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Using a data sample corresponding to an integrated luminosity of 2.93 fb~! taken at a center-of-mass
energy of 3.773 GeV with the BESIII detector operated at the BEPCII collider, we perform an analysis of
the semileptonic decays D) — 7=+, The branching fractions of D — z~p*v, and D* - 2%y,
are measured to be (0.272 4 0.008, & 0.006,)% and (0.350 & 0.011, £ 0.0104, )%, respectively,
where the former is of much improved precision compared to previous results and the latter is determined
for the first time. Using these results along with previous BESIII measurements of DY) — z=0ety, we
calculate the branching fraction ratios to be R® = Bpo_, - wty, /Bpoozety, = 0.922 £ 0.0304, 3= 0.022,
and R* = Bp_0,0, / Bp+ g0+, = 0.964 £ 0.037 g, + 0.026,, which are compatible with the theo-
retical expectation of lepton flavor universality within 1.7¢ and 0.50, respectively. We also examine the
branching fraction ratios in different four-momentum transfer square regions, and find no significant

deviations from the standard model predictions.

DOI: 10.1103/PhysRevLett.121.171803

In the standard model (SM), the couplings of leptons to
gauge bosons are expected to be independent of lepton
flavors. This property is known as lepton flavor universality
(LFU) [1-5]. Tests of LFU with semileptonic (SL) decays
of pseudoscalar mesons provide powerful probes of new
physics beyond the SM. In recent years, BABAR, Belle
and LHCb experiments reported tests of LFU in various
SL B decays. The measured branching fraction (BF)
ratios By peip+, /Bpopepr, (€ =p, ) [6-11] and
BB—»K(*)yW*/BB—»K(*)e*e* [12,13] deviate from the SM
predictions by 1.6-2.7 and 2.1-2.6 standard deviations,
respectively. In view of this, tests of LFU in the charm
sector using the SL. D decays are important complemen-
tary tests.

This Letter presents tests of LFU in DY) — z=(0)g+y,
decays [14] at BESIIL. Recently, the Cabibbo-favored
decays D) - K/*y, were precisely studied at
BESIII, and the measured BF ratios (BFRs)
BD_J-(WD” /Bp_ke+y, are compatible with the SM expect-
ations [15-18]. Nevertheless, tension between previous
measurement and the SM prediction for the Cabibbo-
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suppressed deca s D’ > fﬂ/f is found. In the SM,
the BFRs LFU = Bpoc) -0y, / Bpos) L0+, are
expected to be 0.985 £ 0. 002 [19] "which deviates from
unity due to different phase space available to the two
processes. With the world-average values of Bjy_, - uty, and
Bpo_z-e+y, [20], Ry is 17% lower than the SM prediction,
corresponding to 2.1 standard deviations. Currently, the
most precise measurements of B+ ’, have reached
an accuracy better than 3% [15,16]. However, the world-
average value of Bpo_, -+ », has a large relative uncertainty
of 10% [20-22], and the decay D* — 7%y, has not been
measured. To clarify this tension, it is crucial to precisely
measure Bpoc -0+, -

The analysis is perfomled by using a data sample
corresponding to an integrated luminosity of 2.93 fb~!
[23] taken at a center-of-mass energy of /s = 3.773 GeV
with the BESIII detector. Details about the design and
performance of the BESIII detector are given in Ref. [24].
A GEANT4-based [25] Monte Carlo (MC) simulation soft-
ware package, which includes a description of the detector
geometry and its response, is used to determine the detection
efficiency and to estimate potential backgrounds. An “inclu-
sive” MC sample corresponding to about 10 times the
luminosity of data is produced at /s =3.773 GeV. It
includes the D°D°, D*D~, and non-DD decays of
w(3770), the initial state radiation (ISR) production of
w(3686) and J/y, and the qg (¢ = u, d, s) continuum

171803-3


https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.121.171803&domain=pdf&date_stamp=2018-10-26
https://doi.org/10.1103/PhysRevLett.121.171803
https://doi.org/10.1103/PhysRevLett.121.171803
https://doi.org/10.1103/PhysRevLett.121.171803
https://doi.org/10.1103/PhysRevLett.121.171803
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

PHYSICAL REVIEW LETTERS 121, 171803 (2018)

process, along with Bhabha scattering, gtu~ and 777~
events. The production of w(3770) is simulated by the
MC generator KKMC [26]. The measured decay modes of
the charmoniums are generated using EVTGEN [27] with the
BFs reported in Ref. [28], and the remaining decay modes
are generated using LUNDCHARM [29]. The signal
DY) — 7=y, decays are simulated incorporating the
modified pole model [30], where the parameters of vector
and scalar hadronic form factors (HFFs) are taken from
Refs. [15,16,31]. The ISR effects [32] and final state
radiation (FSR) effects of all particles [33] have been
included in the event generation.

At /s =3.773 GeV, the y(3770) resonance decays
mainly into a DD pair. Throughout the text, D refers to
D°(D*) and D refers to D°(D~) unless stated explicitly. If
a D meson [called single-tag (ST) D meson] is fully
reconstructed, the presence of a D meson is guaranteed.
Thus, in the system recoiling against a ST D meson, the SL
decay D) — z=©y*y, [called double-tag (DT) event]
can be selected. In this analysis, the ST D° mesons are
reconstructed using three hadronic decay modes: K™,
Ktz 2% and Kz~ z~zt, while the ST D~ mesons are
reconstructed using six hadronic decay modes: K™n~ 7",
Kon~, K*n=n=n° Kon= 2% KOt n=n~,and K*K=7n~. The
BF of D) — z=Oy*y, is determined according to

BDO(”—VF(O)#*V# = N(l))("IJ‘r)/(NSSF ) ”EIJ;))’ (1)
where N S(T ) and ND(T) are the ST and DT yields in data,
e%w) is the signal efficiency of finding D*+) — 7z=(©)y+ Uy

e(\)/ents in the presence of a ST D meson. Here

e’ = Zk(NkTeDT)/(Ns(T )€ST> where Ngp and €ST[DT]
are the ST yield and the ST[DT] efficiency of the kth tag
mode, respectively.

All charged tracks are required to be within a polar-
angle range of |cos 8| < 0.93. Except for those from K?
decays, the good charged tracks are required to come
from the interaction region defined by V,, <1 cm and
|V.| < 10 cm, where V,, and |V.| are the distances of
closest approach of the reconstructed track to the inter-
action point (IP) in the xy plane and the z direction (along
the beam), respectively. Charged particle identification
(PID) is performed by combining the time-of-flight
information with the specific ionization energy loss mea-
sured in the main drift chamber. The information of the
electromagnetic calorimeter (EMC) is also included to
identify muon candidates. Combined confidence levels
for electron, muon, pion, and kaon hypotheses
(cL,, CL,, CL,, and CLg) are calculated individually.
The kaon and pion are required to satisfy CLx > CL,
and CL, > CLg, respectively, while muon candidates are
selected with CL,, > 0.001, CL, > CL,, and CL, > CLk.
Additionally, muon candidates are required to deposit an
energy in the EMC within the range (0.1,0.3) GeV and to
satisfy a polar angle and momentum dependent hit depth

criterion in the muon counter (MUC) [34]; these criteria
suppress the number of pions misidentified as muons. The
K g candidate is reconstructed from two oppositely charged
tracks with |V,| <20 cm. These two charged tracks are
assumed to be pions (without PID), constrained to a
common vertex and are required to have an invariant mass
satisfying |M .+ ,- MK0| < 12 MeV/c?, where Mo is the
K% nominal mass [20]. A selected K9 candidate must have
a decay length larger than 2 times of the vertex resolution
away from the IP. Photon candidates are selected from the
shower clusters in the EMC that are not associated with a
charged track. The shower time is required to be within
700 ns of the event start time, its energy is required to be
greater than 25 (50) MeV in the EMC barrel (end cap)
region [24]. The opening angle between the shower and any
charged tracks must be greater than 10°. A z° candidate is
reconstructed from a yy pair w1th an invariant mass M,,
within (0.115,0.150) GeV/ . A kinematic fit con
straining M, to the 7° nomlnal mass [20] is imposed to
improve its momentum resolution.

The ST D mesons are identified by the energy difference
AE = Ep — Epean and the beam-constrained mass Mpc=
VEzam/c* = |Ppl?/c?. Here, Epe, is the beam energy, pj,
and E, are the momentum and energy of the D candidate in
the e e rest frame. For each ST mode, if there are multiple
candidates in an event, only the one with the smallest |AE|
is kept. The ST candidates are required to have AE €
(=55,40) MeV and (-25,25) MeV for the modes with
and without a z° in the final states, respectively. For the ST
candidates of D° — K*z~, the backgrounds from cosmic
rays and Bhabha events are further rejected using the
requirements described in Ref. [35]. After the above
selection criteria, the ST yields are obtained by performing
maximum likelihood fits to the My distributions for

K*'m 80F ko 1 15pKn®
40} 1 ol ]
- 20l 40
o]
~ 0
,g 10} Kgﬂ?'
%
= 5t
&
S l
E| 0 0 -
g 20 K'trn® KK
2 o
10
l == 1 -

84 186 188 184 186 188 184 186 188
M, (GeV/c?) M, (GeV/c?) M, (GeV/c?)

FIG. 1. Fits to the My distributions of the ST DY (left column)
and D~ (middle and right columns) modes. The dots with error
bars are data. The blue solid and red dashed curves are the fit
results and the fitted backgrounds. The signal region is between
the red arrows.
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individual ST modes, as shown in Fig. 1. In the fits, the D
signal is modeled by a MC-simulated shape convolved with
a double Gaussian function that describes any resolution
difference between data and MC simulation. For individual
tags, the peaks and resolutions of the convolved Gaussian
functions fall in the regions of (—0.3,0.3) MeV/c? and
(0.7,3.2) MeV/c?, respectively. The combinatorial back-
ground is described by an ARGUS function [36]. The
candidates in the Mpc signal regions, defined as
(1.859,1.873) GeV/c* and (1.863,1.877) GeV/c? for
D and D™, respectively, are kept for further analysis.

In the part of the event recoiling against the ST D meson,
the SL decay candidate is selected from the remaining
tracks that have not been used for tag reconstruction.
Events containing a muon candidate, with opposite charge
to the ST D candidate, and a 7~(©) candidate are considered
as SL D) decays. We require there are no additional
charged tracks in the event. The potential backgrounds
from D°— Kz, DF) - =0zt and D) -
7O 7t7%//K° are suppressed by the optimized require-
ments of M-, < 1.7 GeV/c? and Emy” < 0.07 GeV,

u
. _ . . t .
where M, is the # © 4+ invariant mass and Egge” is

the maximum energy of any additional photon candidates
unused in the DT reconstruction. The relative efficiencies
of the requirements on M,-o),. and Enal? are approx-
imately 99% and 70%, respectively. To further reject the
peaking backgrounds of D° — K%(z"z7)z° and D" —
Kzt for D° - z7ptv, and D" — n°utv,, we require
M-+ and Mrgiﬂ+ (D~u™ recoil mass) to be outside the
ranges (0.46,0.50) GeV/c? and (0.45,0.55) GeV/c?,
respectively. The undetected neutrino is inferred from
the variable M2. = E2. /c* — | Piss|*/c?, which peaks
at zero for signal events. Here E, ;s and |p| are the
missing energy and momentum calculated by E ;=
Ebea.m - Eﬂ*(o) - Lyt and ﬁmiss = ﬁD - ﬁﬂ*(‘)) - ﬁpﬁ’ in
which E, o (E,-) and p o(p, ) are the energy and
—(0

momentum of 7~ (4*) in the rest frame of e*e™ system.
Furthermore, P = (~pp)y/ B/ —~ Mpc? is  the
momentum of D meson, where pj is the momentum
direction of the ST D meson and M, is the D nominal
mass [20].

Figure 2 shows the M2, _ distributions of the selected DT
candidates for D° — 7~y v, and D" — 7% "v,. Both the
candidate events contain two peaks corresponding to the
D) - 7Oty signals and the D) — 7z=(0)z+KO
backgrounds (named BKGI) at zero and 0.25 GeV?/c?,
respectively. MC studies indicate that the small peaking
backgrounds from decays D° — K~zt, DY) — 7=z,
and D) = 7= z+70 (named BKGII) peak around
0.02 GeV?/c*, under the right side of the signal. The
DT signal yields are determined by performing unbinned
maximum likelihood fits on the M2 distributions. In the

fits, the signals, the peaking backgrounds of BKGI and
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FIG. 2. Fits to the M2, distributions of the DT candidates. The
dots with error bars are data. The blue solid, green long dashed,
pink dashed, red dotted and black dot-dashed curves represent the
overall fit results, the SL signals, the BKGI, BKGII and BKGIII

components (see text), respectively.

BKGII and other nonpeaking backgrounds (named
BKGIII) are described by the corresponding MC-simulated
shapes. The signal, BKGI, and BKGII shapes are smeared
with Gaussian functions with free parameters to take into
account the resolution difference between data and MC
simulation. The parameters of the Gaussian function for
BKGII are the same as those for the signal, while those for
BKGI can be different. All but one of the BKGII peaking
background yields are fixed to the values from MC
simulation; the exception is the D — 777~z background
to the DY — 7~ p'ty, signal, which is determined from data
due to its good separation from the signal. All the other
background component yields are floated in the fit.

The ST and DT yields, the detection efficiencies and the
obtained BFs are shown in Table I. In BF measurements
using the DT method, the uncertainties from the ST
selection mostly cancel. The relative systematic uncertain-
ties from the different sources considered are shown in
Table II. The uncertainty from the ST yield is taken as 0.5%
by examining its relative change between data and MC
simulation by varying the fit range, signal shape, and end
point of the ARGUS function. The efficiencies of x* and
7~ tracking (PID) and #° reconstruction are verified using
ete” = yutu~ events and DT DD hadronic events,
respectively. We assign the uncertainties of z~ tracking
(PID), u*t tracking (PID), and z° reconstruction to be
0.5% (0.5%), 0.5% (0.5%), and 1.0%, respectively. The
uncertainty related to the choice of the Egu! require-
ment is assigned by analyzing the control sample

TABLE I. ST and DT yields, signal efficiencies in the Mpc
signal regions, and the obtained BFs. The numbers in the first and
second brackets are the statistical and systematic uncertainties in
the last two digits, respectively. The efficiencies do not include
B, See Supplemental Material [37] for tag dependent
numbers.

Mode Nyt (x109 Ny edn) (%) Boog, (%)
Ty, 2321(02)  2265(63) 35.82(08) 0.272(08)(06)
Auty,  1522(02)  1335(42) 2536(07) 0.350(11)(10)
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TABLE II. Relative systematic uncertainties in BF measure-
ments.

Source (%) By, B,
ST yields 0.5 0.5
u" tracking 0.5 0.5
ut PID 0.5 0.5
z~ tracking 0.5 e
z~ PID 0.5 e
7" reconstruction e 1.0
ESN requirement 1.2 1.7
M,,+ requirement 0.4 0.9
KY veto o 0.2
M rzniss fit 1.6 14
MC statistics 0.3 0.3
MC generator 0.3 0.3
FSR effect 0.3 0.3
Total 24 2.8

DY) = 7=ty it is 1.2% (1.7%) for the D) decay.
The uncertainty associated with the M, requirement is
investigated by using the alternative requirements of
1.65 GeV/c? or 1.75 GeV/c?. The uncertainty due to
the Kg veto is estimated by varying the M-+ (Mg?/ﬁ)
requirement by £0.01 GeV/c?. The changes to the mea-
sured BFs with the different requirements are taken as the
systematic uncertainties. The uncertainties related to the
M2, . fits are investigated by varying the fit ranges by
4+0.025(0.050) GeV?/c* for D) decays, and with differ-
ent parametrizations of signals, combinatorial and peaking
backgrounds. The effects due to signal shapes are estimated
with different requirements on the MC-truth matched signal
shapes. The relative magnitudes of the dominant combina-
torial background components in BKGIII are varied by
+20%. The fixed magnitudes of the dominant peaking
backgrounds in BKGII are changed according to the BF
uncertainties [20], the limited MC statistics of background
channels, and the data-MC differences of the rates of
misidentifying K~ as #~ and #t as p*. The maximum
changes of BFs are taken as their respective uncertainties. The
uncertainties due to limited MC statistics are 0.3% for both
decays. The uncertainty related to MC generator assumptions
is estimated to be 0.3% via comparing the DT efficiencies by
varying the quoted vector HFF parameters by +1 standard
deviation and replacing the nominal scalar HFF model with
the simple pole model [30]. The uncertainty due to FSR effect
is assigned as 0.3%, which is obtained by comparing the
nominal DT efficiency to that when the FSR photon prob-
ability is changed by +=20%. The total systematic uncertainty
is the quadratic sum of the individual contributions.

Combining the BDO(+)_)”—(0)M+V“ measured in this work
with previous BESIII measurements [15,16] Bpo_;-.+,, =
(0.29540.004, £0.0034y )% and Bp:_z0,+, =(0.363+
0.0081,£0.005,, )%, we obtain Ry = 0.922 +
0.0304 £ 0.022q  and Ry = 0.964 £ 0.037 %
0.0264y. Here, the systematic uncertainties in ST yields,

;,.; Do s 1ty , Data LED D'— 'y
o AT/AG” (I=e) 4+~ =
% 4 AT/AQ? (=p) ——
(L] : Ryry -+ —
N— 2 -
T
=
<

1.5

g 1

o« + +

0.5 . i . .

0 1 2 0 1 2 3
A(GeVich A(GeVch

FIG. 3. A" /Ag? of D) = 7= ¢+, (top) and RV
(bottom) in various ¢> bins. The calculations of AF? + /Ag?* of
DY) - 7=ty are quoted from Refs. [15,16]. Data are
shown as dots with error bars, where the uncertainties are
combined from statistical and systematic errors, and the uncer-
tainties in Rﬁ(;U) are dominated by the statistical uncertainties of
semi-muonic modes. The blue, green and black curves with bands
show the LQCD predictions with uncertainties, using the equa-
tions and HFF parameters described in Refs. [19,38], where the
theoretical uncertainties in RQ;T} are tiny due to strong correla-
tion of the form factors.

7~ tracking and PID, and z° reconstruction cancel, and an
additional uncertainty of 0.5% is included to take into
account different FSR effects for electron and muon. The

measured values of Rg%) coincide with the SM expectation
0.985 £ 0.002 [19] within 1.76(0.50).

The BFRs Ry are obtained in the full ¢* (four-
momentum transfer square of y*v,) region. To investigate
the ¢* dependence of Rg%), we examine BFRs in different
g ranges. Using the method described in Refs. [15,16], the
partial width of D) — z=©u*y, in the ith ¢* bin is
calculated by

AT = N (20 NS, (2)

1 1

where 75+ is the lifetime of the D) meson, and N' ?H) is
the produced DT yield in the ith ¢ bin, calculated by
N?(H = Zj(ea('ﬂ)ijM?H). Here M?(H is the observed DT
yield in the jth ¢* bin, €y, is the efficiency matrix and
(€o(1));; are the elements of a matrix that describes the
efficiency and smearing across ¢ bins. See Supplemental
Material [37] for the observed and produced DT yields,
efficiency matrices as well as the partial widths for
D) — 7=+, Combining with the measured partial
widths for D°") — 7= ¢ty in the same g2 bins [15,16],
we obtain R(]i%) in various ¢*> bins. Figure 3 shows
AT /Ag? and RIS in various g bins, as well as the
LQCD predictions for comparison. The measured values
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are consistent with the SM predictions within 2¢ in most of
the ¢ regions.

In summary, using 2.93 fb~! eTe™ collision data col-
lected at /s = 3.773 GeV with the BESIII detector, we
have measured the BFs of D°— 7~ pty, and

Dt — ﬂo/ﬁvﬂ. The value of Bpo is consistent with

=1 Ht Y,
the world-average value [20] and ha{s much improved
precision; BD+_>E0”+U“ is determined for the first time.
Combining the previous BESII measurements of
D) — 7=ty we calculate the g¢*-integrated and
g*-dependent BFRs, and find no significant evidence of

LFU violation.
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