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The dynamo effect is a class of macroscopic phenomena responsible for generating and maintaining
magnetic fields in astrophysical bodies. It hinges on the hydrodynamic three-dimensional motion of
conducting gases and plasmas that achieve high hydrodynamic and/or magnetic Reynolds numbers due to
the large length scales involved. The existing laboratory experiments modeling dynamos are challenging
and involve large apparatuses containing conducting fluids subject to fast helical flows. Here we propose
that electronic solid-state materials—in particular, hydrodynamic metals—may serve as an alternative
platform to observe some aspects of the dynamo effect. Motivated by recent experimental developments,
this Letter focuses on hydrodynamic Weyl semimetals, where the dominant scattering mechanism is due to
interactions. We derive Navier-Stokes equations along with equations of magnetohydrodynamics that
describe the transport of a Weyl electron-hole plasma appropriate in this regime. We estimate the
hydrodynamic and magnetic Reynolds numbers for this system. The latter is a key figure of merit of the
dynamo mechanism. We show that it can be relatively large to enable observation of the dynamo-induced
magnetic field bootstrap in an experiment. Finally, we generalize the simplest dynamo instability model—
the Ponomarenko dynamo—to the case of a hydrodynamic Weyl semimetal and show that the chiral
anomaly term reduces the threshold magnetic Reynolds number for the dynamo instability.
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The dynamo effect is a beautiful astrophysical phenome-
non, first proposed by Larmor in 1919 [1], that is believed
to be responsible for generating and sustaining magnetic
fields in galaxies, stars, and planets, including the Sun and
Earth [2]. There exist a large variety of different dynamo
mechanisms [2–4] that all share the same key ingredient—
hydrodynamic motion of an electrically conducting gas,
fluid, or plasma. The dynamo theory deals with the hydro-
dynamic motion of a conductive medium focusing on the
possibility of self-generating and self-sustaining magnetic
fields, whose presence has been observed in astrophysical
bodies.
As detailed below, the underlying equations of the theory

are the Navier-Stokes equations, describing the hydro-
dynamic motion of the medium, coupled to the Maxwell
equations of electromagnetism. In the nonrelativistic limit,
they give rise to equations of magnetohydrodynamics
(MHD). These are complicated nonlinear equations, and
their exact solutions represent a great challenge. However,
both the solutions of simplified MHD models [e.g., kin-
ematic dynamos, with predetermined velocity fields uðr; tÞ]
and qualitative arguments [2] suggest that the dynamo action
is possiblewhen the terms enhancing themagnetic field [e.g.,
the induction term ∇ × ðu ×BÞ] overwhelm the magnetic
diffusion term ηmΔB (where ηm ¼ c2=4πσ, where c is the
speed of light andσ is the conductivity of themedium),which
tend to suppress the self-generation. The respective figure of
merit is the magnetic Reynolds number [5]

Rm ¼ uL
ηm

¼ uL
4πσ

c2
; ð1Þ

where L is the characteristic system size and u is the
typical velocity of the medium. The threshold value for
a dynamo action to commence (usually lying in the

range RðcrÞ
m ∼ 10–100, with RðcrÞ

m ≈ 17.7 for the simplest
Ponomarenko dynamo [6] discussed below) depends on
the system’s geometry and is rarely known exactly. It is
clear, however, that the largerRm, the more likely and more
effective the dynamo action. The conductivity of astro-
physical media varies greatly from 10−11 Sm−1 for inter-
stellar plasma to 103 Sm−1 for the solar convection shell
and 105 Sm−1 for Earth’s core, but in all of these cases the
large magnetic diffusion coefficient is compensated by
literally astronomical distances resulting in large magnetic
Reynolds numbers, however small the conductivities are.
By contrast, laboratory dynamo experiments [7] deal
with naturally limited system sizes and use the conductivity
and the flow velocities as the only potentially tunable
parameters.
Apart from large magnetic Reynolds numbers Rm ≫ 1,

the emergence of a dynamo requires a number of other
conditions that need to be met. In particular, certain “no-go
theorems” [8] have to be overcome, such as the impossibility
of a two-dimensional dynamo effect or that in a planar
three-dimensional flow (i.e., with one vanishing component
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of velocity). Finally, it is known that the dynamo action is
greatly helped by the helicity flow, which may arise either
due to the geometry of an imposed flow or due to turbulence.
The latter is possible if the second figure of merit, the
hydrodynamic Reynolds number

R ¼ uL
ν
; ð2Þ

where ν is the kinematic viscosity, is large. Separating both
the velocity and magnetic field into a mean-field and
fluctuating component—u ¼ ūþ δu and B ¼ B̄þ δB—
and averaging over the small-scale fluctuations results in
the Krause-Rädler equations [9,10] of mean-field MHD,
which in the simplest case of isotropic turbulence is given by

∂B̄
∂t ¼ ∇ × ðū × B̄Þ þ ∇ × ðαB̄Þ þ ξΔB̄; ð3Þ

where the second term in the right-hand side is the “new”
helicity term allowed in turbulent MHD (α effect). If the
velocity field is stationary, Eq. (3) or a similarMHDequation
without helicity for nonturbulent flows becomes an eigen-
value problem for the magnetic field growth Bðr; tÞ ∝
BðrÞeγt. The existence of exponentially growing components
(Reγ > 0) indicates an instability towards a self-generating
magnetic field (where the imaginary part Imγ > 0 leads to the
field oscillations, which have been suggested [11] by one of
the authors to lead, e.g., to periodic cycles of solar magnetic
activity).
Apart from the astrophysical context, there has been a

tremendous interest in testing the predictions of dynamo
theory and modeling a planetarylike or solarlike dynamo
action in the laboratory [7,12–14]. Several impressive
laboratory experiments have been carried out and are
currently under way that involve setting in motion a liquid
metal—sodium or gallium—with the goal to achieve large
Reynolds numbers to enable the dynamo mechanism. As is
obvious from Eqs. (1) and (2), this leads to the challenge of
ultrafast mechanical stirring or rotating the liquid metal.
Here we propose that electronic solid-state systems may

provide an alternative platform for observing magneto-
hydrodynamic effects. First, we list several necessary
conditions of the dynamo effect in an electronic system.
(i) Transport in the electron liquid should be governed by
hydrodynamics; i.e., the primary momentum relaxation
mechanism should be electron-electron collisions rather
than impurity scattering. (ii) The system and the flow must
be essentially three-dimensional. (iii) Large magnetic
Rm ≫ 1 and/or hydrodynamic R ≫ 1 Reynolds numbers
are required.
Hydrodynamic transport in the solid state [condition (i)]

has been a subject of intense recent studies [15–19], both
theoretical and experimental. On the experimental side, two
widely studied platforms for hydrodynamic phenomena

are graphene [20] and Weyl semimetals (WSMs) [21–23].
Graphene, however, violates a no-go dynamo theorem—
condition (ii) requiring 3D flows—and is thus of no
relevance to the dynamo effect.
In what follows, we focus on magnetohydrodynamic

phenomena in Weyl metals (doped Weyl semimetals). We
note that, in systems with the power-law quasiparticle
dispersion [24–29] ϵðpÞ ∝ jpjβ with β ≤ 1, the creation of
electron-hole pairs is suppressed [30], because the energy
and momentum conservation laws cannot be satisfied
simultaneously for lowest-order processes. Weyl systems
(β ¼ 1) may, therefore, often be considered as electron-
hole plasmas with a linear particle dispersion.
A WSM generically has an even number of nodes,

according to the fermion-doubling theorem [31], and
electrons and holes near different nodes often behave as
independent liquids. However, the simultaneous applica-
tion of external electric E and magnetic B fields results in
the quasiparticle transfer from one node to another (chiral
anomaly [32–36]). For simplicity, we assume in this Letter
that (a) the system has only two nodes, labeled by L and R,
with the same quasiparticle dispersion, (b) the entire system
is being kept at a constant temperature T, and (c) the
intranodal equilibration processes are significantly faster
than the internodal particle-transfer processes. This allows
one to define the chemical potentials μα near each node
α ¼ L, R and the hydrodynamic velocity u of the Weyl
fluid. The distribution function of the linearly dispersing
quasiparticles near each node in the absence of electro-
magnetic fields is given by [37] fαðkÞ ¼ fexp ½γðuÞ
ð�vFjkj − μα − u · kÞ=T� þ 1g−1, where “þ” and “−”
refer, respectively, to the conduction and valence bands,
γðuÞ ¼ ð1 − u2=v2FÞ1=2, and γðuÞð�vFjkj − μα − u · kÞ is
the quasiparticle dispersion in the reference frame of the
moving electron liquid.
The dynamics of charge densities ρα near node α, where

α ¼ L, R, are described by the continuity equations

∂tρα þ ∇ · jα − χα
ge3

4π2ℏ2c
E ·Bþ ρα − ρᾱ

τin
¼ 0; ð4Þ

where χL ¼ −1 and χR ¼ þ1 are the “chiralities” of
quasiparticles near nodes L and R, respectively, and g
accounts for spin and possibly additional valley degen-
eracy; ᾱ labels the node other than α; hereinafter, e ¼ −jej.
The first two terms in Eq. (4) match the usual continuity
equation for a liquid with density ρα; the third term
(∝ E ·B) accounts [35,36] for the change of the electron
concentration at node α due to the chiral anomaly; and the
last term in Eq. (4) describes internodal scattering, e.g., due
to short-range-correlated quenched disorder, with the inter-
nodal scattering time τin. The electric currents jL;R of the
charge carriers near the two nodes are given by

jα¼
X
β

σαβ

�
Eþ1

c
u×B−

1

e
∇μβ

�
−χα

ge2

4π2ℏ2c
Bμα; ð5Þ
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where α, β ¼ L, R, μα is the chemical potential near node
α, and u is the hydrodynamic velocity of the Weyl
fluid. In this Letter, we assume that the imbalance of the
chemical potentials between the nodes, if any, is small:
jμL − μRj ≪ jμL;Rj; T. The diagonal components σLL ¼
σRR of the conductivity tensor σαβ describe the response
of charge carriers near each node to the electromagnetic
field; the off-diagonal entries σLR ¼ σRL account for the
drag of the quasiparticles near each node by the current near
the other node. The last term in Eq. (5) describes the chiral
magnetic effect [38,39], the generation of the charge
current by an external magnetic field in the system in
the presence of chirality imbalance: μL − μR ≠ 0.
Equations (4) and (5), together with the relations [40]

ρR;L ¼ ge
μ3R;L þ π2μR;LT2

6π2v3Fℏ
3

ð6Þ

for the charge density at node α andwithMaxwell equations,
which involve the total charge density ρ ¼ ρL þ ρR and the
current j ¼ jL þ jR, constitute a closed system of equations
which describes charge and current dynamics of the electron
liquid in aWSMwhich moves with velocity u in an external
electromagnetic field. The motion of such a liquid may be
generated by the electromagnetic fields, the temperature and
chemical potential gradients, or even fastmechanical rotation
of the sample.
To determine self-consistently the velocity field u (which,

in practice, is a tremendously difficult problem), the system
of Eqs. (4)–(6) has to be complemented by theNavier-Stokes
equation (derived in Supplemental Material [41])

wα

v2F

� ∂
∂tþ u ·∇

�
u ¼ −∇Pα −

u
v2F

∂Pα

∂t þ ραEþ 1

c
jα ×B

þ u
3

�∂ε
∂ρ

�
α

�
χα

ge3

h2c
E ·B−

ρα − ρᾱ
τin

�

þ η∇2uþ ζ∇ð∇ · uÞ; ð7Þ

where wα ¼ εα þ Pα is the enthalpy of the charge carriers
near node α per unit volume, with [42]

εα ≈ g
7π4T4 þ 30π2μ2αT2 þ 15μ4α

120π2v3Fℏ
3

ð8Þ

and Pα ≈ ðεα=3Þ being, respectively, the contributions of
node α to the internal energy and pressure; the current jα is
given byEq. (5); η and ζ are the shear and the bulk viscosities,
respectively; and the term∝ ð∂ε=∂ρÞ accounts for the change
of the energy and pressure of the Weyl liquid near node α
due to the internodal scattering and the chiral anomaly, where
ð∂ε=∂ρÞα ¼ ð3μα=eÞðμ2α þ π2T2=3μ2α þ π2T2Þ for the case
of an isothermal flow considered in this Letter [see
Supplemental Material [41] for the discussion of the assump-
tions about thermalization].

In this Letter, we neglect the so-called chiral vortical
effect [42], i.e., contributions to the current from the
interplay of global rotations of the system and chirality
imbalance (μL − μR ≠ 0). In theNavier-Stokes equation (7),
we also neglect terms of higher orders in u2=v2F.
Equations (4)–(7), together with the Maxwell equations
and the equations of state, in the form of Eq. (8) and
Pα ¼ ðεα=3Þ, constitute a closed system of equations
describing the dynamics of the electromagnetic fields
and the electron liquid in a WSM.
Using Eq. (5), together with the Maxwell equations ∇ ×

E ¼ −ð1=cÞð∂B=∂tÞ and jL þ jR ≡ j ¼ ðc=4πÞ∇ ×B,
where we neglected the displacement current under the
assumption of a quasistationary flow, we arrive at the
equation for the dynamics of the magnetic field:

∂B
∂t ¼∇× ðu×BÞþ c2

4πσ
∇2Bþ ge2

4π2ℏ2σ
∇× ½ðμL−μRÞB�;

ð9Þ

where σ ¼ 2σLL þ 2σLR is the conductivity of theWSMand
we have taken into account that the quasiparticles have the
same dispersion near the two nodes. Apart from solid-state
WSMs, an equation of the form (9)with phenomenologically
introduced coefficients describes the dynamics of ultra-
relativistic chiral particles [43].
Equation (9) indicates that Weyl liquids allow for the

helicity term for macroscopic fields without turbulence, in
contrast with the conventional α dynamo of Krause and
Rädler [9]. However, it can appear only in the presence of an
already existing field, and while, as shown below, it can
further enhance magnetic field “bootstrap,” it cannot lead to
generation of the field in and by itself if there is no seed field
to begin with. For that, the magnetic Reynolds number (1),
Rm, has to be large enough, as discussed in the introduction.
To estimate Rm, we use the equation for the Coulomb-

interaction-dominated conductivity of aWeyl semimetal [44]:

σ ∼
e2

ℏ
kBT
ℏvF

1

α2
; ð10Þ

where theWeyl fine-structure constant isα ¼ e2=ðℏvFϰÞ and
ϰ is the dielectric constant, which crucially may be rather
large. While Eq. (10) has been derived neglecting screening
effects [44], it should be adequate for estimates. For these
purposes, we have also dropped logarithmic renormalization
factors.
Let us emphasize that the dynamo effect is amacroscopic

classical phenomenon. The effect is favored by large system
sizes L, which lead to large Rm. In experiments with solid-
state systems, the size L is rather limited, with centimeter-
size samples being at theupper endof the range accessible for
WSMs. Since the effect is not sensitive to quantum inter-
ference effects, higher temperatures T are much preferable
to maximizeRm; the room temperature Troom thus represents
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a reasonable comparison scale. We emphasize that even at
room temperature Weyl semimetals are not Maxwell gases
and the quantum statistics and quantum nature of the
electron-electron scattering are important, but quantum
coherence is not essential for the dynamo effect. Using these
length and temperature scales, we obtain the following
estimate for the main figure of merit in the dynamo theory:

Rm ∼
1

α2
e2

ℏ
4πkBT
ℏvFc2

uL ∼
10−6

α2

�
T

Troom

�
× u

�
cm
s

�
L½cm�;

ð11Þ

where u is the typical velocity of the flow.
Now, we turn to estimates of the hydrodynamic

Reynolds number (2). The viscosity of the quasiparticles
in a Weyl semimetal at temperature T may be estimated
as η ∼ nðTÞTτrel, where nðTÞ is the concentration of the
thermally excited quasiparticles and τrel ∼ ℏðα2kBTÞ−1 is
the momentum relaxation time. Note that this result follows
from the second-order perturbation theory in Coulomb
interaction and neglects screening effects. This leads to

η ∼
ðkBTÞ3
α2ℏ2v3F

: ð12Þ

The motion of aWeyl-semimetal liquid is turbulent in the
hydrodynamic sense when the term ðw=v2FÞðu · ∇Þu in the
Navier-Stokes equation (7) dominates the dissipative terms
∼η∇2u that come from the viscosity of the Weyl fluid. This
yields the following estimate:

R ¼ wuL
ηv2F

∼ α2
kBT
ℏ

uL
v2F

∼ 4α210−3
�

T
Troom

�
× u

�
cm
s

�
L½cm�;

ð13Þ

where we have used the estimate w ≈ ð7gπ2T4=90ℏ3v3FÞ ∼
½ðkBTÞ4=ℏ3v3F� for the specific enthalpy at high temperatures.
We note in this context that the viscosity of a Fermi liquid

at temperature T may be estimated as η ∼ ε5F=ðT2ℏ2v3FÞ,
where εF and vF are the Fermi energy and velocity,
respectively. Because the hydrodynamic Reynolds number
R ∼ ðT2=v2FεFℏÞ gets rapidly suppressedwith increasing the
Fermi energy εF, topological semimetals are indeed a
favorable platform for achieving electronic turbulence as
compared to “conventional” hydrodynamic metals.
Naturally, the geometry and the magnitude of the

velocity field u much depend on the mechanism to stir
up hydrodynamic motion and follow from the solution
of the Navier-Stokes equations, which is a challenging task
in most cases. Furthermore, since the observation of a
phenomenon of this kind has never been attempted in solid-
state materials, specific experimental techniques for achiev-
ing high hydrodynamic flows in the most efficient way still
deserve further investigation—pulsed fields (in particular

orbital-angular-momentum pulses [45] in a cylindrical
geometry), crossed electric and magnetic fields, or just a
rapid rotation of the sample are all possibilities to consider.
While below we consider in detail one of the standard and
simplest dynamo models, we emphasize immediately that
the estimates (11) and (13) are not prohibitive; and it is
conceivable that relatively large magnetic Reynolds num-
bers, necessary for the dynamo to commence, are achiev-
able for realistic flow velocities with u of the order of
1 km=s or greater (especially considering that the dielectric
constant may be as high as ϰ ∼ 50 in WSMs); cf. Fig. 1.
Now, we discuss a specific model of the dynamo effect—

the so-called kinematic Ponomarenko dynamo [6,8]—with
an eye on how the terms inMHDequations, descending from
the chiral anomaly, change the effect. The Ponomarenko
dynamo does not necessarily represent the most experimen-
tally realistic setup, but it does represent the simplest text-
book model, which contains the key qualitative features of a
dynamo mechanism and is amenable to analytical analysis.
In order for a dynamo action to occur, the magnetic

Reynolds number must exceed a critical value Rc
m [46]. The

purpose of the calculation below is to obtain the dependence
of the critical Reynolds number Rc

m on the helicity term. For
simplicity, we neglect the time dependence of the chemical-
potential difference μL − μR on the times we consider.
We rewrite Eq. (9) as

∂B
∂t ¼ ∇ × ðu ×BÞ þ c2

4πσ
∇2Bþ ξ∇ ×B; ð14Þ

where ξ ¼ ge2ðμL − μRÞ=ð4π2ℏ2σÞ. We consider a cylindri-
cal geometry of the samplewith a flow fieldu ¼ ð0; rΩ; u0Þ,
whereΩ and u0 are constants, for r ≤ a and u ¼ 0 for r > a
[46]. Plugging the ansatzBðr; θ; z; tÞ ¼ BðrÞeiðnθ−kzÞþγt into
(9), the components of the magnetic field B� ¼ Br � iBθ

satisfy the equations

y2B00
�þyB0

� ¼ ½q2y2þðn�1Þ2�B�−δ½nyB0∓∓nðn∓1ÞB∓
�k2a2y2B�∓q2y2Br� ð15Þ

FIG. 1. Flow regimes for the electron liquid in aWeyl semimetal
on the diagram “fine-structure constant” α ¼ ðe2=ϰℏvFÞ vs flow
velocity u (log-log scale) for the room temperature T ¼ Troom ¼
300 K and the Fermi velocity vF ¼ 108 ðcm=sÞ. The maximum
value of the fine-structure constant is αmax ¼ ðe2=ℏvFÞ ≈ 2.2.
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for y ¼ r=a ≤ 1 and

y2B00
� þ yB0

� ¼ ½s2y2 þ ðn� 1Þ2�B� ð16Þ

for y > 1, where B0
� (B00

�) is the first (second) derivative
with respect to y; δ ¼ 4πσξ=kc2, q2 ¼ k2a2 þ γτR þ
iðnΩ − ku0Þ, and s2 ¼ k2a2 þ γτR, where τR ¼ 4πσa2=c2

is the time scale of the magnetic field diffusion.
For each mode n, the magnetic field starts to grow

exponentially when ReðγÞ > 0, which occurs if the mag-
netic Reynolds number exceeds a critical value Rc

m. In the
absence of helicity (δ ¼ 0), Eq. (14) reduces to the conven-
tional dynamo equation and the n ¼ 0 mode is not excited
for an arbitrary intensity of the flow [46]. For nonzero
helicity, we solved the inhomogeneous equations (15) and
(16) with appropriate boundary conditions imposed [41] to
obtain the dispersion relation for the dynamo mode. The
obtained values of Rc

m for a dynamo with n ¼ 1 and a
particular direction of wave vector k (the z axis) are shown
in Fig. 2. The n ¼ 1 mode is the leading mode, where the
dynamo action commences first, and for which the critical
magnetic Reynolds number is the smallest and potentially
within reach for actual Weyl systems. In the absence of
helicity (i.e., if δ ¼ 0), it is known to be Rc

m ≃ 17.7 [46].
Interestingly enough, the helicity δ > 0 reduces the critical
value of the magnetic Reynolds number for the n ¼ 1mode
and helps the dynamo action to occur for Rc

m < 17.7.
Because dynamo flows with various directions of k may
emerge spontaneously in a turbulent liquid, the presence
of helicity (a consequence of the chiral anomaly) would
generically aid the dynamo bootstrap in any geometry of
the flow.
In conclusion, this Letter proposes hydrodynamic Weyl

semimetals as a host to electronic turbulence and/or a
dynamo effect. We derived the Navier-Stokes equations (7)
and equations of magnetohydrodynamics (9) and estimated

two key figures of merit—the hydrodynamic and magnetic
Reynolds numbers. Figure 1 summarizes our findings and
shows that both turbulence and the dynamo mechanism are,
in principle, experimentally achievable. However, many
interesting questions remain, such as experimental signa-
tures of the turbulent electronic motion and the role of
“new” terms in the Navier-Stokes equations, descending
from the quantum chiral anomaly. Finally, we mention that,
while three-dimensional Dirac materials are indeed inter-
esting from the perspective of realizing the dynamo boot-
strap, a number of other electronic materials may also serve
as platforms to realize the effect. For example, electronic
metals near critical points (e.g., right above a supercon-
ducting transition) represent a promising system to look at
in this context (from the perspective of achieving both
hydrodynamic flows and large Reynolds numbers) and
could pave the way to simulating in solid-state materials the
effect of magnetic field self-excitation—a remarkable
phenomenon, usually delegated to the fields of geophysics,
astrophysics, and cosmology.
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