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Understanding the effects of interactions in complex quantum systems beyond the mean-field paradigm
constitutes a fundamental problem in physics. We show how the atom numbers and interactions in a Bose-
Bose mixture can be tuned to cancel mean-field interactions completely. The resulting system is entirely
governed by quantum fluctuations—specifically the Lee-Huang-Yang correlations. We derive an effective
one-component Gross-Pitaevskii equation for this system, which is shown to be very accurate by
comparison with a full two-component description. This allows us to show how the Lee-Huang-Yang
correlation energy can be accurately measured using two powerful probes of atomic gases: collective
excitations and radio-frequency spectroscopy. Importantly, the behavior of the system is robust against
deviations from the atom number and interaction criteria for canceling the mean-field interactions. This
shows that it is feasible to realize a setting where quantum fluctuations are not masked by mean-field
forces, allowing investigations of the Lee-Huang-Yang correction at unprecedented precision.
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A key challenge in modern physics is to understand the
properties of interacting quantum systems. Except in the
limit of weak interactions, where a mean-field approach is
often sufficient, theories for interacting systems typically
involve approximations or brute force numerical calcula-
tions. The Lee-Huang-Yang (LHY) correction to the
ground-state energy of a Bose gas [1] is a seminal result,
which goes beyond mean-field theory by including quan-
tum fluctuations. In spite of its fundamental importance, the
LHY correction was only recently measured quantitatively
using the sophisticated experimental techniques offered by
ultracold atomic gases [2,3]. Moreover, LHY physics was
observed in a number of cold gas experiments [4–6].
A main reason for the difficulty of probing the LHY term
is that it typically constitutes a small contribution to a
dominant mean-field term.
Recently, it was pointed out that quantum fluctuations

can stabilize a Bose-Bose mixture, which would otherwise
collapse under attractive mean-field forces [7]. The result-
ing self-bound droplets were observed both without con-
finement [8] and with confinement in one [9] or two
dimensions [10]. Similar observations were made in dipolar
condensates [11–14]. While these experiments show the
presence of quantum fluctuations, the existence of various
competing mean-field and quantum fluctuation energies of
the same magnitude complicates a direct measurement of
the LHY term.
In this Letter, we propose a novel approach to studying

quantum fluctuations. By tuning the interactions and atom
numbers in a two-component Bose-Einstein condensate
(BEC), it is possible to realize a fluid where mean-field
interactions are entirely absent. This leaves the LHY
correction as the only relevant interaction energy for weak

coupling, and we denote such a system a LHY fluid. We
develop an effective single-component framework based on
a generalized Gross-Pitaevskii equation (GPE), which is
shown to accurately describe the LHY fluid by comparing
with full numerical two-component simulations. Using
the one-component framework, we calculate a number of
relevant parameters describing the fluid. Moreover, we
show how two powerful measurement techniques available
to cold gas experiments, collective oscillations and radio-
frequency (rf) spectroscopy, can be used to accurately
probe LHY physics. Finally, we show that our results are
robust towards considerable deviations in atom numbers
and interaction strengths away from the conditions for
realizing the ideal LHY fluid.
A two-component BEC at zero temperture is, excluding

LHY terms, described by the mean-field energy functional

EMF ¼
Z �X
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Here, the subscript i ¼ 1, 2 refers to the two components,
ΨiðrÞ ¼ N1=2

i ψ iðrÞ is the condensate wave function,
gij ¼ 2πℏ2aijðmi þmjÞ=ðmimjÞ is the coupling constant
between components i and j, with aij corresponding to
the scattering length. The density of component i is
niðrÞ ¼ jΨiðrÞj2. For simplicity, we choose equal masses
m ¼ m1 ¼ m2 of the two components and a symmetric
harmonic trap V1ðrÞ¼V2ðrÞ¼mω2

0r
2=2. Stability requires

g11 > 0 and g22 > 0.
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It is easy to show that for g12 ¼ − ffiffiffiffiffiffiffiffiffiffiffiffi
g11g22

p
, one eigen-

value of the quadratic form
P

ijgijninj=2 in Eq. (1) is zero,
whereas the other is positive. The eigenvector associated
with the zero eigenvalue corresponds to n2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g11=g22

p
n1,

which shows that the mean-field energy vanishes for this
density ratio, and that any deviation away from this is
energetically costly. Thus, by choosing g12 ¼ − ffiffiffiffiffiffiffiffiffiffiffiffi

g11g22
p

and atom numbers such that N2=N1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g11=g22

p
, the

mean-field terms of Eq. (1) cancel entirely and the con-
densate wave functions take the formΨ2 ¼ Ψ1ðg11=g22Þ1=4.
The system will behave as if it is noninteracting at the
mean-field level, and any perturbation to one component
results in a restoring force towardsΨ2 ∝ Ψ1. This motivates
using the ansatz Ψ2 ¼ Ψ1ðg11=g22Þ1=4.
The contribution from quantum fluctuations to the

local energy density in a Bose mixture of equal masses
m reads [7,15]

ELHY

V
¼ 32

ffiffiffiffiffiffi
2π

p

15

ℏ2

m

X
�
ða11n1 þ a22n2 � κÞ5=2; ð2Þ

where κ ¼ ½ða11n1 − a22n2Þ2 þ 4a212n1n2�1=2. For a12 ¼
− ffiffiffiffiffiffiffiffiffiffiffiffiffi

a11a22
p

and n1=n2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a22=a11

p
, this reduces to

ELHY

V
¼ 256

ffiffiffi
π

p
15
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m
ðnja12jÞ5=2; ð3Þ

where n ¼ n1 þ n2.
Including this term in Eq. (1) and defining jΨj2 ¼

jΨ1j2 þ jΨ2j2 with Ψ2 ¼ Ψ1ðg11=g22Þ1=4 yields the one-
component energy functional [16]

E ¼
Z �

ℏ2j∇Ψj2
2m

þ VjΨj2 þ 256
ffiffiffi
π

p
15

ℏ2

m
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�
dr:
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Note that there are no mean-field terms in this energy
functional, so interaction effects are given by the next
order LHY fluctuation term for weak interactions. We
therefore denote this system as a LHY fluid. The corre-
sponding GPE is

μΨ ¼
�
−
ℏ2

2m
∇2 þ VðrÞ þ 128

ffiffiffi
π

p
3

ℏ2

m
ja12j5=2jΨj3

�
Ψ: ð5Þ

This is analogous to the usual one-component GPE, but
with the nonlinear mean-field jΨj2 term replaced by a jΨj3
term. It follows from Eq. (5) that the relevant dimensionless
parameter for the interaction strength is N3=2ja12=ahoj5=2,
where N ¼ N1 þ N2 is the total number of atoms and
aho ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ℏ=mω0

p
is the harmonic oscillator length. This

should be compared with the parameter Na11=aho for a
regular BEC. The simplicity of Eq. (5) allows for detailed

analytical studies of the system, in contrast to multi-
component systems, which in general are difficult to
describe analytically.
Note that the LHY contribution to the chemical poten-

tials of the two components, μj ¼ ∂ELHY=∂Nj, differs for
the two components except for a11 ¼ a22, as follows from
Eq. (2). Hence, the LHY term will break the proportionality
Ψ2 ¼ Ψ1ðg11=g22Þ1=4, which is assumed when deriving
Eq. (5). However, the mean-field forces will tend to restore
this proportionality, and as we shall see, the one-component
framework is accurate for describing mixtures with
a11 ≠ a22.
To verify the validity of the one-component description,

we compare the ground-state energy obtained from Eq. (5)
with that using a full two-component GPE formalism with
mean-field and LHY terms included [18]. For concreteness,
we consider the recently studied 39K spin mixture in states
j1i ¼ jF ¼ 1; mF ¼ −1i and j2i ¼ j1; 0i [8–10,19]. At a
magnetic field of 56.8 G, the scattering lengths of the
system fulfill ja12j¼ ffiffiffiffiffiffiffiffiffiffiffiffiffi

a11a22
p ¼53a0, with a22=a11 ¼ 2.5,

where a0 is the Bohr radius [19]. The calculations are
performed by varying ω0=2π from 0 up to 100 Hz with a
total atom number N ¼ 105 using a numerical toolbox
[20,21]. The ground-state energies as a function of inter-
action strength are shown in Fig. 1. The one- and two-
component calculations yield essentially the same results,
confirming that Eq. (5) provides an accurate description
of the system. The results also show that the mean-field
energy in the two-component theory is much smaller than
all of the other energies, consistent with our approach. The
one-component framework indeed remains accurate for
interaction strengths beyond those available in typical
experiments (see the Supplemental Material [18]).

FIG. 1. Numerically obtained energies of the LHY fluid. The
lines refer to one-component calculations, and the points to two-
component calculations. Viewing from top to bottom, orange is
the potential energy, blue is the kinetic energy, green is the LHY
correction, and purple is the mean-field energy, which exists
only in the two-component framework, multiplied by a factor of
100 for visibility.
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We now use the one-component framework to derive a
number of relevant properties of the system. For strong
interactions N3=2ðja12j=ahoÞ5=2 ≫ 1, the local density is
well described within the Thomas-Fermi approximation
giving

nðrÞ ¼ jΨðrÞj2 ¼ n0ð1 − r2=R2
LHYÞ2=3; ð6Þ

where RLHY is the fluid radius. Using VðRLHYÞ ¼ μ yields

μ

ℏω0

¼ A2

2

�
N3=2

���� a12aho

����
5=2

�
4=13

; ð7Þ

where A ¼ ½913Γð1=3Þ9=35π8�1=13 ≈ 1.815. Similarly,

RLHY

aho
¼ A

�
N3=2

���� a12aho

����
5=2

�
2=13

: ð8Þ

Using μ ¼ ∂E=∂N and μ ∝ N6=13, we obtain E=N ¼
13μ=19 for the energy per particle. The central density
of the fluid is

n0ja12j3 ¼
A4=332=3

32ð2πÞ1=3
�
N

���� a12aho

����
6
�

4=13
: ð9Þ

This can also be used to confirm the accuracy of our
weak coupling theory, valid for n0ja12j3 ≪ 1. For typical
values N ¼ 105 and a12 ¼ 53a0, an interaction strength of
N3=2ja12=ahoj5=2 ≈ 1.7 × 104 would be required to reach
1% of this limiting criterion (n0ja12j3 ¼ 0.01). This illus-
trates that all of our results are in the weakly interacting
limit n0ja12j3 ≪ 1.
We also introduce a healing length ξLHY providing the

typical length scale of density variations of the LHY fluid.
It is determined by a competition between the kinetic
energy and the interaction energy. Equating ℏ2=2mξ2LHY ¼
ð128 ffiffiffi

π
p

ℏ2=3mÞn3=2ja12j5=2 yields

ξ2LHY ¼ 3

256
ffiffiffi
π

p ja12j5=2n3=2
: ð10Þ

One of the most powerful techniques for the investiga-
tion of cold atomic gases is collective excitation [4,22–26].
We now show how the simplest collective excitation, the
monopole breathing mode, can be used to probe the LHY
correlations. To do so, we introduce the generic wave
function [25]

ΨðrÞ ¼ BN1=2

R3=2 fðr=RÞeiϕ; ð11Þ

where f is an arbitrary real function, R is a radius, ϕ is a
phase, and B is a normalization constant. Inserting Eq. (11)
into Eq. (4) gives the energy

E ¼ Eflow þ Epot þ Ezp þ ELHY ¼ Eflow þ UðRÞ: ð12Þ

Here, Eflow ¼ ℏ2=2m
R
drjΨj2ð∇ϕÞ2 is the kinetic energy

of the particle currents, Epot ¼ mω2
0=2

R
drr2jΨj2 ∝ R2

is the potential energy, ELHY ¼ 256
ffiffiffi
π

p
ℏ2ja12j2=15mR

drjΨj5 ∝ R−9=2 is the LHY correction, and Ezp¼
ℏ2=2m

R
drðdjΨj=drÞ2∝R−2 the zero-point kinetic energy.

Consider first the equilibrium case R ¼ R0, where
Eflow ¼ 0 and dU=dRjR¼R0

¼ 0. The energy terms are
proportional to powers of R from which follows a virial
theorem,

R
dU
dR

����
R¼R0

¼ 2Epot − 2Ezp −
9

2
ELHY ¼ 0: ð13Þ

Now, we move on to dynamics by considering a time-
dependent R. The corresponding particle velocity is vðrÞ ¼
r _R=R and Eflow ¼ me

_R2=2, where me ¼ Nmhr2i=R2

is an effective mass and hr2i is the mean-square radius
of the fluid [25]. For a harmonic oscillator, the effective
mass isme ¼ 2Epot=ω2

0R
2. Conservation of the total energy

me
_R2=2þ UðRÞ gives the equation of motion meR̈ ¼

−∂UðRÞ=∂R.
Expanding the effective potential UðRÞ to second order

around equilibrium gives UðRÞ ¼ UðR0Þ þ CðR − R0Þ2=2,
where C ¼ d2UðRÞ=dR2 is a constant describing the
restoring force towards equilibrium. The monopole oscil-
lation frequency is therefore ω2 ¼ C=me. By calculating
R2d2UðRÞ=dR2 and using Eq. (13), we obtain

ω2 ¼ ω2
0

�
4þ 45

8

ELHY

Epot

�
: ð14Þ

This expression allows for a straightforward evaluation of
the monopole frequency at various interaction strengths.
In the Thomas-Fermi limit, we can set Ezp ¼ 0 in

Eqs. (13) and (14), obtaining ω=ω0 ¼
ffiffiffiffiffiffiffiffiffiffi
13=2

p
. The fre-

quency change compared to the noninteracting value
ω=ω0 ¼ 2 is thus more than twice as large than for a
regular BEC, where ω=ω0 ¼

ffiffiffi
5

p
in the Thomas-Fermi

limit [24]. For weak interaction, ELHY and Epot can be
calculated using the harmonic oscillator ground-state wave
function, and Eq. (14) yields

ω

ω0

¼ 2þ π−7=4
64

ffiffiffi
2

p

5
ffiffiffi
5

p N3=2

���� a12aho

����
5=2

: ð15Þ

To evaluate the monopole frequency for intermediate
interactions, we use the energies obtained from the one-
component ground-state calculations shown in Fig. 1
combined with Eq. (14). As a check, we have also
performed dynamical simulations using the full two-
component description [18].
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In Fig. 2, we show the monopole frequency as a function
of the interaction strength. The one-component framework
for the LHY fluid yields essentially the same frequency
as the full two-component calculations, demonstrating
its accuracy. Importantly, it confirms that the frequency
shift of the monopole mode is driven almost exclusively
by the LHY correlations, whereas mean-field forces
play a negligible role. Figure 2 also displays how the
monopole frequency interpolates between the result of
Eq. (15) for N3=2ja12=ahoj5=2 ≪ 1 and ω=ω0 ¼

ffiffiffiffiffiffiffiffiffiffi
13=2

p
for N3=2ja12=ahoj5=2 ≫ 1, which is also shown in the
Supplemental Material for stronger interactions [18].
Given the high accuracy of collective mode experiments,
we conclude that the LHY correlations can be probed
quantitatively by measuring the monopole frequency of a
LHY fluid.
We now show that rf spectroscopy, which has been used

extensively to study interaction effects in BECs [6,27–29],
can be used to directly measure the LHY energy by
transferring atoms between components 1 and 2. Since a
small number of atoms transferred from one component to
the other will experience the same mean-field energy in the
two states, any shift of the transition frequency is entirely
due to the LHY energy term, which differ for the two
components. The shift is determined by the difference
μ1 − μ2 in chemical potentials of the two states [18].
Assuming that jΨj2=N ¼ jΨ1j2=N1 ¼ jΨ2j2=N2 yields the
shift [18]

μ2 − μ1
μLHY

¼ a22 − a11
ja12j

; ð16Þ

where μLHY¼ð128
ffiffiffi
π

p
ℏ2ja12j5=2=3mÞhΨjjΨðrÞj3jΨi=hΨjΨi

is the expectation value of the LHY interaction energy in
the one-component framework. It is thus straightforward to
obtain the shift by calculating μLHY.
To obtain the shift in the weakly interacting limit, the

value μLHY is calculated assuming the harmonic oscillator
ground-state wave function

μ2 − μ1
ℏω0

¼ π−7=4
512

ffiffiffi
5

p

75
ffiffiffi
2

p a22 − a11
ja12j

N3=2

���� a12aho

����
5=2

: ð17Þ

To evaluate this, we again consider 39K in the spin states
given above. The resulting shift using Eq. (17) is shown in
Fig. 3. To calculate the shift for stronger interactions,
the ground-state calculations for both the one- and two-
component frameworks shown in Fig. 1 are used. For the
one-component framework, μLHY is extracted and Eq. (16)
is used to calculate the frequency shift. For the two-
component framework, the difference between the numeri-
cally obtained chemical potentials is shown.
Figure 3 shows that the quantum fluctuations clearly

result in a difference of chemical potentials, and the
resonance frequency for transferring atoms is shifted
accordingly. Since the two components do not have
identical atom numbers N1 ≠ N2, a resonant rf pulse will
not transfer the same number of atoms between the two
components, and it will therefore result in a deviation from
the ratio N2=N1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a11=a22

p
. rf spectroscopy is thereby

capable of directly measuring the energy contribution from
quantum fluctuations in a LHY fluid.
It is experimentally challenging to perfectly match

the criteria N2=N1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a11=a22

p
and a12 ¼ − ffiffiffiffiffiffiffiffiffiffiffiffiffi

a11a22
p

as
required. An important question for the feasibility of

FIG. 2. Monopole frequency of the LHY fluid. The light blue
dashed line is Eq. (15), valid for weak interactions. The black
dashed and dotted lines give the Thomas-Fermi results ω=ω0 ¼ffiffiffiffiffiffiffiffiffiffi

13=2
p

and ω=ω0 ¼
ffiffiffi
5

p
for a LHY fluid and a regular BEC,

respectively. The solid blue line is obtained from Eq. (14)
combined with ground-state calculations performed in the one-
component framework, while the points are obtained from
dynamical two-component simulations.

FIG. 3. The difference in chemical potential between two
components of the LHY fluid, which is observable through rf
spectroscopy. The light green dashed line is Eq. (17), which is
valid for weakly coupling. The full green line is obtained from
ground-state calculations using the one-component framework
combined with Eq. (16), whereas the points are from the two-
component framework.
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realizing a LHY fluid is therefore the effect of small
deviations from these values. To investigate this, we
perform full two-component ground-state calculations with
constant a11, a22, aho, and N ¼ 105, corresponding to
N3=2ð ffiffiffiffiffiffiffiffiffiffiffiffiffi

a11a22
p

=ahoÞ5=2 ¼ 4, but with various values of a12
and N1=N2. Figure 4(a) shows that the mean-field energy is
small compared to the LHY energy, so quantum fluctua-
tions are the dominating source of interaction effects, even
for relatively large deviations. In Fig. 4(b), we show the
monopole oscillation frequency, obtained from dynamical
two-component simulations. It remains significantly larger
than the frequency ω=ω0 ¼

ffiffiffi
5

p
≈ 2.236 of a regular

BEC in the Thomas-Fermi limit for a broad range of
parameters. In both cases, Fig. 4 shows that the LHY
fluid is more susceptible to deviations in scattering length
than to deviations in relative atom numbers. This can
be understood from the fact that if an atom of type 1 is
added to a mixture fulfilling N2=N1 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a11=a22

p
and

a12 ¼ − ffiffiffiffiffiffiffiffiffiffiffiffiffi
a11a22

p
, the net contribution to mean-field energy

is ∼n1g11 þ n2g12 ¼ 0. However, changing the scattering
length away from a12 ¼ − ffiffiffiffiffiffiffiffiffiffiffiffiffi

a11a22
p

leads to an imbalance in
net mean-field energy, which quickly becomes comparable
to the LHY energy.
These results can be used to discuss the experimental

feasibility of realizing a LHY fluid. As argued above, it is
mainly important to fulfill the scattering length criterion
a12 ¼ − ffiffiffiffiffiffiffiffiffiffiffiffiffi

a11a22
p

. For the 39K system discussed in this
work, the range 0.97–1.03 of a12=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
a11a22

p
corresponds to a

magnetic field window of approximately 250 mG. Within
this range, which is well within the precision of ultracold
gas experiments, it is thus possible to realize a fluid
where quantum fluctuations are stronger than mean-field
interactions.
In conclusion, we propose the realization of a dilute

quantum fluid where quantum fluctuations provide the only

relevant interaction. Even though the fluid consists of two
distinct components, it is possible to describe it using a
one-component framework. We furthermore propose two
methods to study the quantum fluctuations: collective
oscillations and rf spectroscopy. Finally, we have shown
that it is experimentally feasible to realize the fluid, despite
typical uncertainties in scattering length and atom numbers.
The one-component framework will stimulate further
theoretical studies—in future work, it will be interesting
to investigate, e.g., the dispersion relation and the expan-
sion properties of the fluid.
The realization of the LHY fluid opens up for an

unprecedented characterization of quantum fluctuations.
Since it is possible to directly study the LHY correction
without the presence of predominant mean-field contribu-
tions, this system is a promising candidate for observing
beyond LHY corrections. The next order (in na3) correction
to the energy in a Bose gas, EWHPS, was calculated for a
single-component BEC [30], and recently for a single
impurity in a BEC [31]. Since it has not been calculated
for a two-component BEC so far, we use the single-
component result as a guide, which gives EWHPS=ELHY ≈
4.1

ffiffiffiffiffiffiffiffi
na3

p
lnðna3Þ [30]. Using Eq. (9) with N ¼ 105,

a12 ¼ 53a0, and ω0=2π ¼ 1 kHz, corresponding to
N3=2ja12=ahoj5=2 ≈ 72, yields EWHPS=ELHY ≈ −0.5, show-
ing that beyond-LHY physics indeed is experimentally
accessible. It would be interesting yet challenging to
calculate this term for a two-component mixture, building,
for instance, on the diagrammatic results of Refs. [31,32].
The LHY fluid constitutes a compelling system, located

between two interaction limits of Bose gases: mean-field
interactions and highly correlated Bose gases. It thereby
provides a stepping stone towards a better understanding of
new exotic systems.
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