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We present a no-go result on consistent Noether interactions among higher-spin gauge fields on anti–de
Sitter space-times. We show that there is a nonlocal obstruction at the classical level to consistent
interacting field theory descriptions of massless higher-spin particles that are described in the free limit by
the free Fronsdal action, under the assumption that such theories arise from the gauging of a global higher-
spin symmetry. Our result suggests that the Fronsdal program for introducing interactions among higher-
spin gauge fields cannot be completed without introducing new guiding principles, which could potentially
lie beyond the framework of classical field theory.
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Introduction.—In this Letter, we consider the problem of
constructing consistent interacting higher-spin (HS) gauge
theories on anti–de Sitter (AdS) space-times. By now, the
free propagation of massless HS particles is rather well
understood, with an off-shell classical description given by
the Fronsdal action [1]. But the question of whether mass-
less HS particles can interact in a consistent manner is a
highly nontrivial one. This question has been the subject of
decades of intense efforts, which have over the years
gathered increased attention owing (in part) to the tantaliz-
ing hypothesis that a HS symmetry may govern the high-
energy regime of a UV-complete theory of gravity [2]. That
this is a possibility within string theory was argued by
Gross in the 1980s [3], based on the high-energy behavior
of string amplitudes [4,5].
Among these efforts, in flat space there are various well-

known no-go results [6–18] on the interactions of massless
HS particles. Backgrounds of constant nonzero curvature
appear to show more promise with, e.g., the possibility of a
minimal coupling of HS gauge fields to gravity [16,19,20]
and the existence of a well-defined HS algebra [2,21,22].
This promise was given further weight by the advent of
conjectured holographic dualities between HS gauge the-
ories on AdS and free conformal field theories [23–25] and
Vasiliev’s system [22,26], which proposes a field-theoreti-
cal framework to describe putative consistent (semi)
classical interacting theories of HS gauge fields.
A time-honored approach to constructing interacting

theories with a gauge symmetry at the classical level is
the Noether procedure [27]. To this end, given the free
theory, one attempts to systematically construct interactions
as deformations of the free action or equations of motion
through the requirement of gauge invariance. An important

subtlety in using such approaches in a field theory setting is
that of locality. This is particularly relevant for HS gauge
theories: It is well known that a putative interacting theory of
HS gauge fields would require us to allow nonlocal
interactions that are unbounded in their number of deriva-
tives at quartic order [28]. The crucial subtlety in the search
for nontrivially interacting HS field theories is whether or
not the functional class of such nonlocalities renders the
theory equivalent to the free theory under field redefinitions.
This point was first clarified by Barnich and Henneaux in
Ref. [32], where this triviality of interactions was shown to
arise as a consequence of placing no restriction on the
functional class of nonlocalities. This was further refined in
Refs. [14,17], where it was shown that a nontrivially
interacting field theory is not possible with a functional
class that allows contact interactions that are as nonlocal as
the total exchange amplitude. We refer to such functional
classes as nonlocal obstructions throughout [33].
A key open question is whether or not there exists a

weaker notion of nonlocality for HS gauge theories which
would lie somewhere between locality in the strict sense
and a nonlocal obstruction as defined above. In this Letter,
we present a no-go result [39] on the consistent interactions
of HS gauge fields on AdSdþ1 that are described in the free
limit by the free Fronsdal action and which arise from the
gauging of a global higher-spin symmetry. We find that it is
not possible to have interacting classical field theory
descriptions of massless HS particles on AdS backgrounds
without a nonlocal obstruction. In particular, we clarify the
degree of nonlocality that would be needed to construct
consistent quartic couplings, which are shown to be as
nonlocal as the four-point exchange amplitudes in the
theory.
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This result suggests that any classical interacting field
theory description of massless HS particles on AdS would
require new guiding principles to circumvent the triviality
problem. We discuss some possibilities at the end of
this Letter. Note that this would also provide motivation
for revisiting the interaction problem for massless HS in
flat space, for which there are analogous no-go results
[14,15,17,18] due to the appearence of the same type of
nonlocal obstruction.
In the final section, we make contact with recent

observations [40] on the properties of correlators in the
dual conformal field theory (CFT) picture under crossing.
Noether procedure.—The Noether procedure is a sys-

tematic scheme to solve for interacting field theories as
deformations of free actions governed by gauge and
global symmetries: Given the latter, one postulates the
existence of a fully nonlinear action and gauge sym-
metries, which are expanded on a given background in
weak fields as

S ¼ Sð2Þ þ
X
n>2

SðnÞ; δξ ¼ δð0Þξ þ
X
n>0

δðnÞξ : ð1Þ

The notation (n) signifies that the corresponding term is
power n in the weak fields.
The requirement of gauge invariance translates into an

infinite set of coupled equations:

δðn−2Þξ Sð2Þ þ
�Xn−1

k¼3

δðn−kÞξ SðkÞ
�
þ δð0Þξ SðnÞ ¼ 0; ð2Þ

n ¼ 2; 3; 4;…, whose most general solution at a given
order can be written as

SðnÞ ¼ SðnÞh þ SðnÞp ; ð3Þ

where SðnÞh solves the homogeneous equation

δð0Þξ SðnÞh ≈ 0; ð4Þ

where ≈means on shell and SðnÞp is the particular solution to
the original Eq. (2) which contains the information about
the lower-order solutions.
A particular solution that has a nice physical inter-

pretation is given by minus the exchange amplitudes
generated by the lower-order couplings. For instance, at
quartic order,

Sð4Þp ¼ −Að4Þ ≡ −ðAs þAt þAuÞ; ð5Þ

where As is the four-point exchange diagram generated by
the cubic couplings in the s channel, etc. That this solves
the quartic (n ¼ 4) consistency condition (2) can be seen
extending the analysis from Refs. [14,41,42] to prove

δð0Þξ ð−Að4ÞÞ ≈ δð1Þξ Sð3Þ: ð6Þ

A further attractive feature of the above choice of a
particular solution is that the corresponding homogeneous
solution,

SðnÞh ¼ AðnÞ þ SðnÞ; ð7Þ

is then directly related to “scatteringlike” observables of the
theory [43]. This link is especially significant for theories
on AdSdþ1, where one can draw upon the dual interpre-
tation of such observables as correlation functions of
single-trace operators on the d-dimensional conformal
boundary. We make this relationship more concrete in
the following.
The homogeneous solution, global symmetries, and

AdS=CFT.—Further constraints are placed on the homo-
geneous solution SðnÞh if the gauge symmetry (1) arises from
the gauging of a global symmetry. This imposes

δð1Þ
ξ̄
SðnÞh ≈ 0; ð8Þ

where the ξ̄’s are the gauge parameters associated with the
global symmetries [44].
For theories on AdSdþ1 backgrounds, for boundary

conditions on the bulk fields compatible with conformal
symmetry, the form (7) of the homogeneous solution is the
generating function of connected n-point correlation func-
tions of single-trace operators in the dual CFTd at large N
[45,46]. In particular, the boundary value φ̄ of the bulk field
φ sources its dual single-trace operator O such that

hO1 � � �Oniconn¼ð−1Þn δ

δφ̄n
� � � δ

δφ̄1

SðnÞh ½φij∂AdS¼ φ̄i�: ð9Þ

The construction of consistent interactions on AdS can
thus be mapped to the classification of consistent conformal
correlators, which serve as the scattering observables of the
bulk theory. In particular, in the dual CFT picture the global
symmetry constraints (8) are equivalent to Ward identities

δð1Þ
ξ̄
SðnÞh ≈ 0 ⇔ 0 ¼

X
i

hO1 � � � ½Qξ̄; Oi� � � �Oni; ð10Þ

where Qξ̄ is the charge associated with the Killing tensor ξ̄.
Higher-spin gauge theories.—The free Fronsdal action

[1] for spin-s gauge fields serves as a starting point to
construct theories of interacting HS gauge fields on
AdSdþ1. The free theory alone encodes the global sym-
metries that govern the spectrum, which can be extracted
from the free theory Noether currents [16]. The HS
symmetry algebra closing on totally symmetric gauge
fields [2,21,22] is unique in generic dimensions [47].
This constrains the spectrum via the global symmetry
requirement
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δð1Þ
ξ̄
Sð2Þ ¼ 0: ð11Þ

The minimal HS-symmetric spectrum consists of a tower of
even spin totally symmetric gauge fields φs, s ¼ 2; 4; 6;…
and a parity even scalar φ0. This is the so-called type A HS
theory [22,26], and it is the unique HS theory in generic
dimensions consisting of only totally symmetric fields.
This minimal HS-symmetric spectrum forms a closed
subsector of any theory of totally symmetric HS gauge
fields on AdSdþ1, which we can therefore restrict to
throughout.
At the interacting level, global HS symmetry fixes all

interactions and their couplings completely up to field
redefinitions. This can be seen by analyzing the constraint
(8) for HS Killing tensors ξ̄, which forces the homogeneous
solution (7) to take the unique form of correlators of a free
scalar conformal theory on the d-dimensional boundary
when evaluated on shell with AdS=CFT boundary con-
ditions [47–49]. In particular, for fixed external legs of
spins s1 − s2 − � � � − sn, we have

SðnÞh ¼ hJ s1 � � �J sniconn; ð12Þ

where J si is the spin si single-trace operator of twist τ ¼
Δ ¼ d − 2 on the d-dimensional boundary that is sourced
by the bulk field φsi . The explicit form of Eq. (12) was first
given in Ref. [50] for a general d (see also Refs. [51–53]).
Combined with the particular solution (5), the complete

solution to the Noether procedure with the minimal HS
spectrum is thus dictated uniquely up to field redefinitions
by global HS symmetry:

Sð3Þs1;s2;s3 ¼ hJ s1J s2J s3iconn; ð13aÞ

SðnÞs1;s2;…;sn ¼ hJ s1 � � �J sniconn −AðnÞ
s1;s2;…;sn ; ð13bÞ

with n > 3, where AðnÞ
s1;s2;…;sn is the tree-level exchange

amplitude with external legs of spins s1 − s2 − � � � − sn,
generated by the lower-order couplings. Note that solution
(13) does not assume the AdS=CFT duality since Eq. (12)
holds purely as a consequence of global HS symmetry.
At cubic order, the couplings for any triplet of fixed spins

are local (up to field redefinitions),

Sð3Þs1;s2;s3 ¼
Z
AdS

Vs1;s2;s3 ; ð14Þ

with (schematically) [35,50]

Vs1;s2;s3 ¼ gs1;s2;s3∇s3φs1∇s1φs2∇s2φs3 þOðΛÞ; ð15aÞ

gs1;s2;s3 ¼
1ffiffiffiffiffiffiffiffiffiffiffiffi

Nd:o:f:
p π½ðd−3Þ=4�2½ð3d−1þs1þs2þs3Þ=2�

Γðdþ s1 þ s2 þ s3 − 3Þ : ð15bÞ

At cubic order, there is thus no apparent issue of locality,
with the couplings (14) involving a finite number of
derivatives (15a) with finite coupling constants (15b).
However, the couplings at quartic and higher orders
generically involve an arbitrary number of derivatives
[33]. In the following section, we study the (non)locality
of the quartic interactions (13b), which is possible with the
explicit form of the homogeneous solution (12) with n ¼ 4
and the four-point exchange diagrams generated by the
local cubic couplings (15a).
Locality.—For simplicity, we restrict to the quartic self-

interaction of the scalar φ0 [Eq. (13b) with n ¼ 4 and
si ¼ 0 [54] ]:

Sð4Þ0;0;0;0 ¼ hJ 0J 0J 0J 0iconn −Að4Þ
0;0;0;0; ð16Þ

where the homogeneous solution reads explicitly

hJ 0ðy1ÞJ 0ðy2ÞJ 0ðy3ÞJ 0ðy4Þiconn
¼ 1

c
1

ðy212y234Þd−2

×

�
u½ðd=2Þ−1� þ

�
u
v

�½ðd=2Þ−1�
þ u½ðd=2Þ−1�

�
u
v

�½ðd=2Þ−1��
;

ð17Þ

in terms of cross ratios u ¼ ðy212y234=y213y224Þ and v ¼
ðy241y223=y213y224Þ, and c is proportional to the central charge
of the boundary theory. The exchange amplitude is
given by

Að4Þ
0;0;0;0 ¼ As

0;0;0;0 þAt
0;0;0;0 þAu

0;0;0;0; ð18Þ

where, e.g.,

As
0;0;0;0 ¼

X
s∈2N

As
0;0jsj0;0; ð19Þ

with each spin-s exchange As
0;0jsj0;0 is generated by the

local 0-0-s cubic coupling (14).
To study the locality of Eq. (16), we first need to perform

the sum (19) over the exchanged spin. For this, it is useful
to decompose into conformal blocks. For the spin-s
exchange, we have [55–57]

As
0;0jsj0;0 ¼ c2J 0J 0J s

Ws
0;0jsj0;0 þ local contact interactions;

ð20Þ

where Ws
0;0jsj0;0 is the conformal block encoding the

contributions in the s channel from the exchanged spin-s
single-particle state [58]. In the CFT picture, this is the
contribution induced by the dual single-trace primary
operator J s, with operator product expansion coefficient
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cJ 0J 0J s
. Given Eq. (20), in the view of studying the locality

of Eq. (16), it is useful to recall the following standard
assumptions of field theory when considering the sum over
spin in (19): A1. Infinite summations over derivatives do
not generate additional single-particle exchanges, in any
channel [59]. A2. Summations over spin do not generate
additional single-particle exchanges, in any channel.
While A1 and A2 are not necessary from an S-matrix

perspective, in field theory they provide necessary con-
ditions for single-particle exchanges to arise only from
cubic graphs at quartic order. In other words, in a field
theory setting, in forgoingA1 andA2, one would encounter
nonlocal obstructions anyway as defined in the
Introduction.
In the following, we are going argue by contradiction to

show that A1 and A2 do not hold in any interacting HS
gauge field theories on AdS. In other words, we start by
assuming that there is no nonlocal obstruction and then
uncover that this is not the case.
In neglecting the local contact terms in Eq. (20), the sum

over spin (19) is given by the HS (or twist) block [60,61]:

Hs
ð0;0jτj0;0Þ ¼

X∞
s¼0

c2J 0J 0J s
Ws

0;0jsj0;0 ð21Þ

¼1

c
1

ðy212y234Þd−2
�
u½ðd=2Þ−1� þ

�
u
v

�½ðd=2Þ−1��
: ð22Þ

In other words, we have

Að4Þ
0;0;0;0¼Hs

ð0;0jτj0;0Þ þHt
ð0;0jτj0;0Þ þHu

ð0;0jτj0;0Þ þ���; ð23Þ
where the ellipsis denotes terms which, under the field
theory assumptionsA, encode only contact contributions—
i.e., no single-particle exchanges—in any channel.
In analogy to conformal blocks, HS blocks represent the

contribution to a four-point function from an entire HS
multiplet (in a given channel). Accordingly the homo-
geneous solution (17), which is invariant under global HS
symmetry (8), can be expressed purely in terms of HS
blocks (21) as

hJ 0J 0J 0J 0iconn¼
1

2
½Hs

ð0;0jτj0;0Þ þHt
ð0;0jτj0;0Þ þHu

ð0;0jτj0;0Þ�;
ð24Þ

which can be verified explicitly from Eqs. (17) and (21).
Combined with the particular solution (23), we find that

the nonlocal part of the quartic self-interaction (16) is
proportional to the total exchange amplitude (18):

Sð4Þ0;0;0;0 ¼ hJ 0J 0J 0J 0iconn −Að4Þ
0;0;0;0 ¼ −

1

2
Að4Þ

0;0;0;0 þ � � � ;
ð25Þ

thus uncovering a nonlocal obstruction at quartic order.

The role of crossing symmetry.—We note that the non-
local obstruction (25) can be traced back to the behavior of
the tower of single-trace operators J s under crossing. To
see this, it is instructive to consider terms in the correlator
(24) that are independent solutions to the crossing equation,
and their microscopic interpretation.
For a four-point function of scalar operators O of

dimension Δ,

hOOOOi ¼ Gðu; vÞ
ðy212y234ÞΔ

; ð26Þ

crossing symmetry is the requirement

fðu; vÞ ¼ vΔGðu; vÞ ¼ uΔGðv; uÞ: ð27Þ
Equation (27) is straightforward to solve in free theories
[62–64], with a general solution of the form [40]

fðu; vÞ ¼
X
i;j

cijuðτi=2Þvðτj=2Þ; cij ¼ cji; ð28Þ

which sums over the twists τi of the operators in the theory.
The general solution (28) exhibits that, in free theories,
pairs of twist trajectories are mapped onto each other under
crossing,

twist τ1 ↔
crossing

twist τ2: ð29Þ
For the correlation function (24), the following two
functions are the independent solutions to crossing (27):

fd−2ðu; vÞ ¼
1

c
u½ðd=2Þ−1�v½ðd=2Þ−1�; ð30aÞ

f2ðd−2Þðu; vÞ ¼
1

c
ðu½ðd=2Þ−1�vd−2 þ v½ðd=2Þ−1�ud−2Þ: ð30bÞ

Solution (30b) originates from the exchange of operators
of twist τ ¼ d − 2, which are the single-trace operators J s
of the HS multiplet, together with the exchange of double-
trace operators of twist τ ¼ 2ðd − 2Þ. These two twist
trajectories thus map onto each other under crossing:

Reggesingle trace ↔
crossing

Reggedouble trace: ð31Þ
The mapping of single-trace contributions to double-trace
contributions under crossing is quite generic of CFTs in
d > 2 [40,65,66] (see also Refs. [67–69]) and is character-
istic of CFTs with a local bulk dual [70].
On the other hand, solution (30a) is self-dual under

crossing, with

Reggesingle trace ↔
crossing

Reggesingle trace; ð32Þ
which is typical of CFTs at or around a point of large twist
degeneracy [40,71,72], such as the present case of theories
with HS symmetry. It is this property that is responsible for
the nonlocal obstruction (25). Indeed, it is straightforward
to see that the absence of such a contribution would mean
that one instead has
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hOOOOiconn ¼ Að4Þ þ � � � ; ð33Þ

precisely canceling the single-trace contributions in the
particular solution (5), and it would thus avert the appear-
ance of the nonlocal obstruction (25).
Discussion.—Let us briefly (and inexhaustibly) discuss

the possibilities for interacting HS gauge theories that we
feel deserve further understanding in light of the results
presented in this Letter.
We stress that a common assumption which leads to

nonlocal obstructions of the type of Eq. (25) is the
requirement of nontrivial bulk interactions and observables.
In particular, our conclusion does not rule out the pos-
sibility that HS theories, in both flat and AdS spaces [34],
could be regarded as exotic topological theories with trivial
bulk interactions and topological S-matrix–like observ-
ables. This possibility has already been discussed in
Refs. [11,35,73,74].
From this perspective, let us emphasize that the nonlocal

obstruction (25) should, of course, not be considered as an
inconsistency of the boundary theory but rather as the
statement that the bulk action reproducing the boundary
CFT correlators at leading order in 1=N is at most an
effective action, while the microscopic description leading
to such an effective action in the bulk would lie outside of
the so-called Fronsdal program [1]. The microscopic
description should rather be that of an exotic topological
(string) field theory (see, e.g., Ref. [75] for some ideas in
this direction). From this topological viewpoint, cohomo-
logically nontrivial interactions would then live on the
boundary of AdS [76].
Let us also note that, from this perspective, a microscopic

bulk definition of HS gauge theories may be possible in
terms of properly defined topological string constructions
[75,79]. In this setting, one may also attempt a second
quantized string description which could provide the addi-
tional input to define proper nonlocal topological string
field theory interactions. It is conceivable that the non-
triviality of interactions could be restored by the require-
ment that the corresponding functional space of field
redefinitions is globally defined on the underlying string
Hilbert space [80]. We plan to closely investigate these
options in the near future.
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