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Observation of neutrinoless double beta decay, a lepton number violating process that has been proposed
to clarify the nature of neutrino masses, has spawned an enormous world-wide experimental effort.
Relating nuclear decay rates to high-energy, beyond the standard model (BSM) physics requires detailed
knowledge of nonperturbative QCD effects. Using lattice QCD, we compute the necessary matrix elements
of short-range operators, which arise due to heavy BSM mediators, that contribute to this decay via the
leading order π− → πþ exchange diagrams. Utilizing our result and taking advantage of effective field
theory methods will allow for model-independent calculations of the relevant two-nucleon decay, which
may then be used as input for nuclear many-body calculations of the relevant experimental decays.
Contributions from short-range operators may prove to be equally important to, or even more important
than, those from long-range Majorana neutrino exchange.

DOI: 10.1103/PhysRevLett.121.172501

Introduction.—Neutrinoless double beta decay (0νββ) is a
process that, if observed, would reveal violations of sym-
metries fundamental to the standard model and would
guarantee that neutrinos have nonzero Majorana mass
[1,2]. Such decays can probe physics beyond the electroweak
scale and expose a source of lepton number (L) violation that
may explain theobservedmatter-antimatter asymmetry in the
Universe [3,4]. Existing and planned experiments will
constrain this novel nuclear decay [5–16], but the interpre-
tation of the resulting decay rates or limits as constraints on
new physics poses a tremendous theoretical challenge.
Themostwidely discussedmechanism for0νββ is that of a

lightMajorana neutrino,which can propagate a long distance
within a nucleus. However, if the mechanism involves a
heavy scale Λββ, the resulting L-violating process can be
short ranged. While naïvely short-range operators are sup-
pressed compared to long-range interactions, due to the
heavy mediator propagator, in the case of 0νββ, the long-
range interaction requires a helicity flip and is proportional to
the mass of the light neutrino. In a standard seesaw scenario
[17–21], this light neutrino mass is similarly suppressed by

the same largemass scale, so the relative importance of long-
versus short-range contributions is dependent upon the
particle physics model under consideration and, in general,
cannot be determined until the nuclear matrix elements for
both types of processes are computed.
Both long- and short-range mechanisms present sub-

stantial theoretical challenges if we hope to connect high-
energy physics with experimentally observed decay rates.
The former case is difficult because one must understand
long-distance nuclear correlations. In the latter case, the
short-distance physics is masked by QCD effects, requiring
nonperturbative methods to match few-nucleon matrix
elements to standard model operators.
Effective field theory (EFT) arguments show that, at

leading order (LO) in the standard model, there are nine
local four-quark operators that can contribute to 0νββ
decays [22,23]. Further matching to a nuclear EFT [22]
shows that, at lowest order, there are up to three important
processes—a negatively charged pion in the nucleus can be
converted to a positively charged pion, releasing two
electrons (ππee operators), a neutron can be converted
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to a proton plus a positively charged pion, also releasing
two electrons (NNπee operators), and finally, two neutrons
can be converted to two protons plus two electrons
(NNNNee operators). As long as the LO ππee operators
are not forbidden by symmetries, the LO contribution to the
nuclear 0νββ transition matrix element in the Weinberg
counting scheme [24,25] will be given by the ππee
operators within the pion-exchange diagram shown in
the left panel of Fig. 1. More recent EFT analyses for
operators relevant to 0νββ have indicated that the contact
operators NNNNee may be enhanced, in which case they
would also appear at LO [26].
In this Letter, we determine the matrix elements of the

relevant ππee operators and their associated low-energy
constants (LECs) for chiral perturbation theory (χPT) using
lattice QCD (LQCD), a nonperturbative numerical method
with fully controllable systematics. We perform extrapo-
lations in all parameters characterizing deviations from the
physical point, including quark mass and lattice spacing a,
which controls effects from the discretization of space
and time.
Method.—Using the EFT framework, it is not necessary

to calculate the full nn → ppee transition shown in the left
panel of Fig. 1. Instead, we can perform the much more
computationally tractable calculation of the on shell π− →
πþ transition in the presence of external currents (four-
quark operators). Once the LECs are determined, calculat-
ing the true off shell process can be dealt with naturally
within the EFT framework. From a LQCD perspective, this
single pion calculation is computationally far simpler than
the two-nucleon calculation due to the absence of a signal-
to-noise problem [27] and complications in accounting for
scattering states in a finite volume [28,29].
We calculate matrix elements for the following relevant

four-quark operators described in Ref. [22]:

Oþþ
1þ ¼ ðq̄LτþγμqLÞ½q̄RτþγμqR�;

Oþþ
2þ ¼ ðq̄RτþqLÞ½q̄RτþqL� þ ðq̄LτþqRÞ½q̄LτþqR�;

Oþþ
3þ ¼ ðq̄LτþγμqLÞ½q̄LτþγμqL�

þ ðq̄RτþγμqRÞ½q̄RτþγμqR�; ð1Þ

where the Takahashi bracket notation () or ½� indicates
which color indices are contracted together [30]. We have
omitted parity odd operators that do not contribute to the
π− → πþ transition, as well as the vector operators that are
suppressed by the electron mass, as discussed in Ref. [22].
In addition, we calculate the color-mixed operators that
arise through renormalization from the electroweak scale to
the QCD scale [23],

O0þþ
1þ ¼ ðq̄LτþγμqL�½q̄RτþγμqRÞ;

O0þþ
2þ ¼ ðq̄LτþqL�½q̄LτþqLÞ þ ðq̄RτþqR�½q̄RτþqRÞ: ð2Þ

The analogous color-mixed operator O0þþ
3þ is identical to

Oþþ
3þ and is therefore omitted.
To determine the matrix elements for the ππee operators,

we have performed a LQCD calculation using the publicly
available highly improved staggered quark (HISQ) [31]
gauge field configurations generated by the MILC collabo-
ration [32,33]. The set of configurations used is shown in
Table I. With this set, we perform extrapolations in the
lattice spacing, pion mass, and volume. On these configu-
rations, we chose to produce Möbius domain wall quark
propagators [34–36] due to their improved chiral symmetry
properties, which suppress mixing between operators of
different chirality. To further improve the chiral properties,
we first performed a gradient flow method to smooth the
HISQ configurations [37–39] (see Ref. [40] for details).
This action has been successfully used to compute the
nucleon axial coupling gA with 1% precision [41–43].
For each ensemble, we have generated quark propagators
using both wall and point sources on approximately 1000
configurations.
The calculation of the matrix elements proceeds along

the same lines as calculations of K0 [44–52], D0 [50,53],
and B0

ðsÞ meson mixing [54–57] or NN̄ oscillations [58–60]
and involves only a single light quark inversion from an
unsmeared point source at the time where the four-quark
operator insertion occurs. The propagators are then con-
tracted to produce a pion at an earlier time (source) and later
time (sink). Because no quark propagators connect the
source to the sink, we can exactly project both source and

FIG. 1. (Left) The leading order contribution to 0νββ via short-
range operators occurs within a long-distance pion-exchange
diagram. The nucleons (solid lines) exchange charged pions
(dashed), which emit two electrons (lines with arrowheads).
(Right) The LECs associated with the operators in the left panel
may be calculated through a simpler π− → πþ transition. Here,
the lines represent quarks.

TABLE I. List of HISQ ensembles used for this calculation,
showing the volumes (V ¼ L3 × T) studied for a given lattice
spacing and pion mass.

mπ ∼ 310 MeV mπ ∼ 220 MeV mπ ∼ 130 MeV

aðfmÞ V mπL V mπL V mπL

0.15 163 × 48 3.78 243 × 48 3.99
0.12 243 × 64 3.22
0.12 243 × 64 4.54 323 × 64 4.29 483 × 64 3.91
0.12 403 × 64 5.36
0.09 323 × 96 4.50 483 × 96 4.73
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sink onto definite momentum (allowing only zero momen-
tum transfer at the operator) without the use of all-to-all
propagators.
Results.—In Fig. 2, we show representative plots on the

near-physical pion mass ensemble (V ¼ 483 × 64,
a ¼ 0.12 fm, mπ ∼ 130 MeV), of the ratio

RiðtÞ≡ C3pt
i ðt; T − tÞ=½CπðtÞCπðT − tÞ�; ð3Þ

where C3pt
i is the three-point function with a four-quark

operator labeled by i at t ¼ 0 and the sink (source) at time
tf ¼ t (ti ¼ T − t),

C3pt
i ðtf; tiÞ ¼

X
x;y;α

hαjΠþðtf;xÞOið0; 0ÞΠþðti; yÞjαie−EαT

ð4Þ

where α labels QCD eigenstates, and the pion interpolating
field is Πþ ¼ ðΠ−Þ† ¼ d̄γ5u. Cπ is the pion correlation
function. Using relativistic normalization,

CπðtÞ ¼
X
x

X
α

hαjΠþðt;xÞΠ−ð0; 0Þjαie−EαT

¼
X
n

jZπ
nj2

2Eπ
n
ðe−Eπ

nt þ e−E
π
nðT−tÞÞ þ � � � ; ð5Þ

where Zπ
n ¼ hΩjΠþjni,Ω represents the QCD vacuum, and

the ellipses represent thermally suppressed terms. One can
show that the ratio correlation function is given in lattice
units by

RiðtÞ ¼
a4hπjOþþ

iþ jπi
ða2Zπ

0Þ2
þRESðtÞ; ð6Þ

where jπi is the ground state pion and the excited state (ES)
contributions are suppressed exponentially by their mass
gap relative to the pion mass, RESðtÞ ∝ e−ðE

π
n−Eπ

0
Þt. The

overlap factors Z0
π are determined in the analysis of the

two-point pion correlation functions. For brevity we
henceforth write the matrix elements of these operators
as Oi ¼ hπjOþþ

iþ jπi and attach a prime as appropriate.
We find excellent signals on nearly all ensembles,

requiring only a simple fit to a constant. This is likely
due to the fact that, in the ratio defined in Eq. (3), the
contribution from the lowest thermal pion state is elimi-
nated, which we find to be the leading contamination to the
pion correlation function within the relevant time range. We
also find little variation of the ratio using either wall or
point sources. This gives us additional confidence that
excited state contamination is negligible within the time
range plotted in the left panel of Fig. 2. A preliminary
version of this analysis was presented in Ref. [61]. Excited
state contamination is studied further in the Supplemental
Material [62].
After extracting the matrix elements on each ensemble,

we perform extrapolations to the continuum, physical pion
mass, and infinite volume limits. It is straightforward to
include these new operators in χPT [84] and to derive the
virtual pion corrections that arise at next-to-leading order
(NLO) in the chiral expansions,

O1 ¼
β1Λ4

χ

ð4πÞ2 ð1þ ϵ2π½lnðϵ2πÞ − 1þ c1�Þ;

O2 ¼
β2Λ4

χ

ð4πÞ2 ð1þ ϵ2π½lnðϵ2πÞ − 1þ c2�Þ;

O3

ϵ2π
¼ β3Λ4

χ

ð4πÞ2 ð1 − ϵ2π½3 lnðϵ2πÞ þ 1 − c3�Þ; ð7Þ

as described in some detail in the Supplemental Material
[62]. In these expressions,

Λχ ¼ 4πFπ; ϵπ ¼
mπ

Λχ
; ð8Þ

where Fπ ¼ FπðmπÞ is the pion decay constant at a given
pion mass, normalized to be Fphys

π ¼ 92.2 MeV at the
physical pion mass, Λχ is the chiral symmetry breaking
scale and ϵ2π is the small expansion parameter for χPT. The
pion matrix elements for O0þþ

1þ and O0þþ
2þ have an identical

form to Oþþ
1þ and Oþþ

2þ , respectively, but have independent
LECs β0i and c

0
i, which describe the pion mass dependence.

These expressions can be generalized to incorporate finite
lattice spacing corrections [85] arising from the particular
lattice action we have used [40] and finite volume correc-
tions [86], which arise from virtual pions that are sensitive
to the finite periodic volume used in the calculations.
Details of the derivation of the formula in χPT and the
extension to incorporate these lattice QCD systematic
effects are presented in the Supplemental Material [62].
In addition to the matrix elements Oi, the various LECs βi
and ci are determined in this Letter.

6 8 10 12 14 16 18 20 22
t

0.8

0.6

0.4

0.2

0.0

0.2

0.4

i(
t)

1 2 1 3 2

FIG. 2. An example of our lattice results for different operators
on the near-physical pion mass ensemble with a ≃ 0.12 fm.
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The lattice QCD results are renormalized nonperturba-
tively following the Rome-Southampton method [87] with
a nonexceptional kinematics-symmetric point [88]. More
precisely, we compute the relevant Z matrix in the
RI=SMOM (γμ, γμ) scheme [89]. We implement momen-
tum sources [90] to achieve a high statistical precision and
nonperturbative scale evolution techniques [91,92] to run
the Z factors to the common scale of μ ¼ 3 GeV. Further
details about the renormalization procedure are provided in
the Supplemental Material [62]. One advantage of our
mixed-action setup is that the renormalization pattern is the
same as in the continuum (to a very good approximation)
and does not require the spurious subtraction of operators
of different chirality.
The renormalized operators, extrapolated to the con-

tinuum, infinite volume, and physical pion mass (defined
by mphys

π ¼ 139.57 MeV and Fphys
π ¼ 92.2 MeV) limits

are given in Table II in both RI=SMOM and MS schemes
at μ ¼ 3 GeV. An error breakdown for the statistical
and various systematic uncertainties is given in the
Supplemental Material [62].
The correlation between these RI-SMOM matrix ele-

ments are given in the Supplemental Material [62]. The
extrapolations of these operators to the physical point are
presented in Fig. 3, with the dashed vertical line represent-
ing the physical pion mass. The small value of O3 reflects
the fact that the Oþþ

3þ operator is suppressed in the chiral
expansion, vanishing in the chiral limit. In addition to the
full mixed-action EFT extrapolations (including infinite
volume), we performed further extrapolations without
including mixed-action and/or finite volume effects and
found all results to be consistent, indicating that mixed-
action and finite volume effects are mild. These various
analysis options are all available in Ref. [93]. Loss function
minimization is performed using Ref. [94].
We can compare the values of the matrix elements

determined here in MS to those in Ref. [95], which used
SU(3) flavor symmetry to determine the values, including
estimated SU(3) flavor-breaking corrections at NLO in
SU(3) χPT. Noting the differences in operator definition
pointed out in footnote 5 of Ref. [95], we find the values of
the matrix elements tend to agree at the one- to two-sigma
level, as measured by the Oð20%–40%Þ uncertainties in

Ref. [95], indicating the SU(3) chiral expansion is reason-
ably well behaved. With the ∼1000 measurements per
ensemble in the LQCD calculation presented here, the
uncertainties have been reduced to Oð5%–9%Þ. The result-
ing LECs are reported in Table III in the Supplemental
Material [62] and the full covariance between them is
provided in Ref. [93].
From the matrix element O3 we can determine the

value of Bπ , the bag parameter of neutral meson mixing
in the standard model, Bπ¼O3=½ð8=3Þm2

πF2
π�¼0.420ð23Þ

½0.421ð23Þ� in the RI=SMOM [MS] scheme at μ ¼ 3 GeV.
This is a rather low value, indicating a large deviation from
the vacuum saturation approximation. However, this is
expected from the chiral behavior as discussed, for exam-
ple, in Ref. [96–98]. As displayed in Fig. 5 in the
Supplemental Material [62], the value of Bπ increases at
larger pion masses, as expected.
Discussion.—We have performed the first LQCD cal-

culation of hadronic matrix elements for short-range
operators contributing to 0νββ. This calculation is complete

TABLE II. Resulting matrix elements extrapolated to the
physical point, renormalized in RI=SMOM and MS, both at
μ ¼ 3 GeV.

Oi½GeV�4 RI=SMOM μ ¼ 3 GeV MS μ ¼ 3 GeV

O1 −1.91ð13Þ × 10−2 −1.89ð13Þ × 10−2

O0
1 −7.22ð49Þ × 10−2 −7.81ð54Þ × 10−2

O2 −3.68ð31Þ × 10−2 −3.77ð32Þ × 10−2

O0
2 1.16ð10Þ × 10−2 1.23ð11Þ × 10−2

O3 1.85ð10Þ × 10−4 1.86ð10Þ × 10−4
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FIG. 3. The interpolation of the various matrix elements (color
coded as in Fig. 2). (Bottom) Enlarged version ofO3 is displayed.
The resulting fit curves and uncertainty bands are constructed
with Λχ held fixed, while changing ϵπ , and so the corresponding

LQCD results are adjusted by ðFphys
π =Flatt

π Þ4 for each lattice
ensemble to be consistent with this interpolation. The bands
represent the 68% confidence interval of the continuum, infinite
volume extrapolated value of the matrix elements. The vertical
gray band highlights the physical pion mass.
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for matrix elements contributing to leading order in χPT,
including extrapolation to the physical point in both lattice
spacing and pion mass. We have also performed calcu-
lations directly at the physical pion mass.
Given these π− → πþ matrix elements, the nuclear beta

decay rate can be determined by constructing the nn → pp
potential that they induce. The strong contribution to this
potential for the matrix elementsOi for i ¼ 1, 2 is given by

Vnn→pp
i ðjqjÞ ¼ −OiP1þP2þ

∂
∂m2

π
Vπ
1;2ðjqjÞ

¼ −Oi
g2A
4F2

π
τþ1 τ

þ
2

σ1 · qσ2 · q
ðjqj2 þm2

πÞ2
; ð9Þ

where Vπ
1;2ðjqjÞ ¼ −τ1 · τ2σ1 · qσ2 · q=ðjqj2 þm2

πÞ is the
long-range pion-exchange potential between two nucleons
(labeled 1 and 2) and Pþ

1;2 project onto the isospin raising
operator for each nucleon. For O3, the potential is

Vnn→pp
3 ðjqjÞ ¼ −

O3

m2
π

g2A
4F2

π
τþ1 τ

þ
2

×

�
m2

πσ1 · qσ2 · q
ðjqj2 þm2

πÞ2
−
σ1 · qσ2 · q
jqj2 þm2

π

�
; ð10Þ

up to relativistic corrections. These potentials need to be
multiplied by the electrons ēec, the overall prefactor
G2

F=Λββ, and the Wilson coefficient of the effective
standard model operators for a given heavy physics model
to determine the full nn → ppe−e− amplitude. These
matrix elements, once incorporated into nuclear decay rate
calculations, can be used to place limits on the various
beyond the standard model (BSM) mechanisms that give
rise to 0νββ (see, for example, [22,23,99–108]). The limits
on the BSM mechanisms must also account for the running
of these short-distance operators, which can modify their
strength by an amount comparable to the current uncer-
tainties on the nuclear matrix elements themselves [109].
Modern analyses use effective field theory

[22,23,107,108], for which this contribution is the leading
order short-range correction. To go beyond leading order in
χPT, additional calculations are necessary. For planned
experiments probing 0þ → 0þ nuclear transitions, all next-
to-leading order diagrams of type NNπee vanish due to
parity [22]. At next-to-next-to-leading order there exist
both NNπee diagrams and NNNNee contact diagrams.
Calculation of the NNNNee contact contribution may
prove important, as diagrams involving light pion exchange
may need to be summed nonperturbatively in the EFT
framework, causing the contact to be promoted to LO (as
was found for the light neutrino exchange diagrams in
Ref. [26]). While computing the NNNNee contact inter-
action will prove challenging, it is, in principle, calculable
with current technology and resources [110]. Finally, in
order to disentangle long- and short-range 0νββ effects,

investigation of quenching of the axial coupling gA in
multinucleon systems [111–113], as well as the isotensor
axial polarizability [114,115], will also be useful.
Our results can, in principle, be used to determine

contributions from any BSM model leading to short-range
0νββ to leading order in χPT. However, these results must
first be incorporated into nuclear physics models capable of
describing large nuclei. Currently, there is sizable discrep-
ancy between different models and uncertainty quantifica-
tion remains difficult, challenges that will need to be
overcome in order to faithfully connect experiment with
theory.
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