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Superconductors with unconventional pairings have been a fascinating subject of research, for which a
central issue is to explore effects that can be used to characterize the pairing. The process of Andreev
reflection—the reflection of an electron as a hole at a normal-metal–superconductor interface—offers a
basic mechanism to probe the pairing. Here we predict that in Andreev reflection from unconventional
superconductors, the reflected hole acquires an anomalous spatial shift normal to the plane of incidence,
arising from the unconventional pairing. The transverse shift is sensitive to the superconducting gap
structure, exhibiting characteristic features for each pairing type, and can be detected as voltage signals.
Our work not only unveils a fundamentally new effect with a novel underlying mechanism, but also
suggests a possible new technique capable of probing the structure of unconventional pairings.
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Interface scattering—the scattering at an interface
between different media—is ubiquitous for all kinds of
particles and waves. It offers a basic means to probe
material properties and is of fundamental importance for
controlling carrier transport. Nontrivial effects can happen
during interface scattering. In geometric optics, it is known
that a circularly-polarized light beam undergoes a trans-
verse shift, normal to its plane of incidence when reflected
at an optical interface, called the Imbert-Fedorov (IF) shift
[1–6]. Recently, an analogous effect has been discovered
for electronic systems, showing that transverse shifts also
appear for electrons in so-called Weyl semimetals [7–10].
In both cases, the spin-orbit coupling (SOC) plays the key
role. The light helicity, corresponding to the photonic spin
state, intrinsically couples with the light propagation in the
Maxwell equation [11], and the low-energy electrons in
Weyl semimetals also possess a strong SOC described by
the Weyl equation [12,13]. Upon scattering, any change in
the particle spin would require a change in the orbital
motion due to SOC, resulting in the anomalous spatial shift.
There is an intriguing and unique scattering process

occurring at the normal-metal–superconductor (NS) inter-
face—the Andreev reflection, in which an incident electron
from the normal metal is reflected back as a hole,
accompanied by the transfer of a Cooper pair into the
superconductor [14,15]. Most recently, we find that the
transverse shift can also exist in the Andreev reflection, if
the interface is formed by a spin-orbit-coupled metal and a
conventional s-wave superconductor [16]. It is important to
note that the essential ingredient there is still the assumed
strong SOC of the scattered carrier—the shift vanishes
when the SOC is negligible, whereas the superconductivity

only plays a passive role as a channel for electron-hole
conversion.
Unconventional pairing brings new physics into the

picture. By breaking more symmetries than the U(1) gauge
symmetry, unconventional pair potentials necessarily have
a strong wave vector dependence [17]. Surprisingly, we
find that in an Andreev reflection from an unconventional
superconductor, a sizable transverse shift exists even in the
absence of the SOC, resulting solely from the unconven-
tional pair potential. We show that the unconventional
pairing provides an effective coupling between the orbital
motion and the pseudospin of the electron-hole (Nambu)
space, which underlies this exotic effect. Remarkably, the
value of the shift is sensitive to the structure of the pair
potential, and it manifests characteristic features for each
pairing type, as summarized in Table I. The effect can be
detected through electric measurement, providing a prom-
ising new technique for probing the structure of unconven-
tional pairings.

TABLE I. Features of the transverse shift for typical unconven-
tional pair potentials. “No. of SZ” stands for the number of
suppressed zones when the rotation angle α varies from 0 to 2π.

Expression

Pair
potential le

T lh
T

Period
in α

Vanish for
ε > jΔðαÞj

No. of
SZ

Chiral Δ0ei χϕk 0 χ
kNF sin γ � � � No 0

px Δ0 cosϕk

le
T ≈ lh

T

π

Yes

2
py Δ0 sinϕk π 2
dx2−y2 Δ0 cos 2ϕk π=2 4
dxy Δ0 sin 2ϕk π=2 4
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Model.—Since our goal is to demonstrate the existence
of the finite transverse shift, we take a simplest model for a
three-dimensional NS junction with a flat interface in the
clean limit. In this Letter, we focus on the case where the
interface is perpendicular to the principle rotation axis
(along the z direction) of the superconductor [Fig. 1(b)].
Configurations with other interface orientations can be
similarly studied. To highlight the role of unconventional
pairing, we neglect SOC in the model. Then, for each
pairing considered in Table I, the essential physics of
scattering at the NS interface (located at z ¼ 0) can be
captured by the Bogoliubov–de Gennes (BdG) equation
[15,18,19] in the following reduced form

�
H0 − EF þ VðzÞ ΔðzÞ

Δ�ðzÞ EF −H0 − VðzÞ
�
ψ ¼ εψ : ð1Þ

Here, ψ is the two-component spinor wave function in the
Nambu space (the real-spin labels are suppressed), EF is
the Fermi energy, and VðzÞ ¼ UΘðzÞ þ hδðzÞ with U the
band bottom shift, h the interface barrier potential, and Θ
the Heaviside step function. We take the single-particle
Hamiltonian H0 ¼ −½1=ð2mÞ�∇2 for the normal-metal (N)
side (z < 0), and H0¼−½1=ð2mkÞ�ð∂2

xþ∂2
yÞ−½1=ð2mzÞ�∂2

z
for the superconductor (S) side (z > 0). The difference in
the effective masses mk and mz describes the possible
uniaxial anisotropy in S. For certain layered superconduc-
tors (like cuprates), the Fermi surface is highly anisotropic
and may take a cylinderlike shape in the normal state. Such
a case can be described using a lattice model, and we find
that the essential features of our results remain the same
[20]. For concrete calculations, we take the usual step
function model for the pair potential ΔðzÞ ¼ ΔΘðzÞ
[18,34]. It is a good approximation to the full self-
consistent solution for the BdG equation near an interface
[35–37], and as we show below, for certain cases with an
emergent symmetry, the transverse shift does not actually
depend on the detailed z variation of ΔðzÞ. We consider the
weak coupling limit with EF −U ≫ jΔj, ε in the S region,

so that the wave vector for Δ’s k-dependence is fixed on the
(normal-state) Fermi surface of S, and Δ only depends on
the direction of the wave vector k [38].
Intuitive picture & symmetry argument.—The spatial

shift is defined for a confined electron beam undergoing a
reflection at the interface. The incident geometry is
characterized by two angles, γ and α, as illustrated in
Fig. 1. The beam is usually modeled by a wave packet Ψ
[7,16,21], which is assumed to be confined in both real and
momentum spaces. The detailed form of Ψ does not
concern us for now.
Let us first consider the case when Δ is of the chiral

p-wave pairing, with Δ ¼ Δ0ei χϕk , because it offers an
intuitive understanding of the physical picture. Here,
χ ¼ �1 denotes the chirality, ðθk;ϕkÞ are the spherical
angles of k, and Δ0 is assumed to be independent of ϕk but
may still depend on θk. A key observation is that the BdG
equation possesses an emergent symmetry:

½ĤBdG; Ĵ z� ¼ 0; ð2Þ

where ĤBdG is the BdG Hamiltonian in Eq. (1), with Δ
taking the chiral p-wave form, and

Ĵ z ¼ ðr̂ × k̂Þ − 1

2
χτ̂z ð3Þ

resembles an effective angular momentum operator with τ̂z
the Pauli matrix corresponding to the Nambu pseudospin-
1=2. Consequently, the expectation value Jz ¼ hΨjĴ zjΨi
evaluated for the beammust conserve during scattering. For
electrons and holes, the expectation values of the Nambu
pseudospin are the opposite: hτ̂zie=h ¼ �1. Because the
pseudospin flips in the Andreev reflection, the conservation
of Jz must dictate a transverse shift lh

T to compensate this
change (see Fig. 1), leading to

lh
T ¼ −

χ

2kk
ðhτ̂zih − hτ̂zieÞ ¼

χ

kk
; ð4Þ

where kk ¼ kNF sin γ, kNF is the Fermi wave vector in N, and
γ is the incident angle.
This remarkable result demonstrates several points. First,

the physical picture becomes clear: the shift here is entirely
due to the unconventional pairing, which plays the role of
an effective SOC that couples k and τ. However, the spin
here is not the real spin but the Nambu pseudospin, which is
intrinsic and unique for superconductors. The change in
pseudospin during the Andreev reflection then naturally
results in the shift in real space. Second, resulting from a
symmetry argument, Eq. (4) is quite general: as long as the
symmetry is preserved, factors like the variation of ΔðzÞ,
the excitation energy, or the interfacial barrier will not
affect lh

T . Third, the result of Eq. (4) also applies for
chiral pairings with higher orbital moments (j χj > 1), such
as dþ id or f þ if pairings. Finally, the shift becomes

(a) (b)

FIG. 1. (a) Schematic of the NS junction setup. In the Andreev
reflection, the reflection plane (green colored) is shifted by
distance lh

T from the incident plane (orange colored) along its
normal direction (n̂), due to an unconventional pairing in S. Here,
n̂ is specified to be along k̂ × ẑ with k̂ the incident direction.
(b) Top view of the x-y plane in (a). For certain pairings, there
may also be a finite shift le

T for normally-reflected electrons (not
shown here).
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pronounced when kNF (or γ) is small, when the N side is of a
doped semiconductor or semimetal with small Fermi
surfaces, a feature similar to analogous effects discussed
before [7,8].
Scattering approach.—For general cases without a

conserved Ĵ z, the shift can be obtained via the quantum
scattering approach [7,16,21], which has been the standard
in studying the shift in optical and electronic contexts. In
this approach, Ψ is expanded using the scattering
eigenstates of the system. For example, the incident
beam Ψeþ

k ðrÞ ¼ R
dk0wðk0 − kÞψeþ

k0 ðrÞ, where w is the
profile of the beam peaked at k, and ψeþ is the incident
electron eigenstate. At the interface, each partial wave
ψeþ gets scattered. Particularly, for the Andreev reflection,
ψeþ is reflected as ψh− with an amplitude rh; hence the
reflected hole beam is given by Ψh−

k ðrÞ ¼ R
dk0wðk0−

kÞrhðk0Þψh−
k0 ðrÞ. The spatial shift is obtained by comparing

the center positions of the two beams at the interface. One
easily finds that the shift here takes a simple form

δlh
i ¼ −

∂
∂ki argðrhÞjkk ; ð5Þ

where i ∈ fx; yg, kk is the average transverse wave vector
that is conserved in scattering, and argðrhÞ is the phase
of rh. In this approach, the spatial shift appears as a
result of the interference between the scattered partial
waves. As evident from Eq. (5), it only depends on (the
k-dependence of) the phase of the scattering amplitude,
not the magnitude.
We have some additional remarks. (i) There may also

exists a shift δle
i for the normally-reflected electron beam,

whose expression takes the same form as Eq. (5) by
replacing rh with re. (ii) Although the shift does not
depend on the magnitudes of rh (re), the intensity of the
reflected beam is proportional to jrhj2 (jrej2). (iii) The shift
has both longitudinal (analogous to the Goos-Hänchen shift
in optics [39]) and transverse components with reference to
the incident plane. In this Letter, we focus on the transverse
shift: leðhÞ

T ≡ δleðhÞ · n̂, where n̂ is the normal direction of
the incident plane, as illustrated in Fig. 1. (iv) The scatter-
ing approach is quite general. Unlike the semiclassical
approach, which requires the quasiparticle wavelength to be
small compared with the perturbation length scale [8], the
scattering approach does not suffer from such a constraint,
and it applies for sharp interfaces and/or large wavelengths
as well [7,16,21].
This approach is applied to study the transverse shift for

each type of the pair potentials. The calculation is straight-
forward, and the key results are tabulated in Table I.
For conventional s-wave pairing, one easily checks that
le
T ¼ lh

T ¼ 0, consistent with our previous findings [16].
In contrast, the transverse shift can become sizable if the S
side is of an unconventional pairing, and it possesses
features tied with the pairing symmetry. We discuss two
cases below.

Chiral p-wave.—Let us revisit the case for chiral
p-wave pair potential using the scattering approach.
Straightforward calculations show that argðrhÞ ¼ − χϕk
and argðreÞ is independent of k [20]. Then, according to
Eq. (5),

lh
T ¼ χ=kk; le

T ¼ 0; ð6Þ
which exactly recovers the result we have obtained using
the symmetry argument. This result is independent of the
incident angles, the excitation energy, and the parameters
for the S side, such as the pairing gap Δ0, except that its
sign depends on the chirality χ (see Fig. 2).
dx2−y2-wave.—As another example, we consider the

dx2−y2-wave pairing, with Δ ¼ Δ0 cosð2ϕkÞ. Our calcula-
tion gives that [20]

lh
T ∝ sinð4αÞΘðjΔ0 cos 2αj − εÞ; ð7Þ

and le
T ≈ lh

T . The expression in Eq. (7) highlights the
dependence on the rotation angle α and the excitation
energy ε. The results are plotted in Fig. 3.
From Eq. (7) and Fig. 3, we observe the following key

features for the shift. (i) leðhÞ
T has a period of π=2 in α, and

it flips sign at multiples of π=4 [Fig. 3(b)]. (ii) leðhÞ
T is

sensitive to the gap magnitude. As indicated by the step
function in Eq. (7), it is suppressed for excitation energies
above the pairing gap at the incident wave vector.
(iii) Particularly, due to the nodal structure of the gap,
for a fixed excitation energy ε, there must appear multiple
zones in α where leðhÞ

T is suppressed [see Fig. 3(b)]. The
center of each suppressed zone coincides with a node.
(iv) leðhÞ

T is also suppressed when kk is away from the Fermi
surface of the S side, as indicated in Figs. 3(c) and 3(f),
where we compare the results for a closed ellipsoidal Fermi
surface and for an open cylinderlike Fermi surface. This
can be understood by noticing that the effect of a pair
potential diminishes away from the Fermi surface.
The above features of the shifts encode rich information

about the unconventional gap structure, including the
d-wave symmetry [Feature (i)], the gap magnitude profile
[Feature (ii)], and the node position [Feature (iii)]. Thus, by
detecting the effect, one can extract important information

(a) (b)

FIG. 2. Transverse shift lh
T for chiral p-wave pairing versus

(a) the rotation angle α (here χ ¼ þ1), and (b) the excitation
energy ε. lh

T is independent of ε and Δ0, and its sign depends
on χ. Here, we take Δ0 ¼ 20 meV, γ ¼ π=12, EF ¼ 0.1 eV,
and m ¼ 0.1me.
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about the unconventional superconductor. Feature (iv) also
offers information on the geometry of the Fermi surface.
Discussion.—Here, we have revealed a fundamentally

new effect—the anomalous shifts in the Andreev reflection
generated by unconventional pairings. Distinct from the
previous works [7,8,16], where the shift invariably origi-
nates from the SOC in theN region and vanishes if the SOC
is negligible, the shift here is purely from the unconven-
tional pairing in the S region, and it exists without the need
of SOC. Because of this fundamental difference, the shifts
here manifest the characteristics of unconventional pairings
in S, such as the highly anisotropic behavior with respect to
the incident direction as in Fig. 3(b), which is tied to the
anisotropic character of the dx2−y2-pairing; whereas the
shifts in Ref. [16] instead reflect the SOC pattern of the N
region.

To experimentally probe the effect, we suggest a simple
NS junction geometry, as illustrated in Fig. 4, in which the
electrons are driven towards the interface with a finite
average incident angle. The transverse shift then leads to
the surface charge accumulation, as indicated in Fig. 4(b),
which can be detected as a voltage signal between the top
and bottom surfaces. With an order of magnitude estima-
tion [20], we find that the voltage signal can be on the order
of mV, readily detectable in the experiment. We also
suggest a second setup to amplify the shift through multiple
scattering in an SNS structure, which leads to a large
anomalous velocity of up to 104 m=s [20]. With more
delicate setups, e.g., by using local gates and collimators
similar to those in electron optics [40,41], one could control
the angles ðγ;αÞ of the incident beam, and the exci-
tation energy ε can be controlled by the junction bias
voltage. Then, by mapping out the signal dependence on
ðγ; α; εÞ, one can extract the features of the shifts and, in
principle, characterize the gap structure for unconventional
superconductors.
Here it should be noted that: While for chiral pairings,

the voltage signal is solely due to the shifts in the Andreev
reflection, for nonchiral pairings (like the dx2−y2-wave), the
signal may have contributions from both normal and
Andreev reflections. Since le

T ≈ lh
T , the net result depends

on the probabilities (jrhj2 vs jrej2) of the two processes.
There could be an interesting competition between the two
when tuning the excitation energy. Generally, for ε close to
the superconducting gap, jrhj2 would dominate over jrej2
[18], so in this case, the signal would be dominated by the
shifts in the Andreev reflection.
We remark that real unconventional superconductor

materials could have other complicated features, such as
multiple Fermi surfaces, multiple bands with different
pairing magnitudes, and possible surface (interface) bound
states [17,22,42–44]. How these features would affect the
anomalous shifts are interesting questions to explore in
future studies. Nevertheless, our analysis suggests that a
nonzero shift (hence the resulting voltage) is generally
expected, owing to the coupling between the Nambu
pseudospin and the orbital motion as generated by the

(a) (b)

(c) (d)

(e) (f)

FIG. 3. Results for dx2−y2-wave pairing. (a)–(d) are for the S
side with an ellipsoidal Fermi surface, and (e)–(f) are for the S
with a cylinderlike Fermi surface. (a) Schematic figure showing
the Fermi surfaces of N and S. Kc denotes the maximum
magnitude of the transverse wave vector on the S Fermi surface.
(b) lh

T versus α. The green shaded regions indicate the suppressed
zones, in which ε > jΔðαÞj. (c) lh

T versus kk. Corresponding to
(a), lh

T is suppressed when kk > Kc, as denoted by the gray
shaded region. (d) Reflection probabilities versus ε for normal
and Andreev reflections. (e) illustrates the case when the S Fermi
surface is of an open cylinderlike shape. Kc1 and Kc2 denote the
lower and upper bounds for the transverse wave vector on the S
Fermi surface. For such case, the qualitative features in (b) and
(d) remain the same [20]. The main difference is that the shift is
now suppressed in regions except for Kc1 < kk < Kc2, as shown
in (f). In (a)–(d), we take Δ0 ¼ 20 meV, EF ¼ 0.4 eV,
U ¼ 0.2 eV, h ¼ 0.3 eV · nm, and mk ¼ mz ¼ m ¼ 0.1me.
We set ε ¼ 10 meV and γ ¼ π=12 in (b); α ¼ −π=6 and ε ¼
8 meV in (c); α ¼ π=6 and γ ¼ π=5 in (d). The parameters for (f)
are presented in the Supplemental Material [20].

(a) (b)

FIG. 4. Schematic (a) top view and (b) side view of a possible
NS junction geometry for experimental detection. Electrons are
driven to the interface with a finite average incident angle. The
effect of transverse shift (in the z direction) induces a net surface
charge accumulation near the junction on the N side, which can
be detected as a voltage difference between top and bottom
surfaces. Here, we illustrate the case when Andreev reflections
dominate the interface scattering.
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unconventional pair potential. Although its detailed profile
requires more accurate material-specific modeling, the key
features for the shift, like the period in α and the gap
dependence as listed in Table I, should be robust, since they
are determined by the overall characteristic associated with
the symmetry of unconventional pairings. This also helps to
distinguish the signal from the shift against random noises
such as from the impurities or interface roughness. Finally,
when the SOC effect is included, it can generate an
additional contribution to the shift in the Andreev reflection
[16]. However, its dependence on the incident geometry
and the excitation energy will be distinct from that due to
the unconventional pairings.
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