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Resonant exchange is a general process playing a key role in many-body dynamics and transport
phenomena, such as spin, charge, or excitation diffusion. The underlying process is described by the
resonant exchange cross section. We show that the s-wave scattering, generally thought to contribute
mainly in the ultracold (or Wigner) regime, dictates the overall cross section over a broad range of energies.
We derive an analytical expression and explain its applicability high above theWigner regime. In particular,
we demonstrate its relationship to the classical capture (Langevin) cross section and apply it to three very
different resonant processes: namely, resonant charge transfer, spin flip, and excitation exchange. This
expression explains large variations for different isotopes that cannot otherwise be accounted for by the
small change in mass. The s-wave signature also allows us to gain information about the Wigner regime
from data obtained at much higher temperatures, which is especially advantageous for systems where the
ultracold regime is not reachable.
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The quantal regime, in which the quantum nature of
phenomena plays a pivotal role, is at the forefront of
research in many areas of physics. This is particularly well
illustrated by various achievements at ultracold temper-
atures, which range from the control of few-body inter-
actions, e.g., using tunable Feshbach resonances [1,2] to
explore degenerate quantum gases [3,4] or exotic three-
body Efimov states [5,6], to control of internal and
motional states to explore many-body dynamics [7],
including studies of new phases or quantum simulations
[8,9]. In recent years, rapid progress has been made to
extend the types of systems investigated from atomic to
molecular [10–13] and ionic species [14,15]. However, for
many of them, e.g., atom-ion hybrid systems [16–24], the
quantum regime dominated by s-wave scattering is still
outside the reach of today’s experimental techniques.
In many ultracold studies, resonant exchange plays a

central role, e.g., in Rydberg samples [25] where excitation
exchange is involved in Föster resonances [25,26] or
quantum random walk [27]. Other examples relate to spin
exchange, e.g., between ultracold atoms and molecules
[28–31] or in two-orbital interactions with SUðNÞ sym-
metry [32]. Recently, atom-exchange reactions between
NaK Feshbach molecules and K atoms were investigated as
an effective spin-exchange interaction [33]. Resonant
exchange between two asymptotically degenerate states
can be understood as the interference of two interaction
paths and has been studied in the scattering of neutral
atoms, e.g., spin flip in alkali atom collisions [34,35] with
singlet and triplet potential curves, as well as in S-P
excitation exchange for identical atoms [36], and charge
transfer between an ion and its neutral parent atom [37,38].
Recent experiments with atom-ion systems have observed

spin-flip dynamics above the Wigner regime in Ybþ þ
87Rb [20], Ybþ þ 6Li [39], and 88Srþþ Rb [40,41]. For
such systems, reaching the Wigner regime is difficult, and
probing s-wave scattering at higher temperatures will
provide essential information. In cases involving quasire-
sonant scattering, e.g., in isotope exchange, the resonant
approximation adequately describes the system if the scatter-
ing energy is higher than the energy splitting between the
asymptotic states [42,43].
In this Letter, we study the resonant exchange process

Xα þ Xα0 → Xα0 þ Xα; ð1Þ

where α and α0 denote internal states, such as charges 0
andþ1 in charge transfer X þ Xþ → Xþ þ X, or electronic
states S and P in excitation exchange XðSÞ þ XðPÞ →
XðPÞ þ XðSÞ. The corresponding cross section reads
[14,37,44]

σexcðEÞ ¼
π

k2
X∞
l¼0

ð2lþ 1Þsin2ðηal − ηblÞ; ð2Þ

where k ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2μE=ℏ2

p
, with reduced mass μ and collision

energy E. Here, ηa=bl is the lth partial wave scattering phase
shift along the potential Va=b corresponding to the asymp-
totically degenerate channels a=b (e.g., singlet or triplet
states). We consider inverse power-law tails V ∼ −Cn=rn

with n > 2.
For energies high above the Wigner regime, many partial

waves contribute; we thus regard l as a continuous variable
and use a semiclassical expression based on the Wentzel-
Kramers-Brillouin (WKB) approximation [44,45]
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where ri0ðlÞ is the classical turning point. Defining
Fi;lðrÞ≡ ½ð2μ=ℏ2Þ½E−ViðrÞ�− ðlþ 1

2
Þ2=r2�−1=2, we write
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Although l can be large, we assume that the centrifugal
term ðlþ 1

2
Þ2=r2 is small enough that the wave function

still probes the inner region, i.e., l < L with L defined by
ℏ2ðLþ 1

2
Þ2=r2top ≡ 2μ½E − VðrtopÞ�. As shown in Fig. 1,

when the top of the centrifugal barrier located at rtop is
below E, ri0ðlÞ is deep inside the short-range region,
moving suddenly to rtop at L and to the outer region for
l > L. The centrifugal barrier appears at values of r where
the potential is given by its asymptotic form
VðrÞ ≃ −Cn=rn, allowing us to split AiðlÞ into two regions,
below and above R, with R < rtop,

AiðlÞ ¼
Z

R

ri
0
ðlÞ

dr
r2

Fi;lðrÞ

þ
Z

∞

R

dr
r2

�
2μ

ℏ2

�
Eþ Cn

rn

�
−
ðlþ 1

2
Þ2

r2

�−1
2

≡ Aiðl; RÞ þ A∞
i ðl; RÞ: ð5Þ

We are interested in Δηl ≡ ηal − ηbl in Eq. (2) and noting
that A∞

a ðl; RÞ ¼ A∞
b ðl; RÞ, we use Eq. (4) to obtain

∂Δηl
∂l ¼ −

�
lþ 1

2

�
½Aaðl; RÞ − Abðl; RÞ�

≡ −
�
lþ 1

2

�
ΔAðlÞ: ð6Þ

At short range (r ≤ R), ℏ2ðlþ 1
2
Þ2=r2 ≪ 2μ½E − VðrÞ�,

and we can expand Fi;l ≈ Fi;l¼0 þOðl2Þ, so that to
leading order, Aiðl; RÞ ≈

R
R
ri
0
ðlÞðdr=r2ÞFi;l¼0ðrÞ. We can

then neglect the l dependence of r0ðlÞ (see Fig. 1) and take
its s-wave value r0ðlÞ≡ r0 so that ΔAðlÞ ≈ ΔA0 is then l
independent, and Eq. (6) becomes ∂ðηal − ηblÞ=∂l≈
−ðlþ 1

2
ÞΔA0. Integrating over l leads toΔηl ≈ ðηa0 − ηb0Þ−

lðlþ 1ÞΔA0. Using the Levinson theorem [44,45] to write
ηa=b0 ¼ Na=bπ þ δa=b0 , where δa=b0 is the s-wave phase shift
modulo π, and Na=b is the number of bound states
supported by Va=b, we finally have

Δηl ≈ πΔN þ Δδ0 − lðlþ 1ÞΔA0; ð7Þ

where ΔN ¼ Na − Nb, Δδ0 ¼ δa0 − δb0 , and

ΔA0 ¼
Z

R

ra
0
ðEÞ

dr
r2

Fa;l¼0ðrÞ −
Z

R

rb
0
ðEÞ

dr
r2

Fb;l¼0ðrÞ: ð8Þ

The inner turning point ri0 depends slightly on the scatter-
ing energy E, and typically, ΔA0 varies little with E, and is
of the order 0.01–0.001 for the physical systems considered
in this Letter, with ΔA0 smaller for heavier systems due the
2μ factor.
Returning to the cross section, we approximate the sum

in Eq. (2) with an integral σexc ≈ ðπ=k2Þ R∞
0 dlð2lþ 1Þ

sin2ðηal − ηblÞ and write using Eq. (7)

σexc ≈
π

k2

Z
L

0

dlð2lþ 1Þsin2
�
Δδ0 − lðlþ 1ÞΔA0

2

�
:

ð9Þ

The upper limit is set to L since the phase shift difference is
negligible for l ≥ L, as discussed above [37]. Defining
x≡ Δδ0 − 1

2
lðlþ 1ÞΔA0, our integral simply becomes

σexc ≃ −ðπ=k2Þð2=ΔA0Þ
R
xL
x0

dxsin2x ¼ −ðπ=k2Þð2=ΔA0Þ
½ðx=2Þ − 1

4
sinð2xÞ�xLx0 , with x0 ¼ Δδ0 and xL ¼ Δδ0 − 1

2
L

ðLþ 1ÞΔA0, giving

σexc ≃
π

k2
1

ΔA0

�
LðLþ 1ÞΔA0

2
−
1

2
sinð2Δδ0Þ

þ 1

2
sinð2Δδ0 − LðLþ 1ÞΔA0Þ

�
: ð10Þ

With LðLþ 1ÞΔA0 small, we find sin½2Δδ0 − LðLþ 1Þ
ΔA0� ≈ sinð2Δδ0Þ − LðLþ 1ÞΔA0 cosð2Δδ0Þ and with
LðLþ 1Þ ≈ L2,
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FIG. 1. Typical Va=b (black/red) and turning points ra=b0 (r ≤ R
is shaded). Right panel: Va ¼ Vb ¼ −ðCn=rnÞ for r > R leading
to identical centrifugal barriers. For l ¼ L, the barrier reaches the
scattering energy E ¼ 10−6 a:u: (∼300 mK); as l grows, the
turning points move “suddenly” from the short-range shaded
region (L − 1) to the top (L) and outer side of the barrier (Lþ 1).
Here, a=b stands for the singlet or triplet state of Rb2 with
L ≈ 22.4.
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σexcðEÞ ≃
π

k2
1

ΔA0

LðLþ 1ÞΔA0

2
½1 − cosð2Δδ0Þ�

≈
π

k2
L2sin2Δδ0ðEÞ; ð11Þ

which is related to the Langevin cross section σL defined
by the maximum impact parameter bmax still allowing
colliding partners to reach the short-range region where the
exchange process occurs with unit probability [14,37,44].
With b≡ ðlþ 1

2
Þ=k, bmax is obtained for l ¼ L, as the

centrifugal barrier prevents access into short range for
l > L (see Fig. 1). Thus,

σLðEÞ ¼ πb2max ≃
π

k2
L2; ð12Þ

where Lþ 1
2
≈ L, and LðEÞ is obtained from E ¼ VðrtopÞ.

The top of the barrier for VðrÞ ∼ −Cn=rn asymptotic
potentials is located at rtop¼f½μnCn�=½lðlþ1Þℏ2�g1=ðn−2Þ,
which yields

LðLþ 1Þ ¼ 1

ℏ2

�
n

n − 2

�ðn−2Þ=n
ðμnCnÞ2=nð2μEÞðn−2Þ=n:

ð13Þ

Again, with LðLþ 1Þ ≈ L2, Eq. (12) reads

σLðEÞ ¼ π

�
n

n − 2

�ðn−2Þ=n
ðnCnÞ2=nð2EÞ−ð2=nÞ: ð14Þ

Expressions for common power laws are listed in Table I,
with n ¼ 3 appearing in dipole allowed excitation
exchange, n ¼ 4 in polarization potentials between atoms
and ions, and n ¼ 6 in van der Waals interactions between
ground state atoms.
CombiningEqs. (12) and (11) yields σexc ¼ σL sin2ðΔδ0Þ,

which lacks the l ¼ 0 contribution dominating the Wigner
regime (E → 0). Thus, we add the missing s-wave term and
obtain the final result:

σexcðEÞ ¼
�
π

k2
þ σLðEÞ

�
sin2Δδ0ðEÞ: ð15Þ

This equation explicitly shows how s-wave scattering
modulates the Langevin cross section, leading to a signature
of the s-wave regime at higher temperatures. It arises from the
“phase locking” ofΔηl due to cancellation of the long-range
contribution to phase shifts and their insensitivity tol at short

range. This led to Eq. (6) and its link to Δδ0 in Eq. (7) using
WKB. The applicability of Eq. (15) depends on the details of
the potentials and validity of the approximations used. If one
potential has l-sensitive turning points, e.g., for VðrÞ
repulsive or attractive but extremely shallow, phase locking
cannot occur for high l. The same is true if the long-range
cancellation in Δηl is not adequate, e.g., if the centrifugal
barriers for Va=b are different. In cases where Va=b are very
different at short range,ΔA0might be such thatLðLþ 1ÞΔA0

is significant, requiringEq. (10) instead of Eq. (11) to be used.
Our Eq. (15) also relies on evaluating AiðlÞ via Eq. (5); if
rtop ≲ R, the expansion forAiðR;lÞwill require higher powers
of ðlþ 1

2
Þ. Similarly, at high E, even if R < rtop, ðlþ 1

2
Þ2=r2

is significant enough to bring additional l dependence of ΔA
and modify Eq. (15). The insensitivity of ηl has been noted in
other work, e.g., using multichannel quantum-defect theory
to express the scattering K matrix in terms of few parameters
[46–49], while the WKB approximation was shown to be
useful in related studies [49,50]. We note that phase locking
based on WKB was invoked in a study of low spin-flip rate
in Ref. [41].
To illustrate the effect of the s-wave regime at higher

energies, we first consider resonant charge transfer between
Yb and Ybþ for various isotopes in Fig. 2; as reported in
Ref. [51], σexc exhibits a modified Langevin regime strongly
affected by the Wigner regime, despite the contribution of
many partial waves. Figure 2 compares Eq. (15) to the full
numerical results computed using the approach described in
Ref. [51], with potentials Vg=u corresponding to the 2Σþ

g=u

states of Ybþ2 behaving as −C4=r4 at large separation, with

TABLE I. Langevin cross section σL for various n.

n 3 4 6

σL 3πðC3=2EÞ2=3 2πðC4=EÞ1=2 ð3π=2Þð2C6=EÞ1=3
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FIG. 2. Resonant charge transfer σexc (right axis: cm2) for
various isotopes of Ybþ Ybþ vs scattering energy E (top axis:
kelvin). Numerical results (black line) are compared to the
standard σL (blue dot-dashed line), to Eq. (15) (magenta line),
and its components; the s-wave contribution ðπ=k2Þsin2Δδ0
(black dashed line) and σL sin2 Δδ0 (solid blue line). Isotopes
168 (a), 174 (e), and 176 (f) show significant suppression when
compared to σL, while 170 (b), 172 (c), and 173 (d), σexc ≈ 1

2
σL

over a wide range of energies.
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C4 ¼ 72.5 a:u: The Langevin cross section σL is also shown
to emphasize the effect of the s-wave phase shifts. For some
isotopes like 170, 172, and 173 shown in Figs. 2(b), 2(c),
and 2(d), respectively, σexc is roughly

1
2
σL, which is expected

as hsin2Δδ0i ¼ 1
2
on average if Δδ0 has a random value.

However, in other cases like isotopes 168, 174, or 176 in
Figs. 2(a), 2(e), and 2(f), respectively, the signature of the
s-wave regime is noticeable, with a reduction of 2 orders of
magnitude for Figs. 2(a) and 2(e), and 1 for Fig. 2(f).
Equation (15) provides the explanation for this unexpected
correlation; if the s-wave phase shifts are (accidentally)
nearly equal, the phase-locking result of Eq. (7) guarantees
the smallness of Δηl for a wide range of partial waves,
yielding a diminished cross section. When the s-wave
suppression of σexc is significant, as in Figs. 2(a) and 2(e),
the underlying shape resonances become more apparent as
the background cross section diminishes. Naturally, these
resonances are absent from our WBK treatment in Eq. (15),
which reproduces the general trend of the numerical results
over a large range of E. According to Eq. (13), L2 < 1 for
E≲ 10−13 a:u: for this system, at which point the l ¼ 0
contribution (negligible at higher E) satisfying the Wigner
regime kicks in. The ab initio potentialsVg=u are not accurate
enough to predict the s-wave results; however,measurements
of the variation of σexc with isotope at higher energies would
provide information to better determine the potentials in a
fashion similar to the Feshbach resonances used to adjust the
potentials between ground state atoms [1,2].
Atom-ion scattering can also lead to a resonant spin-flip

process, such as in Naþ Caþ [52,53] interacting via a
singlet (S) A1Σþ or a triplet (T) a3Σþ state described by the
potentials VS=T and phase shift δS=Tl ; σexc was found to be
roughly 3

4
σL in Ref. [52]. Recent experiments on Ybþ þ

87Rb [20], Ybþ þ 6Li [39], and 88Srþþ Rb [40,41] have
explored spin-flip dynamics. In Fig. 3, we investigate the
effect of the s-wave scattering on the spin flip in Caþ þ Na,
using VS=T described in Refs. [52,54] (behaving as C4=r4 at

large r) for four isotopes of Ca, namely, 40, 42, 43, and 44.
Again, Eq. (15) agrees with the numerical cross sections
over a wide range of energy. Figure 3 shows a variety of
behavior; in Figs. 3(a) and 3(d), σexc ≈ σL at higher energies,
corresponding to Δδ0 ¼ δS0 − δT0 ≈ π=2, while Fig. 3(c)
depicts a small suppression by a factor of about 2

3
. The case

of 40Ca leads to a substantial reduction of about 1
200

, again
revealing the underlying shape resonances.
Spin-flip collisions have also been studied between neutral

atoms, especially alkali atoms like Li [34] or Na [35], which
interact along singlet (S) X1Σþ

g and triplet (T) a3Σþ
u states

behaving asymptotically as−C6=r6.We consider 87Rb as the
corresponding scattering lengths are nearly equal. Using
VS=T described in Ref. [55], we computed σexc for pure 87Rb,
85Rb, and their mixture. The results are shown in Fig. 4; σexc
for the mixture in Fig. 4(a) follows roughly σL away from
ultracold temperatures. As expected, for 87Rb in Fig. 4(b)
with both singlet and triplet scattering lengths almost equal
(aS ≈ aT ≈ 100 a:u:), the s-wave suppression is drastic, with
shape resonances emerging from the suppressed back-
ground. Although not perfect, Eq. (15) tracks the overall
reduction of a factor of 104 in σexc. Much more surprising is
the result for 85Rb Fig. 4(c) with very different scattering
lengths (aS ≈ 2500 a:u: and aT ≈ −390 a:u:), where one
could have expected σexc to follow σL. The s-wave phase
shifts in Fig. 4(d) explain the result. The large aS=T imply

rapid changes of δS=T0 withE (or k) in theWigner regime.Ask
grows, tan δi0 ≈ 2aik=ðaireffi k2 − 2Þ [45] reaches 2=kreffi if ai
is large, and with effective ranges reffi basically the same for
85Rb and 87Rb, the large initial Δδ0 quickly evolves into a
value comparable to that of 87Rb.
We consider a final case with r−3 long-range potentials.

Many examples occur in nature, such as excitation exchange
[36] in metastable helium Heð11SÞ þ He�ð23PÞ [56,57], or
in the scattering of metastable atoms like Hð2sÞ þ Hð2sÞ
[58,59]. Here, we examine Csþ þ Cs�ð6pÞ, which can lead
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FIG. 3. Same as Fig. 2 for spin flip in Naþ ACaþ, with A ¼ 40
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(b), while σexc is close to σL for the other isotopes. Here, C4 ¼
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4707 a:u:
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to the exchange of the 6p excitation onto Csþ. Four states
are involved if we neglect spin-orbit coupling, two Σþ

g=u

and twoΠg=u, each correlated to theCs
þ
2 ð6pÞ asymptote, and

described by potentials VΣ
g=u and VΠ

g=u and phase shifts δg=uΣ;l

and δg=uΠ;l. Defining ΔδΣl ≡ δgΣ;l − δuΣ;l and ΔδΠl ≡ δgΠ;l−
δuΠ;l, we have [36,44]

σexc ¼
π

3k2
X∞
l¼0

ð2lþ 1Þ½sin2ΔδΣl þ 2sin2ΔδΠl �: ð16Þ

Since theΣ andΠ curves have differentC3 values,L for both
sets is different. Using our approximations, σexc becomes

σexc ¼
1

3

�
π

k2
þ σΣL

�
sin2ΔδΣ0 þ

2

3

�
π

k2
þ σΠL

�
sin2ΔδΠ0 ; ð17Þ

where σΣðΠÞL is obtained with the appropriate value of C3.
The results shown in Fig. 5 were obtained with the curves
from Jraij et al. [60]. The Π curves are repulsive at large
separation behaving as þCΠ

3 =r
3 (CΠ

3 ¼ 13.95 a:u:) with
δgΠ;l ≈ δuΠ;l for all l, their cancellation leading to a negligible
Π contribution. The two Σ curves are attractive and were
matched at large separation to −C4=r4 − C3=r3 with
C4 ¼ 1082 a:u:, and CΣ

3 ¼ 27.9 a:u: For 133Cs, we find
σexc ≈ 1

2
σL, while rescaling its mass to mCs ¼ 132.75 u to

simulate a different isotope, σexc is reduced by 1
20
, again

exposing resonances as in other cases.
In conclusion, we derived a simple expression for

resonant scattering processes that relates the cross section
to the Langevin cross section and the s-wave regime. We
applied it to various resonant processes like charge transfer,
spin flip, and excitation exchange, and for different
interaction tails behaving as r−n covering the most common
powers. The expression points to the signature of the
s-wave regime at higher temperatures and how the Δδ0
phase locking modulates σexc. The results presented here
also provide a diagnostic tool particularly relevant to a
system for which ultracold temperatures are not easily
achievable, such as atom-ion hybrid systems for which the
nK regime remains a challenge. In fact, by measuring the
cross section or rate for a resonant process, e.g., charge
transfer or spin flip, at higher temperatures more easily

accessible, one can gain information about the s-wave
regime. If a sizable suppression is observed as compared to
σL, this implies that the s-wave phase shifts are close to
each other. In addition, the suppression helps reveal shape
resonances otherwise submerged which can also help
determine the potential curves more accurately. Finally,
the expression should be applicable to quasiresonant
processes [44], like charge transfer with mixed isotopes
[42,43], or in reactions involving different hyperfine
asymptotes [33] or isotope substitutions [61,62], as long
as the scattering energy is larger than the energy gap
between the asymptotes of the relevant potentials.
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