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Theoretical treatment of the Richtmyer-Meshkov instability in compressible fluids is a challenging task
due to the presence of compressibility and nonlinearity. In this Letter, we present a quantitative theory for
the growth rate and the amplitude of fingers in Richtmyer-Meshkov instability for compressible fluids
based on the methods of the two-point Padé approximation and asymptotic matching. Our theory covers the
entire time domain from early to late times and is applicable to systems with arbitrary fluid density ratios.
The theoretical predictions are in good agreement with data from several independent numerical simulation
methods and experiments.
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When a shock hits a material interface between two
compressible fluids of different densities, unstable bubbles
(light fluids penetrating into heavy ones) and spikes (heavy
fluids penetrating into light ones) develop. This is known as
the Richtmyer-Meshkov instability (RMI) [1,2] and is
important for science and technology, such as supernova
and inertial confinement fusion. Extensive works on the
RMI can be traced from Refs. [1–20] and from recent
review papers [21,22]. We consider two compressible
inviscid fluids in a vertically infinite strip with its left
and right boundaries satisfying periodic conditions. The
initial material interface contains a single-mode sinusoidal
perturbation. An important issue of the RMI is how the
amplitude of the unstable interface grows. We present an
analytic theory for the growth rates and amplitudes of
compressible RMI. Our theory is applicable to systems
with arbitrary density ratios and is valid for all times.
Compressibility and nonlinearity make the theoretical
treatment extremely challenging. There are sets of exper-
imental data [3,4] and numerical data [5,6] available for
compressible RMI. However, there is still a lack of accurate
theoretical predictions for finger development in compress-
ible fluids for all times. Here we present such a theory. Our
predictions are in good agreement with numerical and
experimental data from early to late times, even for a Mach
15.3 incident shock.
Richtmyer predicted this instability and developed a linear

theory for compressible fluids in the case of reflected shocks
[1]. Meshkov confirmed this experimentally [2]. The linear
theory of compressible RMI was further studied in Ref. [7]
for reflected shock cases and was extended to reflected
rarefaction wave cases in Ref. [8]. A nonlinear theory for
compressible RMI can be found in Refs. [9,10]. For
incompressible RMI with an infinite density ratio, Hecht,

Alon, and Shvarts [11] applied a Layzer-type approximation
[12] to bubbles. This approach was extended by Mikaelian
for bubbles [13,14] and by Zhang for spikes [15]. For
incompressible RMI with a finite density ratio, theoretical
approaches were carried out by Goncharov [16], Abarzhi,
Glimm, and Lin [17], and Sohn [18]. It was pointed out that
Goncharov’s approach [16] led to several incorrect results
[19]. In particular, it gives wrong predictions for spikes.
Recently, a new model without these shortcomings has been
developed to predict the growth rates of bubbles and spikes at
all density ratios [20].
We use a signed Atwood number A ¼ ðρ0 − ρÞ=ðρ0 þ ρÞ,

where ρ and ρ0 are the densities of two fluids. A > 0 is for
bubbles, and A < 0 is for spikes. This allows the same
functional form for bubbles and spikes. The propagation
direction of the incident shock affects the reflectedwave type
but not the sign of A, which depends only on the finger type.
Our purpose is to develop a theory which can provide

accurate predictions for growth rates and amplitudes of
fingers in compressible fluids for arbitrary Atwood num-
bers and over all times. We also require that our theory
satisfy all known properties. For compressible fluids:
(i) for a small initial perturbation amplitude, the growth

rate of a finger at early times is governed by the com-
pressible linear theory vcmp

lin ðt; AÞ [1,7,8].
For incompressible fluids:
(ii) for early times, the growth rate of a finger is [10]

v ¼ v0 − kv20ðAþ ka0Þtþ k2v30

�
A2 −

1

2
þ 2Aka0

�
t2

þ 4

3
k3v40ðA − A3Þt3 þOðt4Þ; ð1Þ

(iii) for A ¼ 1, the bubble growth rate tends to zero
[11,15,18];
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(iv) for A ¼ −1, the spike growth rate tends to a constant
v0½ð3þ 3ka0Þ=ð1þ 3ka0Þ�1=2 [15];
(v) for arbitrary A, the asymptotic growth rate of a finger

(bubble or spike) is vasym ∼ ½1=αðAÞkt� with αðAÞ ¼ 3
4
f½ð1þ

AÞð3þAÞ�=½3þAþ ffiffiffi
2

p ð1þAÞ1=2�gf½4ð3þAÞþð9þAÞ×ffiffiffi
2

p ð1þAÞ1=2�=½ð3þAÞ2þ2ð3−AÞ ffiffiffi
2

p ð1þAÞ1=2�g [20].
In properties (ii)–(v), A > 0 is for bubbles and A < 0 is

for spikes, a0 is the initial perturbation amplitude, k is the
wave number, and v0 is the initial growth rate.
Since the RMI is induced by an incident shock, one

naturally needs to consider the compressibility of fluids.
Furthermore, the finger development at unstable interfaces
is nonlinear. Therefore, compressibility and nonlinearity
are two major obstacles to developing an accurate quanti-
tative theory for compressible RMI. We develop such a
theory based on the following physical picture. By defi-
nition, compressibility measures the changes in density
resulting from changes in pressure. For the RMI, the large
changes in pressure occur in the vicinity of shocks. At early
times, the incident shock, the transmitted shock, and the
reflected wave interact with the material interface, and the
compressibility effects are important. Thus, for an RM
interface with a small initial perturbation, the dynamics is
governed by the compressible linear theory [1,7,8].
However, after the transmitted shock and the reflected
wave have propagated away from the material interface,
there are no large changes in pressure in the vicinity of
fingers. Thus, the compressibility effects become less
important. This is because, although the fluids are com-
pressible, the system does not provide an environment to

reveal the compressibility. The compressibility effects are
progressively decreasing with time, and the nonlinearity
effects are progressively increasing. Thus, the system
gradually changes from a linear and compressible stage
at early times to a nonlinear and incompressible stage at late
times. With this understanding, our approach consists of
two steps: (i) Since the dynamics at late times is different
from that at early times, we treat the former separately from
the latter and develop an approximate solution for the
nonlinear incompressible system using a two-point Padé
approximation method. (ii) By applying an asymptotic
matching technique, we match the compressible linear
theory at early times and the incompressible nonlinear
theory at late times to obtain an approximate solution for
the compressible system at all Atwood numbers and over
all times. This matching leads to compressibility depend-
ence of the late-time solution.
Step (i).—Since the early-time compressible linear

theory is known, we need only to construct an approximate
solution for incompressible RMI, which offers a good
approximation for compressible RMI at late times. Let
vincmp
nl ðt; AÞ be the finger growth rate at an incompressible

RM interface in the nonlinear stage. We apply the Padé
approximation [23], which approximates a function by a
ratio of two polynomials: Pm

n ðtÞ ¼ PmðtÞ=PnðtÞ, where
PmðtÞ and PnðtÞ are polynomials of degree m and n,
respectively. This gives

vincmp
nl ðt; AÞ ¼ v0ðAÞP2

3(t; A; v0ðAÞ); ð2Þ
where

P2
3(t; A; v0ðAÞ) ¼

1þ a1ðAÞ½kv0ðAÞ�tþ a2ðAÞ½kv0ðAÞ�2t2
1þ b1ðAÞ½kv0ðAÞ�tþ b2ðAÞ½kv0ðAÞ�2t2 þ b3ðAÞ½kv0ðAÞ�3t3

: ð3Þ

The dimensionless coefficients aiðAÞ with i ¼ 1, 2, and
biðAÞ with i ¼ 1, 2, 3, are to be determined. For concise-
ness, here we do not explicitly display the dependence of
these coefficients on ka0.
Properties (ii)–(v) provide us the information about the

fingers’ behavior at both small and large times, whereby we
construct a two-point Padé approximant with

aiðAÞ ¼ βiðAÞ þ γiðAÞb1ðAÞ; i ¼ 1; 2; ð4Þ

biðAÞ ¼ σiðAÞ þ ωiðAÞb1ðAÞ; i ¼ 2; 3; ð5Þ

where

β1ðAÞ ¼ −ðAþ ka0Þ; β2ðAÞ ¼ λðAÞ½2A3 − 5A − ð18A2 − 3Þka0 − 12Aðka0Þ2�;
γ1ðAÞ ¼ 1; γ2ðAÞ ¼ λðAÞ½3þ 6ðka0Þ2�;
σ2ðAÞ ¼ λðAÞ½8A3 − 6A2αðAÞ − 8Aþ 3αðAÞ − 12AαðAÞka0�; σ3ðAÞ ¼ αðAÞβ2ðAÞ;
ω2ðAÞ ¼ λðAÞf3 − 6A2 þ 6αðAÞA − ½12A − 6αðAÞ�ka0g; ω3ðAÞ ¼ αðAÞγ2ðAÞ;

λðAÞ ¼ 1

6ðα − A − ka0Þ
> 0 for ka0 < 1=2;

b1ðAÞ ¼
1

4
ðc1 þ c2Þð3 − A2ÞAþ 1

2
ðc1 − c2Þ;
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in which

c1 ¼
3

2

ð1þ 4ka0Þ½ð1 − 2ka0Þð2þ 4k2a20Þ1=2 − ð1þ 4ka0Þka0�
2 − 8ka0 þ 11ðka0Þ2 − 24ðka0Þ3

;

c2 ¼
ð1 − ka0Þð1 − 4ka0Þ

1þ ð3þ3ka0
1þ3ka0

Þ1=2ð1 − 4ka0Þ þ 2ðka0Þ2
:

One can check that properties (ii)–(v) are satisfied by
expanding Eq. (2) in terms of small and large t. Therefore,
the two-point Padé approximant given by Eqs. (2)–(5)
satisfies all known properties of incompressible RMI.
Equations (2)–(5) do not have spurious singularities: The

denominator of Eq. (3) never vanishes when ka0 < 1=4.
When ka0 < 1=4, b2ðAÞ and b3ðAÞ have positive minimum
values at A ¼ −1, and b1ðAÞ is a nondecreasing function of
A. Thus, it is sufficient to show that, at A ¼ −1, the
minimum value of the denominator of Eq. (3) never reaches
zero for all t ≥ 0. At A ¼ −1, Eqs. (4) and (5) become,
respectively,

a1 ¼ ð1 − ka0Þ½1 − ð1 − 4ka0Þqðka0Þ�;

a2 ¼
ð1 − 4ka0Þ2

2

�
3þ 3ka0
1þ 3ka0

�
1=2

qðka0Þ; ð6Þ

b1 ¼ −ð1 − 4ka0Þð1 − ka0Þqðka0Þ;

b2 ¼
ð1 − 4ka0Þ2

2
qðka0Þ;

b3 ¼ 0; ð7Þ

where qðka0Þ¼f1þ½ð3þ3ka0Þ=ð1þ3ka0Þ�1=2ð1−4ka0Þþ
2ðka0Þ2g−1>0 forka0 < 1=4.LetDðtÞbe thedenominatorof
Eq. (3) at A ¼ −1. We write DðtÞ ¼ 3=4þHðtÞ, where
HðtÞ ¼ b2k2v20t

2 þ b1kv0tþ 1=4.OnecanshowthatDðtÞ >
3=4 for ka0 < 1=4 from the facts that b2k2v20 > 0 and the
discriminant of HðtÞ is negative. Property (iv) cannot be
satisfied when ka0 ¼ 1=4, since limt→∞v

incmp
nl ðt;−1Þ ¼ ∞.

This proves that ourPadé approximantgivenbyEqs. (2)–(5) is
nonsingular for all A ∈ ½−1; 1� and t ≥ 0 when ka0 < 1=4.
Equation (2) is an approximate nonlinear solution for

incompressible fluids. Based on the physical picture that
the system gradually changes from a linear and compress-
ible stage at early times to a nonlinear and incompressible
stage at late times, Eq. (2) is also an approximate nonlinear
solution for compressible fluids at late times as the
compressibility effects become negligible. At early times,
the solution is given by vcmp

lin ðt; AÞ, the linear theory for
compressible fluids [1,7,8]. To develop a nonlinear theory
for compressible fluids, we need to construct an expression
which smoothly matches the compressible linear solution
vcmp
lin ðt; AÞ at early times and the incompressible nonlinear

solution vincmp
nl ðt; AÞ given by Eq. (2) at late times.

Step (ii).—To construct an approximate solution for
nonlinear compressible RMI, we adopt an asymptotic
matching technique developed for boundary layer problems
which contain two distinct solutions for inside and outside
the boundary layer, namely, the inner and outer solutions.
Since we have an initial-value problem rather than a
boundary-value problem, here the “inner” solution is
vcmp
lin ðt; AÞ given by the compressible linear theory, and the

“outer” solution isvincmp
nl ðt; AÞgiven byEq. (2).Analogous to

the boundary layer problem, v0ðAÞ and a0 are the effective
initial conditions of the outer solution which are different
from the initial conditions of the inner solution, namely, the
initial conditions of the compressible linear theory. A
recipe for determining v0ðAÞ in Eq. (2) is proposed by
Prandtl: Setting the large-time limit of the inner solution
and the small-time limit of the outer solution equal
[24], i.e., limt→∞v

cmp
lin ðt;AÞ¼limt→0v

incmp
nl ðt;AÞ, which leads

to v0ðAÞ¼v∞ðAÞ. Here v∞ðAÞ≡ vcmp
lin ð∞; AÞ is the asymp-

totic growth rate in the compressible linear theory. Thus,
Eq. (2) becomes

vincmp
nl ðt; AÞ ¼ v∞ðAÞP2

3(t; A; v∞ðAÞ): ð8Þ

In Eqs. (2)–(5) and (8), A ¼ Aþ, where Aþ is the postshock
Atwood number. Matching also gives a0 ¼ aþ0 for reflected
shocks and a0 ¼ ā0 ¼ ja−0 þ aþ0 j=2 for reflected rarefaction
waves [1,7,8], where a−0 and aþ0 are the pre- and postshock
initial amplitudes, respectively. The absolute sign in ā0 is due
to the possibilities of ða−0 þ aþ0 Þ < 0 in the case of direct or
indirect phase inversions. Our outer incompressible solution
has a strong dependence on compressibility, since the
effective initial conditions a0 and v0 have a strong depend-
ence on v∞.
Finally, we construct an expression which smoothly

matches vcmp
lin ðt; AÞ valid for early times and vincmp

nl ðt; AÞ
given by Eq. (8) valid for late times, reflecting the physical
picture that the system goes through a transition from a
linear and compressible stage at early times to a nonlinear
and incompressible stage at late times. This transition
behavior can be easily achieved by replacing the first
factor v∞ðAÞ on the right-hand side of Eq. (8) with
vcmp
lin ðt; AÞ. Therefore, we have a final expression for growth

rates of fingers at compressible RM interfaces over all times
and for all Atwood numbers when ka0 < 1=4:

vcmp
nl (t; A; v∞ðAÞ)≡ vcmp

lin ðt; AÞP2
3(t; A; v∞ðAÞ); ð9Þ
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where P2
3(t; A; v∞ðAÞ) is given by Eqs. (3)–(5). A > 0 is

for bubbles and A < 0 is for spikes. Equation (9) satisfies
all properties (i)–(v) and contains neither fitting parameters
nor singularities when ka0 < 1=4.
The finger amplitude at a compressible RM interface can

be obtained by integrating both sides of Eq. (9):

acmp
nl ðt; AÞ ¼ aþ0 þ

Z
t

0

vcmp
nl ðt0; A; v∞ðAÞÞdt0: ð10Þ

The initial condition of acmp
nl ðt; AÞ is aþ0 for both reflected

shock and reflected rarefaction wave cases, since it is the
initial condition of the inner compressible linear solution.
The overall growth rate and the overall amplitude at a

compressible RM interface are

v̄cmp
nl ðt; AÞ ¼ 1

2
½vcmp

lin ðt; AÞP2
3(t; A; v∞ðAÞ)

þ vcmp
lin ðt; AÞP2

3(t;−A; v∞ðAÞ)�; ð11Þ

ācmp
nl ðt; AÞ ¼

����aþ0 þ 1

2

Z
t

0

½vcmp
lin ðt; AÞP2

3(t; A; v∞ðAÞ)

þ vcmp
lin ðt; AÞP2

3(t;−A; v∞ðAÞ)�dt0
����: ð12Þ

In Eqs. (11) and (12), A in vcmp
lin ðt; AÞ and v∞ðAÞ does not

change sign, since the results from the compressible linear
theory are the same for both spikes and bubbles.
The application of the Padé approximation to the RMI

was first conducted in 1997 [9,10]. However, at that time, it
was possible only to construct a single-point Padé approx-
imant based on the small-time behavior, namely, property
(ii), and the result was not applicable to asymptotically
large times. Since then, new information about the asymp-
totically large-time behavior at an arbitrary Atwood num-
ber, listed as properties (iii)–(v), has been found
[11,15,18,20]. This allows us to construct a two-point
Padé approximant [Eq. (9)] based on both the small- and
large-time behavior, which provides predictions for growth
rates and amplitudes applicable to all times. We now
compare our theoretical predictions with numerical and
experimental results for ka0 < 1=4.
First, we consider the case that the incident shock

propagates from the heavy to light fluid (from beryllium
to foam). We compare our theoretical predictions of
Eqs. (11) and (12) with the numerical results from
Ref. [5]. Since the reflected waves are rarefaction waves,
a0 ¼ ā0 ¼ ja−0 þ aþ0 j=2 [1,7,8]. Let si and M be the speed
and Mach number, respectively, of the incident shock. In
Figs. 1 and 2, we plot dimensionless overall growth rates
v̄=si and dimensionless overall amplitudes kā as functions
of dimensionless time ksit. The physical parameters of all
simulations are listed in Table 2 in the Appendix of Ref. [5].
In particular, jka−0 j ¼ 0.2513 andA− ¼ 0.8681. In Figs. 1(a)
and 2(a), M ¼ 1.33, Aþ ¼ 0.8622, ka0 ¼ 0.1883, and

si ¼ 4327.5 ms−1; in Figs. 1(b) and 2(b), M ¼ 5.6,
Aþ ¼ 0.7025, ka0 ¼ 0.1068, and si ¼ 18222.2 ms−1; in
Figs. 1(c) and 2(c),M ¼ 10.8,Aþ ¼ 0.6117, ka0 ¼ 0.1022,
and si ¼ 35142.8 ms−1; in Figs. 1(d) and 2(d), M ¼ 15.3,
Aþ ¼ 0.5843, ka0 ¼ 0.1013, and si ¼ 49785.7 ms−1. For
each figure, there are three sets of numerical data obtained by

(a) (b)

(c) (d)

FIG. 1. Comparison for the dimensionless overall growth rates
between the compressible nonlinear theory by Eq. (11) (solid
line), the compressible linear theory (dashed line) [8], and three
numerical simulations (× for FronTier, þ for PROMETHEUS, and ∘
for RAGE) [5]. The parameters are in the main text.

(a) (b)

(c) (d)

FIG. 2. Comparison for the dimensionless overall amplitudes
between the compressible nonlinear theory by Eq. (12) (solid
line), the compressible linear theory (dashed line) [8], and three
numerical simulations (× for FronTier, þ for PROMETHEUS, and ∘
for RAGE) [5]. The parameters are the same as those in Fig. 1.
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three independent numerical simulations (FronTier [25],
PROMETHEUS [26], and RAGE [27]). Figures 1 and 2 show
that our theory provides excellent predictions for compress-
ible RMI. This holds even for an incident shock with
M ¼ 15.3, which implies strong compressibility effects.
Second, we consider the incident shock propagating from

the light to heavy fluid (from air to SF6). The reflected waves
are shocks, and thus a0 ¼ aþ0 [1,7,8]. We compare our
predictions of Eq. (12) with the experimental data in
Refs. [3,4] and the numerical data in Ref. [6]. In Fig. 3,
we plot kā as a function of ksit. In Figs. 3(a) and 3(b), the
experimental data are from Ref. [3]. In Fig. 3(a),M ¼ 1.11,
Aþ¼0.616, ka0 ¼ 0.215, and si¼312.7ms−1; in Fig. 3(b),
M ¼ 1.21, Aþ ¼ 0.6255, ka0 ¼ 0.157, and si ¼
332.6 ms−1. Other parameters are listed in Table I of
Ref. [3]. In Figs. 3(c) and 3(d), the experimental data are
from Ref. [4]. In Fig. 3(c), M ¼ 1.274, Aþ ¼ 0.692,
ka0 ¼ 0.204, and si ¼ 418 ms−1; in Fig. 3(d), M ¼
1.292, Aþ ¼ 0.635, ka0 ¼ 0.232, and si ¼ 376.7 ms−1.
Other parameters are listed in Table I of Ref. [4]. In
Fig. 3(e), the numerical data are from Ref. [6]. To include

the diffusive effects at the material interface, Ref. [6]
suggested that one should compare ānumðkv0tÞ with
ātheoryðkv0t=ψÞ. Here ānum and ātheory are the overall ampli-
tudes from the numerical simulation and theoretical models,
respectively. By rescaling the time, this is equivalent to
comparing ānumðψksitÞ with ātheoryðksitÞ, as presented in
Fig. 3(e). The parameters are M ¼ 1.21, Aþ ¼ 0.6045,
ka0 ¼ 0.172, si ¼ 363.6 ms−1, and ψ ¼ 1.145. Other
parameters are listed in Tables I and II of Ref. [6].
Figure 3 shows that our theoretical predictions agree
with the experimental and numerical data very well over
the entire time period. In particular, good agreement is
achieved even when kā reaches 4 [see Figs. 3(c) and
3(d)]. The significance of nonlinearity is measured by the
deviation of the results from the predictions of the com-
pressible linear theory. Except for one case [Figs. 1(a)
and 2(a)], nonlinear effects are clearly shown in Figs. 1–3.
In summary, we present theoretical predictions for

growth rates and amplitudes of RM unstable interfaces
from early to late times for compressible fluids with
arbitrary density ratios and containing no fitting param-
eters. It satisfies all known properties of the RMI in the
literature. Our theoretical predictions are in excellent
agreement with the numerical simulations and experi-
ments for both reflected shock and reflected rarefaction
wave cases. Such good agreement holds for incredibly
strong shocks. It confirms that the dynamics of com-
pressible RMI changes from linear-compressible behavior
at early times to nonlinear-incompressible behavior at
late times.
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