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We study the elementary characteristics of turbulence in a quantum ferrofluid through the context of a
dipolar Bose gas condensing from a highly nonequilibrium thermal state. Our simulations reveal that the
dipolar interactions drive the emergence of polarized turbulence and density corrugations. The superfluid
vortex lines and density fluctuations adopt a columnar or stratified configuration, depending on the sign of
the dipolar interactions, with the vortices tending to form in the low-density regions to minimize kinetic
energy. When the interactions are dominantly dipolar, the decay of the vortex line length is enhanced,
closely following a t−3=2 behavior. This system poses exciting prospects for realizing stratified quantum
turbulence and new levels of generating and controlling turbulence using magnetic fields.
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In conventional ferrofluids, colloidal suspensions of
permanently magnetized particles, the dipole-dipole inter-
particle interaction gives rise to unique fluid properties,
such as the normal field instability and flow characteristics
which can be varied through an external magnetic field [1].
The ability to direct the fluid using magnetic fields has led
to broad applications from tribology to targeted medicine
[2]. Remarkably, turbulence in ferrofluids has been limited
to only a few studies [3–5]; this may be attributed to
difficulties in achieving turbulent regimes (due to their high
viscosity) and in characterizing the flow (due to their
opacity). As such, the manner in which the anisotropic,
long-range interactions modify the turbulent state remains
an open question. Nonetheless, theoretical work has pre-
dicted that the coupling with ferrohydrodynamics leads to
new turbulent phenomena such as control over the onset of
turbulence through the applied magnetic field [6] and new
modes of energy dissipation and conversion [7].
Quantum ferrofluids have been realized since 2005

through Bose-Einstein condensates (BECs) of atoms with
sizable magnetic dipole moments—Cr [8,9], Dy [10,11],
and Er [12,13]—and have led to recent landmark demon-
strations of self-trapped matter-wave droplets [13–15] and
the quantum Rosensweig instability [16,17]. In combining
ferrohydrodynamics with superfluidity, quantum ferro-
fluids embody a prototype system for studying ferrofluid
turbulence due to the absence of viscosity and the quan-
tization of vorticity. As demonstrated experimentally for
conventional condensates, states of such quantum turbu-
lence can be formed and imaged [18–20] and can show
both direct analogies to its counterpart in everyday viscous
fluids (e.g., Kolmogorov scaling [21,22] and the transition
from the von Kármán vortex street [23]) and distinct
quantum effects (e.g., ultraquantum regimes [21,22] and

nonclassical velocity statistics [24]), depending on the
details of the turbulent state. As well as the simplified
fluid characteristics, these systems have the facet that the
fluid parameters (viz. atomic interactions) can be tuned at
will. As such, quantum ferrofluids stand to shed light on
general aspects of ferrofluid turbulence, as well as phe-
nomena specific to the quantum nature of the fluid, such as
quantized vortex line dynamics, reconnections, and invis-
cid dissipation mechanisms [25].
While various aspects of vortices in quantum ferrofluids

have been theoretically explored, e.g., their generation,
profiles, and lattice structures [26], the behavior of quan-
tum ferrofluid turbulence remains at large. Here we study
turbulence in quantum ferrofluids through the scenario of a
homogeneous dipolar Bose gas freely evolving from highly
nonequilibrium conditions. This scenario, representative
of a sudden quench from a thermal gas through the BEC
transition, is known to generate unstructured quantum
turbulence which decays over time [27,28]. This setting,
free from boundaries and artifacts that may be introduced
by external forcing, allows us to unambiguously identify
the effects of the dipolar interactions.
We adopt the classical field methodology of the weakly

interacting, finite-temperature Bose gas [27,29–36],
extending it to include dipolar interactions. The gas is
described by a classical field ψðr; tÞ (a valid assumption
provided the modes are highly occupied), with atomic
density nðr; tÞ ¼ jψðr; tÞj2 and whose equation of motion is
given by the Gross-Pitaevskii equation (GPE). In the
presence of dipolar interactions, the GPE is given by [37]
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The gjψ j2 term accounts for the local van der Waals–
originating atomic interactions, parametrized by g. The
nonlocal integral term accounts for the long-range dipolar
interactions, with interaction pseudopotentialUddðr − r0Þ ¼
ðCdd=4πÞ1 − 3cos2θ=jr − r0j3, with θ being the angle
between the polarization direction and the interatom vector
r − r0, and Cdd ¼ μ0d2, where μ0 is the permeability of free
space andd is themagnetic dipolemoment of the atoms. This
potential accounts for the attractionof end-to-enddipoles and
repulsion of side-by-side dipoles. The relative strength of the
dipolar interactions is specified by the ratio εdd ¼ Cdd=3g
[37]. Usingwell-established experimental techniques to tune
g via field-induced Feshbach resonances [37] and the recent
demonstration of tuning Cdd via fast rotation of the polari-
zation direction [38], the parameter εdd can be experimentally
varied over the range −∞ ≤ εdd ≤ ∞, including the regime
of negative Cdd (in which side-by-side dipoles effectively
attract and head-to-tail dipoles effectively repel).
For g > 0 and −0.5 ≤ εdd ≤ 1, the ground state of the

dipolar Bose gas is the uniform solution ψ ¼ ffiffiffiffiffi
n0

p
eiS0 ,

where n0 is the uniform density and S0 an arbitrary uniform
phase, and the chemical potential μ0 ¼ n0gð1 − εddÞ.
According to the Bogoliubov theory, perturbations to
this state of momentum p have energy EBðpÞ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2ðθkÞp2 þ ðp2=2mÞ2

p
, where c2ðθkÞ ¼ ðgn0=mÞ

½1þ εddð3 cos2 θk − 1Þ� and θk is that between p and the
polarization direction [37]. For small p, the spectrum
corresponds to oscillatory excitations in the form of
phonons with anisotropic phase velocity cðθÞ. Note that,
outside of the regime of g > 0, −0.5 ≤ εdd ≤ 1, the
excitations develop imaginary energy components, signi-
fying unstable growth (the “phonon instability”) and the
instability of this homogeneous state.
We express length in units of the dipolar healing length

ξ ¼ ℏ=
ffiffiffiffiffiffiffiffiffi
mμ0

p
and time in terms of the unit τ ¼ ℏ=μ0. The

GPE is evolved numerically using a split step Fourier
method [39,40] on a 1923 periodic grid with spacing
d ¼ 0.5ξ. Our findings are insensitive to these numerical
parameters. The time step Δt ¼ 0.001τ is 2 orders of
magnitude smaller than the timescale of the fastest modes
supported [41]. Following previous approaches [27,28], we
initialize the system with the nonequilibrium state
ψðr; 0Þ ¼ P

kak expðik · rÞ, where k is the wave vector
(defined up to the maximum amplitude allowed by the
numerical box [27,32]), the coefficients ak are uniformly
valued (up to a certain wave vector amplitude set by the
choice of system parameters), and the phases are distributed
randomly [42]. We illustrate the key behaviors through case
studies of εdd ¼ 0.8 and εdd ¼ −0.4, as well as the non-
dipolar case εdd ¼ 0 for comparison; the more general
behavior will also be described.
At very early times, there is a rapid self-ordering of the

field, akin to the nondipolar case [27,32]. From the initially
uniform distribution across modes, the low k modes grow

to develop macroscopic occupation, forming a quasicon-
densate. The high kmodes develop low occupations and are
associated with thermal excitations. Within of the order of
100 time units, this bimodal distribution across the modes
has effectively saturated. Unlike the nondipolar case, the
mode occupations are anisotropic in momentum space.
The quasicondensate has superfluid ordering and features a
tangle of quantized vortices. To visualize the superfluid
vortices for t > 0 [43], we follow Ref. [27] in defining a
“quasicondensate” density nq of the low-lying modes
k ≤ kc, where kc is identified from the condensate-thermal
crossover in the mode distribution. Here we identify
kc ¼ 0.46ξ−1. Vortices are then identified as tubes of
low quasicondensate density, nq < 0.05hnqi, where hi
denotes the ergodic average. Our results are insensitive
to the precise values of kc and the density threshold.
In the nondipolar Bose gas [Fig. 1 (top row)], this tangle

is randomized in space, with no large-scale structure
[27,32], and the density fluctuations, representative of
the high k component of the field, are isotropic in space.
For the dipolar Bose gas, the spatial isotropy is broken.

For εdd > 0 [εdd ¼ 0.8, Fig. 1 (middle row)], the density
fluctuations become columnar, aligned along the polariza-
tion direction, as seen in the integrated density profiles.
This is because these modes have lower energy, as seen in
the earlier dispersion relation EBðpÞ, due to the lower
energy configuration of dipoles to a head-to-tail configu-
ration. These fluctuations are sizable in amplitude, ranging
from around 0.6 to 1.5 of the mean density, and are
dynamic. The vortices visibly tend to orient along z.
For εdd < 0 (viz. Cdd < 0) [εdd ¼ −0.4, Fig. 1 (bottom

row)], the density fluctuations become planar, in accord
with EBðpÞ and driven by the attraction of side-by-side

FIG. 1. Turbulence in the quantum ferrofluid, for three values
of εdd. Vortices are shown through isosurfaces (red tubes) of the
quasicondensate density at the 0.05hnqi level (angled brackets
denote an ergodic average). The walls of the box show 2D density
profiles, corresponding to integrating the density jψ j2 over the
dimension perpendicular to their face.
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dipoles, again with a large density amplitude. The vortices
in this case prefer to align in these low-density planes.
For all cases, the vortices decay in time, through

reconnections, Kelvin wave decay, and thermal dissipation,
and by t ≈ 2000τ only a few vortex loops are left in the gas.
The columnar (planar) density fluctuations arise generically
for εdd > 0 (εdd < 0), growing in amplitude with jεddj. For
larger jεddj values than shown, however, the dominance of
the columnar (planar) density fluctuations makes it chal-
lenging to visualize the vortices.
Next we quantify the polarization of the vortex tangle.

We project the quasicondensate vortex tubes in the x, y, and
z directions, denoting the areas cast as Ax, Ay, and Az,
respectively. The ratio Az=A⊥, where A⊥ ¼ 1

2
ðAx þ AyÞ,

then quantifies the axial-to-perpendicular anisotropy of the
vortices. Figure 2(a) shows the evolution of Az=A⊥, over
five initial conditions for each εdd, up to t ¼ 1500τ. By this
time, the number of vortices has decreased to the order of
unity; beyond this, the area ratio is no longer a meaningful
characteristic of the tangle, with the fluctuations becoming
excessive. Moreover, at this stage the dynamics are no
longer multiscaled, a key characteristic of hydrodynamic
turbulence. Because of the isotropic initial conditions, all
cases begin being isotropic withAz=A⊥ ≈ 1. For εdd ¼ 0, the
tangle remains isotropic throughout. However, for εdd ≠ 0,
the tangle evidently becomes polarized, seen by the sta-
tistically significant deviation of Az=A⊥ from unity. For
εdd ¼ 0.8, Az=A⊥ decreases by up to 25%; for εdd ¼ −0.4, it
increases up by 40%. In Fig. 2(b), amore thorough parameter
sweep of εdd is displayed, focusing on the asymptotic value of
Az=A⊥ obtained at t=τ ¼ 750, where, within error bars, this
quantity decreases approximately with εdd.
To further understand the polarization of the vortices,

Fig. 3 shows the location of the vortex lines (red isosurface
tubes) and regions of high quasicondensate density (blue
isosurface regions). It is evident that, first, the system is
threaded with vertical tubelike structures of high density,
the intervening regions being of low density. Second, the
vortices avoid the high-density regions; by maximizing

their overlap with the low-density regions, they reduce their
kinetic energy. For εdd < 0, the high-density regions are
planar strata, with the vortices tending to locate in the
intervening low-density layers.
The preference of the vortices to align in the low-density

regions is particularly prominent at the late stages of the
decay, when only one or a few vortex loops remain. Here
we observe situations, for example, in which vortex loops
become heavily pinned across two planar regions of low
density, as in Fig. 4. Considerable vortex line length lies in
these planes, while two vortex segments connect between
these planes to form the overall loop. The pinned segments
move with the low-density region. This large loop is
metastable but decays eventually via a reconnection,
forming two small loops, each of which is heavily pinned
within each low-density plane. We observe such pinning of
vortices to the low-density region to be a general occur-
rence for moderate to large values of εdd.
Having identified an additional “organization” of the

vortices driven by the dipolar interactions, we now seek to
understand how this affects the nature of the turbulence
itself. In contrast with classical turbulence, two distinct
regimes of quantum turbulence have been identified [44].

FIG. 3. A representative snapshot (left, top view; right, angled
view) for εdd ¼ 0.8 (t=τ ¼ 1000) highlighting the location of the
high-density regions [blue isosurfaces, plotted at 0.8maxðhnqiÞ]
and the vortices (red isosurfaces, plotted at 0.05hnqi).

(a)

(b)

FIG. 2. (a) Polarization of the vortex tangle over time, shown
through the area ratio of vortices, Az=A⊥, for three εdd values.
Lines and shaded regions represent the mean and one standard
deviation over five realizations with different randomized initial
conditions, respectively. (b) Snapshot of the area ratio over more
detailed range of εdd at t ¼ 750τ [dotted line in (a)].

FIG. 4. Coupling betweenvortices and the dipolar-driven density
fluctuations. One large loop spreads across two planar density
regions, which act as pinning layers. The observed dynamics are
indicative of simulations for relative dipolar strength εdd < 0, and
the times of the images shown are t=τ ¼ 50 apart from left to right.
The phase is evaluated and displayed on the quasicondensate
density at the 0.05hnqi level; the backwall of the box shows the 2D
density profiles, corresponding to integrating the density over the
dimension perpendicular to its face.
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In the quasiclassical regime, motions over a wide range of
scales are observed, and many of the statistical properties of
classical turbulence (such as Kolmogorov’s energy spec-
trum) are observed [45]. However, quantum fluids also give
rise to another form of turbulence, the ultraquantum or
Vinen regime, which is associated with a random tangle of
quantized vortices and no large-scale structure. In the
quasiclassical regime, energy dissipation is dictated by
the lifetime of the largest scales of motion, and one can
construct a classical argument that the rate of the decay of
the vortex line density L follows a power-law scaling
L ∼ t−3=2. The Vinen regime can be distinguished from the
quasi-classical regime because different dissipation mech-
anisms dominate its decay, which leads to a different
power-law scaling, with L decaying as t−1.
The turbulence arising from a thermally quenched (non-

dipolar) Bose gas has been linked to ultraquantum turbu-
lence [28]. Here we estimate the vortex line length L as the
volume occupied by the vortex tubes divided by their
typical cross-sectional area [28,46]; its evolution is shown
in Fig. 5. We interpret the behavior above the horizontal
line; below this, the number of vortices becomes of the
order of unity. For εdd ¼ 0, we recover the t−1 behavior of
ultraquantum turbulence. The dynamics for εdd ¼ −0.4
also closely follow this trend. However, what is particularly
striking is that for εdd ¼ 0.8 we see a faster decay, akin to
t−3=2. At first glance, this suggests that the turbulence enters
the quasiclassical regime. To test this, we examine the
length scale of the velocity correlations.
We first calculate the longitudinal velocity correlation

function fjðr;tÞ¼hvjðx;tÞvjðxþrêj;tÞi=hvjðx;tÞ2i along
each direction j ¼ x, y, z, where v is the quasicondensate
velocity and the ensemble average is performed over
positions x. From this, we calculate the integral length
scale IjðtÞ ¼

R∞
0 fjdr, a convenient measure of the dis-

tance over which velocities are correlated [28,48]. For all
cases of εdd, the integral length scales are significantly less
than the average distance between vortices l ¼ 1=

ffiffiffiffi
L

p
:

This confirms that there are no large-scale motions and that

the turbulence is of the ultra quantum or Vinen form.
Furthermore, for εdd ¼ 0 and εdd ¼ −0.4, we find that the
integral length scale is isotropic (Ix ≈ ly ≈ lz) to within
statistical fluctuations. However, for εdd ¼ 0.8, we find that
Iz ≈ 2Ix ≈ 2Iy, indicative of a significant extension of
the velocity correlations along the polarization direction.
This strong anisotropy in the velocity correlations may be
responsible for the t−3=2 scaling; however, a dimensional
derivation of this situation which confirms this decay law
remains outstanding.
In summary, for the first time we have numerically

studied turbulence in a quantum ferrofluid. In the absence
of dipolar interactions, the rapid quench of a thermal gas
through the transition temperature generates a random
unstructured tangle with no significant large-scale motions,
that is, ultraquantum or Vinen turbulence. We find that for
values of εdd approaching unity, where the dipolar atomic
interaction is comparable to the isotropic van der Waals
interactions, the quantum turbulence that emerges is
strongly polarized, in both the orientation of the vortex
lines and the velocity correlations of the flow. Whereas
polarized quantum turbulence has been predicted in rotat-
ing superfluids [49], here the origin is very different, arising
naturally from the interparticle interactions without exter-
nal forcing. In contrast, for large negative values of εdd, the
vortices arrange into sheets; this has the potential to lead to
stratified quantum turbulence, which as yet is unexplored.
We believe that turbulence in a quantum ferrofluid will

allow both experimental and theoretical studies of new and
interesting aspects of fluid dynamics. For example, the
inverse cascade has received much attention in quantum
fluids recently [50], and it is entirely conceivable that new
regimes of two-dimensional turbulence can be realized by
the presence of dipolar interactions within the gas. Finally,
while numerous mechanisms for continuously forcing
three-dimensional turbulence in a BEC have been put
forward [18,20,51], most follow James Bond’s lead and
shake, rather than stir, the condensate, generating signifi-
cant phonon excitations [52]. By using a time-dependent
external magnetic field or changing the effective value of
εdd (through modulation of the local van der Waals force g,
for example) in both space and time, one could stir the fluid
in a method analogous to the magnetic stirring of a classical
electrically conducting fluid [53].
Data supporting this publication are openly available

under an OpenData Commons OpenDatabase License [54].
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