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Phonon modes in crystals can have angular momenta in general. It nevertheless cancels in equilibrium
when the time-reversal symmetry is preserved. In this Letter, we show that when a temperature gradient is
applied and heat current flows in the crystal, the phonon distribution becomes off equilibrium, and a finite
angular momentum is generated by the heat current. This mechanism is analogous to the Edelstein effect in
electronic systems. This effect requires crystals with sufficiently low crystallographic symmetries, such as
polar or chiral crystal structures. Because of the positive charges of the nuclei, this phonon angular
momentum induces magnetization. In addition, when the crystal can freely rotate, this generated phonon
angular momentum is converted to a rigid-body rotation of the crystal, due to the conservation of the total
angular momentum. Furthermore, in metallic crystals, the phonon angular momentum will be partially
converted into spin angular momentum of electrons.
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Conversions between the magnetization and the
mechanical generation can be realized in various ways,
such as the Einstein–de Haas effect [1] and Barnett effect
[2]. In the Einstein–de Haas effect, when the sample is
magnetized by the external magnetic field, the sample
rotates due to the conservation of the angular momentum.
On the other hand, in the Barnett effect, a rotation of the
sample induces magnetization. The key mechanism of
these effects is the spin-rotation coupling, which relates
electronic spins with a mechanical rotation [3]. In addition,
spin-rotation coupling also enables mechanical generation
of spin current in various systems [4–6]. In these effects,
rotational motions of phonons in solids are important, and
in this context a phonon angular momentum is formulated
theoretically [7–9].
Here, we focus on the phonon angular momentum

introduced in [7], which represents rotational motions of
the nuclei within each phonon mode. In crystals with time-
reversal symmetry, i.e., those without magnetic field or
magnetization, the phonon angular momentum of each
mode is an odd function of the wave vector k and the total
angular momentum vanishes in equilibrium due to can-
cellation between phonons with the wave vector k and those
with −k. Meanwhile, one can expect that this cancellation
goes away by driving the system off the equilibrium, and
nonzero phonon angular momentum is induced. In this
Letter, to theoretically show this scenario, we consider a
crystal with a finite heat current, and show a nonzero total
phonon angular momentum in the crystal due to its non-
equilibrium phonon distribution. The crystal symmetry
should be sufficiently low to allow this effect, and in

particular the inversion symmetry should be absent. We
calculate the phonon angular momentum generated by heat
current for the wurtzite GaN as an example of polar systems
and the Te (tellurium) and Se (selenium) as examples of
chiral systems. For wurtzite GaN, we calculate the phonon
properties by using the valence force field model and first-
principles calculation, and for Te and Se, we calculate the
phonon properties by using the first-principles calculation.
The phonon angular momentum [7] is a part of the

angular momentum of the microscopic local rotations of the
nuclei around their equilibrium positions. We begin with
the eigenmode equation for phononsDðkÞϵσðkÞ¼ω2

σϵσðkÞ,
where ϵσðkÞ is a displacement polarization vector at
the wave vector k with a mode index σ, and D is the
dynamical matrix. Here, we set the normalization condition
as ϵ†σðkÞϵσðkÞ ¼ 1. In equilibrium, the phonon angular
momentum per unit volume [7] is expressed as

Jphi ¼ 1

V

X

k;σ

lσ;iðkÞ
�
f0(ωσðkÞ)þ

1

2

�
; i ¼ x; y; z; ð1Þ

lσ;iðkÞ ¼ ℏϵ†σðkÞMiϵσðkÞ; ð2Þ

where f0ðωσðkÞÞ ¼ 1=ðeℏωσðkÞ=kBT − 1Þ is the Bose distri-
bution function, ωσðkÞ is the eigenfrequency of each mode,
T is the temperature, and V denotes the sample volume. The
matrix Mi is the tensor product of the unit matrix and the
generator of SOð3Þ rotation for a unit cell with N atoms
given by ðMiÞjk ¼ IN×N ⊗ ð−iÞεijk (i; j; k ¼ x, y, z). lσðkÞ
in Eq. (2) is the phonon angular momentum of a mode σ at
phonon wave vector k. Because of the time-reversal
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symmetry of the system, it is an odd function of
k: lσðkÞ ¼ −lσð−kÞ, and their sum vanishes in equilibrium.
On the other hand, when the temperature gradient is

nonzero, the phonon angular momentum becomes nonzero.
Within the Boltzmann transport theory, the distribution
function deviates from the Bose distribution function f0 as

fσ;k ¼ f0(ωσðkÞ) − τvσ;iðkÞ
∂f0
∂T

∂T
∂xi ; ð3Þ

where vσ;iðkÞ ¼ ∂ωσðkÞ=∂ki is the group velocity of each
mode and xi is the ith component of the position. To justify
the use of the Boltzmann transport theory, we assume here
that the deviation of the system away from equilibrium is
small. In order to satisfy this condition, we focus on the
linear response regime where the heat current is infinitesi-
mally small. We also assume that the system relaxes
towards the local thermal equilibrium quickly via nonlinear
phonon-phonon interactions. As shown in Eq. (3), the
effect of nonlinear phonon-phonon interactions is repre-
sented by the phonon relaxation time τ based on the
constant relaxation time approximation. The dependence
of τ on the mode index σ and the wave vector k does not
alter our main conclusion and the constant relaxation time
approximation is enough for a rough estimation. By
substituting Eq. (3) into Eq. (1), the total phonon angular
momentum per unit volume becomes

Jphi ¼ −
τ

V

X

k;σ

lσ;ivσ;j
∂f0(ωσðkÞ)

∂T
∂T
∂xj ≡ αij

∂T
∂xj ; ð4Þ

where αij denotes a response tensor. The generated phonon
angular momentum is proportional to the temperature
gradient. This effect is caused by nonequilibrium phonon
distribution, leading to an unbalance of phonon angular
momentum, and therefore it is analogous to the Edelstein
effect [10–16] in electronic systems.
In order to realize a nonzero response tensor αij, the

crystal symmetry should be sufficiently low. Necessary
conditions for the crystallographic symmetry are shown in
the Supplemental Material [17]. It is instructive to decom-
pose the response tensor into symmetric and antisymmetric
parts. The antisymmetric part of αij is essentially a polar
vector αk ≡ ϵijkαij and therefore it survives only for polar
crystals, such as ferroelectrics and polar metals. In this case,
when we set the z axis to be along the polarization or the
polar axis, αxy ¼ −αyx are the only nonzero elements of this
tensor. Thus, in any polar crystals, the temperature gradient
and the generated angular momentum are perpendicular to
each other, and they are both perpendicular to the polari-
zation vector. On the other hand, the symmetric part of αij
changes sign under inversion, and remains typically in
chiral systems such as tellurium. In systems with very low
symmetry, both the antisymmetric and the symmetric parts
become nonzero.
As an example of polar systems, we discuss the wurtzite

structure (space group: P63mc). The wurtzite structure has
four atoms in the unit cell, as shown in Fig. 1(a) for GaN.
When we take the polar axis to be along the z axis, the
nonzero elements of the response tensor αij are αxy ¼ −αyx
from symmetry analysis, as shown in Fig. 1(e). We first
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FIG. 1. Crystal structure of GaN, and phonon angular momentum of GaN. (a) Crystal structure of wurtzite GaN. The red line shows
the unit cell. (b) First Brillouin zone of GaN. (c) Numerical results of phonon dispersion of wurtzite GaN using the valence force field
model. (d) Numerical results of phonon dispersion of wurtzite GaN by first-principles calculation. (e) Schematic illustration of the
relation between temperature gradient and the phonon angular momentum. (f) Distribution of the phonon angular momentum lσðkÞ of
the sixth lowest band on the plane kz ¼ 0. (g) Trajectories of the four atoms in the unit cell for the phonon of the sixth band at
ðka=2πÞ ¼ ð0; 0.3849; 0Þ, which is indicated as a black dot in (f). (h) Distribution of the phonon angular momentum lσðkÞ of the
eleventh lowest band on the plane kz ¼ 0. (i) Trajectories of the four atoms in the unit cell for the phonon of the eleventh band at
ðka=2πÞ ¼ ð0; 0.3849; 0Þ, which is indicated as a black dot in (h). (g) and (i) represent the normalized polarization vector εσðkÞ with
ε†ε ¼ 1, and their axes ðx; y; zÞ are shown in a dimensionless unit.
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estimate the generated phonon angular momentum by heat
current both by the valence force fieldmodel of Keating [26]
and by first-principles calculations. We describe the details
of our first-principles calculation in the Supplemental
Material [17]. The lattice structure and corresponding
Brillouin zone are shown in Figs. 1(a) and 1(b). The details
of the valence force field model is summarized in the
SupplementalMaterial [17]. The result of phonondispersion
for wurtzite GaN by the valence force field model calcu-
lation is Fig. 1(c). Despite its simplicity, this model well
describes the nature of phonon and phonon angular momen-
tum can be evaluated (see Supplemental Material [17]). The
band structure obtained by the first-principles calculation
[Figs. 1(d)] shows good agreement with previous works
[27–29]. Overall features of the band structure are similar to
those obtained by the valence force field model except for
the splitting of the longitudinal and transverse optical bands
at the long wavelength limit. Examples of distributions of
phonon angular momentum lσðkÞ are in Figs. 1(f) and 1(h),
showing a similarity with spin structure in Rashba systems.
We show the trajectories of atoms in the sixth and eleventh
lowest modes in Figs. 1(g) and 1(i), respectively. By
comparing Figs. 1(g) and 1(i), the oscillation of nitrogen
atoms in the eleventh modes is much larger than that of the
gallium atoms, while the oscillation of gallium atoms in the
sixth mode is larger. The response tensor is estimated as
αxy ∼ −10−7 × ½τ=ð1 sÞ� J sm−2K−1 at T ¼ 300 K.
As other examples, we consider Te (tellurium) and Se

(selenium) [30]. Te and Se have a helical crystal structure,
as shown in Fig. 2(a). The helical chains having three atoms

in a unit cell form a triangular lattice. The space group is
P3121 or P3221 (D4

3 or D6
3) corresponding to the right-

handed or left-handed screw symmetry. They are semi-
conductors at ambient pressure. Numerical results of the
phonon dispersions of Te and Se by first-principles calcu-
lation are shown in Figs. 2(b) and 2(c), respectively. The
distributions of phonon angular momentum lσðkÞ on the two
planes in theBrillouin zone [Fig. 2(d)] are shown inFigs. 2(e)
and 2(f) for the fourth lowest band. Because of the threefold
screw symmetry around the z axis, the angularmomentumon
the kz axis is along the z axis. Figure 2(g) represents the
trajectories of the three atoms in the unit cell for the fourth
mode.Here, because of the threefold screw symmetry at thek
point considered, the trajectories are related with each other
by threefold rotation around the z axis, and the angular
momentum is along the z axis by symmetry. The overall
features are similar between Se and Te, as shown in the
SupplementalMaterial [17]. InTe andSe, from the symmetry
argument, the response tensor has nonzero elements αxx ¼
αyy and αzz, whose symmetry is identical with the electronic
Edelstein effect in tellurium [16]. The response tensor for Te
is estimated as αzz ∼ −10−7 × ½τk=ð1 sÞ� J sm−2K−1 and
αxx ∼ 10−7 × ½τ⊥=ð1 sÞ� J sm−2K−1, and that for Se is
estimated as αzz∼−10−6×½τk=ð1sÞ�Jsm−2K−1 and αxx ∼
−10−7× ½τ⊥=ð1 sÞ� Jsm−2K−1.
Next, we propose experiments to measure the phonon

angular momentum generated by the heat current. The
phonon angular momentum is a microscopic local rotation,
and it cannot be measured directly. To measure this, we
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FIG. 2. Phonon angular momentum of Te and Se in the first-principles calculation. (a) Crystal structure of Te. (b) Phonon dispersion of
Te. (c) Phonon dispersion of Se. (d) First Brillouin zone of Te. (e),(f) Distribution of the phonon angular momentum lσðkÞ of the fourth
lowest band. (e) and (f) show the results on the plane ðkza=2πÞ ¼ 0.2927 and on the plane ðkxa=2πÞ ¼ 1

3
, respectively. These planes

correspond to the two cross sections in (d). (g) Trajectories of the four atoms in the unit cell for the phonon of the fourth lowest band at
ðka=2πÞ ¼ ½1

3
; ð1= ffiffiffi

3
p Þ; 0.2927�, which is indicated as the black dots in (d), (e), and (f). (g) represents the normalized polarization vector

εσðkÞ with ε†ε ¼ 1, and its axis ðx; y; zÞ is shown in a dimensionless unit.
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consider a phonon version of the Einstein–de Haas effect.
Suppose the crystal can rotate freely. By conservation of
angular momentum, when a heat current generates a phonon
angular momentum Jph, a rigid-body rotation of the crystal
also acquires an angular momentumwhich compensates the
phonon angular momentum, Jrigid body ¼ −Jph. This con-
servation holds when we take an average over a long period
much longer than a typical timescale of the phononmotions,
as discussed in detail in the Supplemental Material [17]. For
example, in polar crystals, when the heat current flows along
the y direction, the phonon angular momentum along the x
direction is generated, and it is converted to a rigid-body
rotation, as shown in Fig. 3(a). Similarly, in tellurium, it is
schematically shown in Fig. 3(b), and the rotation direction
will be opposite for right-handed and left-handed crystals.
Next, we estimate the angular velocity ω of the rigid-body
rotation in GaN as an example. We set the sample size to be
L × L × L and the phonon relaxation time to be τ ∼ 10 ps
[29]. The temperature difference over the sample size L is
denoted by ΔT. The angular momentum of the rigid-body
rotation is represented as Jrigid bodyL3 ¼ Iω, where I ¼
ML2=6 is the inertial moment of the sample with the total
massM. We estimate the angular velocity of the rigid-body
rotation as

ω ¼ −Jphx L3=I ∼
ΔT=ð1KÞ
(L=ð1mÞ)3 × 10−21 s−1: ð5Þ

Then, by setting the temperature difference to be
ΔT ¼ 10 K, an angular velocity of the rigid-body rotation
ω is estimated as 10−8 s−1 when L ¼ 100 μm and 10−2 s−1

when L ¼ 1 μm. They are sufficiently large for experimen-
tal measurement. The estimations for Te and Se are shown in
the Supplemental Material [17].
Because this phonon angular momentummeans rotational

motions of the nuclei having positive charges, it induces
magnetization in itself. This can be estimated using a Born
effective charge. The magnetic momentm is related with the
angular momentum j bym ¼ γj with the gyromagnetic ratio
γ. In the case of wurtzite GaN, the Born effective charge
tensor eZ�

αβ is eZ
�
xx ¼ eZ�

yy ¼ 2.58e; eZ�
zz ¼ 2.71e from our

ab initio calculation. The gyromagnetic ratio tensors of the
Ga and N atoms are given by γGaαβ ¼ geZ�

αβ=2mGa and γNαβ ¼
−geZ�

αβ=2mN with a g factor of GaN gk ¼ 1.951; g⊥ ¼
1.9483 [31], wheremGa andmN are the mass of the Ga atom
and that of the N atom, respectively.We estimate the order of
magnitude of the magnetization as

Mx ∼ −
ΔT=ð1KÞ
L=ð1mÞ × 10−11 Am−1: ð6Þ

Therefore, the magnetization Mx of GaN induced by the
temperature gradient is estimated as 10−6 Am−1 when
L¼100μm, ΔT¼ 10K and 10−4 Am−1 when L ¼ 1 μm,
ΔT ¼ 10 K. Although the order of magnitude of this
magnetization is very small, it is expected to be observable
experimentally.
In summary, we have theoretically predicted and esti-

mated the phonon angular momentum generated by the
heat current for wurtzite GaN, Te, and Se. This mechanism
is analogous to the Edelstein effect in electronic systems.
We proposed experiments to measure the phonon angular
momentum generated by the heat current. When the
crystals can rotate freely, the phonon angular momentum
generated by heat current is converted to a rigid-body
rotation of the crystals due to the conservation of angular
momentum. This rigid-body rotation is sufficiently large
for experimental measurement when the size of sample is
micro order. On the other hand, because of the nuclei
having a positive charge, the phonon angular momentum
generated by heat current induces magnetization.
Moreover, in metals, the phonon angular momentum will
be partially converted to electronic spin angular momentum
via the spin-rotation coupling, which is similar to the spin-
current generation proposed for the surface acoustic waves
in solids [5], and for the twiston modes in carbon nanotubes
[6]. These experimental proposals are expected to unveil
properties of the phonon angular momentum.
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