correlated materials, a complex
phase diagram arises, and to our knowledge no general
explanation has even been proposed. However, at least in
the classical large-S limit, it appears that recent advances in
the study of metamaterials [9–20], such as origami, suggest
just such an explanation.
Mechanical systems are among the oldest subject of

formal study, yet today mechanical metamaterials display
new properties and states of matter derived purely from
their structure. Many such systems rely on a counting
argument developed by Maxwell to determine the mechani-
cal stability by counting degrees of freedom (DOF) and
constraints [21] and extended by Calladine to account for
redundant constraints [22]. Recently, Kane and Lubensky
[13] relied on this count to discover, in the context of
ball and spring systems, that systems could display exotic

zero-energy boundary modes when they had equal numbers
of DOF and constraints. In an initially gapped system, the
difference between these quantities, labeled ν, can go only
from 0 to 1, indicating the appearance of a zero mode, when
the gap closes. In this context, called “isostatic,” ν itself is a
topological invariant. Furthermore, they build a local
version of Maxwell counting and derive a winding number
topological invariant for phonon band structures which
demands edge states in “polarized” isostatic systems [13],
bulk solitons in isostatic one-dimensional systems [23], and
Weyl point nodes in isostatic two-dimensional systems
[18,24]. In systems with translational symmetries, such a
gap trivially closes at wave vector k ¼ 0 but survives for
spatially varying modes. Thus, by combining energy gaps
with Maxwell counting, a topological mechanics emerges
that connects zero modes to topological invariants.
This discovery brings new meaning to Moessner and

Chalker’s two seminal papers [25,26] that exploited
Maxwell counting to shed light on the accidental ground
state degeneracy of classical kagome and a few other
antiferromagnets. Grouping the terms in the Hamiltonian
into constraints, a procedure that underlies the spin origami
construction, they argue Maxwell’s ν is often a useful
measure of frustration in frustrated magnets. They show
that ν > 0 in the pyrochlore Heisenberg antiferromagnet
and demands zero modes while ν vanishes in the isotropic
kagome KHAF so that its zero modes must arise from a
redundancy among the constraints. This redundancy ren-
ders the kagome case complex from this perspective, but
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since it has ν ¼ 0, like Kane and Lubensky’s isostatic
systems, this complexity should come with topological
invariants that could provide an alternative explanation of
kagome zero modes.
In this Letter, guided by the concepts of topological

mechanics, we study how topology and geometry explicate
magnetic frustration in kagome antiferromagnets. Specifi-
cally, we solve for the ground states of a class of distorted
KHAFs obeying a condition (necessary and sufficient)
under which the ground states of those systems possess
origami analogs. We further identify Cs2ZrCu3F12 and
Cs2CeCu3F12 as candidate materials that can foster such a
spin origami state. Surprisingly, the origami we predict for
Cs2ZrCu3F12 is flattenable like the original spin origami
construction of isotropic kagome antiferromagnets despite
possessing spatial anisotropies in the spin exchanges. It
thus also features a flat band in its spin-wave dispersions.
In distinction, the origami we find for Cs2CeCu3F12 is
nonflattenable and mechanically more rigid. Nevertheless,
it retains a finite residual entropy that has dramatic
consequences—doubly degenerate topological “Dirac”
lines nodes in the spin-wave dispersions akin to the
Fermi surface of a metal. We discover that these lines of
zero modes follow from a combination of a special point
group symmetry of our predicted nonflattenable periodic
origami and a Z2 topological invariant we build from this
symmetry and its isostatic property. In passing, we also find
that singly degenerate topological “Weyl” lines of zero
modes follow from a similar Z2 topological invariant for
generic periodic origami due to their mysterious realness
property [20]. Thus, we show that these “origami magnets”
have robust accidental degeneracy by applying recent
developments in the study of metamaterials to that of
kagome antiferromagnets.
We define a generic KHAF by [27]

H ¼
X
hi;ji

JijSi · Sj ¼
1

2

X
△α;△0β

S△αJ△α;△0βS△0β þ const; ð1Þ

where α ∈ fx; y; zg denote the spin components of the spin
vector Si, JΔα;Δ

0β is a positive definite symmetric matrix,
and SΔα ¼ lΔ

i Siα þ lΔ
j Sjα þ lΔ

k Skα with Δ denoting a
triangle with sites ijk and lΔ

i are (dimensionless) positive
real numbers. This form can be worked out straight-
forwardly for exclusively nearest-neighbor exchanges.
The result is JΔα;Δ

0β ¼ JΔδΔ;Δ0δα;β, JΔ > 0, and lΔ
i ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

JijJik=JΔJjk
p

for triangle Δ ¼ hijki. The zero-energy
condition then requires that the fixed-length vectors lΔ

i Siα
on a triangle sum to zero (SΔα ¼ 0), the very condition that
is met by vectors along the edges of a rigid triangle of the
type shown in Fig. 1(a), provided the anisotropy is not so
strong that the triangle inequality lΔ

i <lΔ
j þlΔ

k or its cyclic
permutations are violated. For the case of isotropic KHAFs,
these triangles permitted the mapping of zero-energy

configurations onto folding patterns of an origami sheet
consisting of equilateral triangular faces [1–3,5].
For an inhomogeneous system, however, we cannot

guarantee the existence of an origami analog merely
by satisfying

P
ΔliSi ¼ 0. This mapping specifies the

shape of the triangular face but not its scale; since each
edge corresponds to two faces but can have only one
length (lΔ

i ¼ lΔ0
i ), an additional requirement emerges on

the couplings around a magnetic system such as those
found in Fig. 1(b) (see Supplemental Material [28]):

J1J3J5J7J9J11 ¼ J2J4J6J8J10J12; ð2Þ
where here we explicitly labeled the bonds of the lattice for
clarity. As we will see, this condition is met for some but
not all KHAF systems. It is a necessary and sufficient
condition for the existence of a particular (up to overall
scale) origami analog that corresponds to the ground state
of a generic KHAF (see Supplemental Material [28]).
However, even among such systems, an important dis-
tinction arises depending on the geometry of the origami.
Vertices satisfying Eq. (2) are not, in general, flat. The

interior angle of the triangular surface associated with, e.g.,
the triangle formed by Si, Sj, and Sk in Fig. 1, i.e., the angle
between Si and Sj, is given by

θij ¼ cos−1
�
1

2

�
Jik
Jjk

þ Jjk
Jik

−
JikJjk
J2ij

��
: ð3Þ

We can compute them directly from the exchange con-
stants. It is only the special case for which the sum over the
angles about a vertex is 2π when the vertex can be formed
from a flat sheet, the condition that is usually (but not
always [33,34]) assumed for origami. “Non-Euclidean”
vertices violate this and are said to have nonzero dis-
crete Gaussian curvature (they are nonflattenable, as
described in Supplemental Material [28,35]) equal to the
angle deficit [36]

FIG. 1. (a) Mapping from a spin configuration on the star of
David to an origami where the spins in the former represent the
edge vectors in the latter drawn in dotted lines. (b) A kagome
“star of David” with nonuniform interactions which on the
exterior bonds satisfy the star condition [Eq. (2)], necessary
for a generic spin system to possess an origami analog. The
expression of the interior angle θij is given in Eq. (3).
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G⎔ ¼ 2π −
X

hiji∈⎔

θij; ð4Þ

where hiji ∈⎔ denotes all adjacent pairs of spins Si and Sj

that meet at the vertex at the center of the hexagon⎔. When
this angle deficit vanishes, the spins adjoining the vertex
can be and are expected [37] to be coplanar. In this case,
each vertex possesses a zero mode corresponding to
rotating the spins (edges) out of plane. In contrast, nonzero
angle deficits preclude these local zero modes and neces-
sarily lift the extensive degeneracy. Thus, the sign of each
vertex’s angle deficit μ⎔≡ sgnðG⎔Þ is a topological invari-
ant, in that it can change only when zero modes appear.
More generally, other classes of systems might lack zero
modes even when μ⎔ ¼ 0, because spins are prevented by
their neighbors from assuming coplanar configurations.
Note that these angle deficits, like the angles themselves,

depend only on the coupling constants [via Eq. (3)] and not
on the spin orientations. In the language of differential
geometry, this is Gauss’s “theorema egregium,” that the
Gaussian curvature is intrinsic to the system and does not
depend on changes to its configuration that are isometries
(zero modes) [38,39]. Thus, degeneracy is determined not
by fluctuations or dynamics but is largely determined by
hidden geometric constraints. While individual vertices are
governed by geometry, they are collectively constrained to
have a zero total angle deficit, due to topological con-
straints on the curvature given by the Gauss-Bonnet
theorem as described in Supplemental Material [28].
Among kagome materials that meet the star condition

[Eq. (2)] despite distortion, we identify two that exemplify
sharply distinct degeneracy. Cs2ZrCu3F12 [40,41] has a
pattern of spins shown in Fig. 2(a) that, despite distortion,
nevertheless lead to flat vertices. Hence, they resemble the
isotropic spin origami previously studied [1,2] despite their
distortion. In contrast, Cs2CeCu3F12 [42], as shown in
Fig. 2(b), with vertices having a finite curvature �G with

G ¼ 4cos−1
J3
2J2

− 4cos−1
J4
2J1

: ð5Þ

Evidently, G ↔ −G when J1;4 ↔ J2;3. The experimentally
measured values of the interaction parameters J1 ¼ 316 K,
J2 ¼ 297 K, J3 ¼ 88 K, and J4 ¼ 85 K (taken from
Ref. [42]) yields G ∼ −0.055 [Fig. 2(b)]. Straining the
system tunes the interactions away from these values
pushing the origami analog through a flat state and should
therefore result in a topological phase transition in the sense
of altering the invariant μ⎔≡ sgnðG⎔Þ, as described in
Supplemental Material [28]. Such a situation is experi-
mentally conceivable as a controlled tuning of interactions
in kagome systems has been achieved by means of applying
pressure [43] or uniaxial stress [44].
Given the ground state ordering patterns of the fluoride

materials shown in Fig. 2, we now turn to the question of
whether the associated spin waves in those materials have

any special features. We can qualitatively understand the
frustration associated with the zero modes of these two
materials by borrowing the concept of self-stresses from
topological mechanics. In the mechanical analog of the flat
spin origami sheet (as in Cs2ZrCu3F12), we can add tensions
to the 12 edges of the six triangular faces adjoining a given
vertex while preserving mechanical equilibrium regardless
of the shapes of the coplanar faces. These self-stress modes
then imply the existence of zero modes, since they corre-
spond to the redundancy of constraints functions in the
triangle conditions [22]. These zeromodes are displacements
of vertices in the direction perpendicular to the faces. They
are the manifestation in distorted kagome antiferromagnets
with flattenable origami ground states of the zero modes
existing in isotropic kagome antiferromagnets. However, for
generic nonflattenable origamiwith noncoplanar edges, as in
the Cs2CeCu3F12 compound, many of these self-stresses are
no longer possible—the rigidity of the sheet has become
fundamentally enhanced via its geometry in a process akin to
corrugation. This then has the effect of lifting the zero-energy
band of phonons (lattice vibrations) from the origami system
and magnons from the analogous spin system. The mechani-
cal responses thus predict a flat bandof spinwaves associated
with flattenable origami ground states (frustration preserved

FIG. 2. (a) Right: The distorted kagome lattice structure of
Cs2ZrCu3F12 with interactions that satisfy the star condition.
Left: The origami analog of the q ¼ 0 state of (a) is a flat sheet
(G ¼ 0 at each vertex as shown) consisting of isosceles triangles.
The dark blue and the light blue faces correspond, respectively, to
the blue-black and red-blue triangles of the kagome lattice shown
in the right. (b) Left: The distorted kagome lattice structure of
Cs2CeCu3F12 with interactions obeying the star condition. Right:
The spin origami for a q ¼ 0 state is a nonflattenable surface
[with finite G defined in Eq. (5)] with coplanar pairs of triangles
that form diamond shapes. The spin configurations for both are
denoted by yellow arrows.
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by distortions) but dispersing bands for nonflattenable
origami and suggest that μ, mentioned above, may be a
topological invariant whose change is associated with the
emergence of a zero mode. So at this level we predict that
frustration can be relieved by the distortions in Cs2CeCu3F12
but not in Cs2ZrCu3F12.
We can learn more about the zero modes by considering

the rigidity matrix [13]. It characterizes the entire linear
spin-wave theory of spin origami, which we choose to
describe in terms of small spin rotations about the ground
state using canonical variables xiμ ≡ ðqi; piÞ (see
Supplemental Material [28]). From the constraint functions
of the triangle condition, the rigidity matrix is just the
leading term obtained by expanding in xiμ [27]:

RΔα;iμ ¼
∂SΔα
∂xiμ : ð6Þ

The Hamiltonian matrix governing the spin waves is then
HSW ¼ RTR, where R is a square matrix, because the
number of constraints is equal to the number of degrees of
freedom ν ¼ D − K ¼ 0. Solving for the spin-wave
frequencies, we find a flat band for the flattenable origami
of Cs2ZrCu3F12 as expected but doubly degenerate “Dirac”
line nodes for Cs2CeCu3F12 (see Fig. 3). The existence of
similar line nodes has been previously reported in certain
3D topological semimetals (see Ref. [45] and references
therein), however, not in magnetic systems or in 2D. So the
rigidity matrix both encodes the flat spin-wave band of a flat
origami and reveals line nodes of nonflattenable origami.
Zero modes occur precisely at those wave vectors for

which Det½RðkÞ� vanishes. This determinant is for general
mechanical systems complex, leading to nonzero winding
numbers

wðCÞ ¼ 1

2π

I
C
dfargDet½RðkÞ�g; ð7Þ

around paths C in the Brillouin zone that are protected
under lattice distortions. It either measures the circulation
of isolated Weyl point nodes C encloses [18,24] or
characterizes the topological polarization if C is a non-
contractible loop across the torus [13]. But, remarkably,
for a generic model of spin origami we find that Det½RðkÞ�
is a real number up to an overall constant phase in the
Brillouin zone (BZ). It obeys the mysterious “realness”
condition previously observed for the rigidity matrices of
triangulated mechanical origami [20]. The winding num-
bers wðCÞ therefore vanish for all C. After eliminating a
constant phase by choosing a gauge, however, this realness
condition defines another topological number:

FIG. 3. (a) Some of the lowest spin-wave frequencies of
Cs2CeCu3F12 as plotted along the high-symmetry path in the
BZ shown in the inset and corresponding to the ground state
specified by b0 ¼ 0.06 (see Supplemental Material [28] for the
definition of b0). (b) A plot (in log scale) of the lowest frequency
(ω0) in the BZ reveals the Dirac line nodes.

FIG. 4. (a),(b) Dirac line nodes (thick red lines) separating zones of different values of ηþ (yellow and blue correspond to þ and −,
respectively) in the spin-wave dispersions of Cs2CeCu3F12. We study these here for two different ground states (defined by the
parameter b0) that represent two members of the one-dimensional family of origami configurations obtained for the periodic state (see
Supplemental Material [28]). The insets in (a) and (b) are the plots of ηþ over a circle in the BZ shown on the dotted line. The locations of
the lines are decided by the condition Det½RðkÞ� ¼ 0 and depend on b0. (c) Under deformations that break the point group symmetry of
Cs2CeCu3F12, each Dirac line splits into two Weyl lines which are characterized by η in Eq. (8). The inset in (c) is the plot of η over a
circle in the BZ.
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ηðkÞ ¼ sgnDet½RðkÞ�: ð8Þ

It demands that two regions in the BZ with different ηðkÞ
are separated by a line of zero modes—the topological
Weyl line nodes. We illustrate this in Supplemental
Material [28] by generating periodic origami and observing
how these line nodes move and can vanish pairwise. So just
by computing ηðkÞwe can learn a lot about the zero modes:
While they may be lifted by distortions [see Fig. 4(c)], a
generic nonflattenable origami typically still has topologi-
cal Weyl line nodes in its spin-wave dispersion. The Dirac
line nodes must then somehow be pairs of these Weyl
line nodes.
To explain the double degeneracy, we have carried out a

symmetry analysis in Supplemental Material [28,46]. We
now know that adding a symmetry can eliminate topology
and create new topology. Specifically, for Cs2CeCu3F12,
whose triangular faces pair up to create diamond shapes, its
point group symmetry explains the numerically observed
double degeneracy by playing a role analogous to Kramers
degeneracy in a metal. By plotting the 12 spins within the
unit cell with tails at a common origin, we have uncovered
precisely such a symmetry. We find that the point group has
both unitary and antiunitary symmetries which guarantee
that we can place the rigidity matrix in a block diagonal
form with two 12×12 blocks each with just real numbers as
their elements. The determinant then becomes Det½RðkÞ�¼
Det½RþðkÞ�Det½R−ðkÞ�, where not only Det½RðkÞ� is
real, but also Det½R�ðkÞ�. We can then define new topo-
logical invariants η�ðkÞ¼ sgnDet½R�ðkÞ� with ηðkÞ ¼
ηþðkÞη−ðkÞ. A plot of ηþðkÞ is shown in Fig. 4 evincing
the effects of distortion that splits the Dirac line nodes into
Weyl type. The point group symmetry further demands that
they both change sign if one of them changes sign so that
ηðkÞ never changes sign (a loss of topology) and any line
nodes are doubly degenerate (a new topology). Hence, by
identifying the full point group symmetry and its antiuni-
tary character, we have explained the topological protection
of the double degenerate line nodes.
Finally, we should mention that the topology of rigidity

matrices for origami that we uncover here has recently
been extended to a full classification by two of the
authors [47].
In summary, we have identified broad classes of KHAFs,

including two experimentally available fluoride com-
pounds, whose degenerate ground states can be mapped
onto the folding motions of origami sheets. The geometry,
symmetry, and topology of these mechanical analogs
explicates how seemingly comparable spin interactions
can either preserve or destroy the extensive frustration or
even give rise to novel Dirac line nodes. This mapping
extends the original spin origami concept to permit new
notions of folding and straining structured mechanical
sheets. New results in topological mechanical metamate-
rials suggest that other magnetic systems may yet realize

exotic gapless modes on the boundary and Weyl point
nodes in the bulk.
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