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Weoutline the program to apply modern quantum field theory methods to calculate observables in
classical general relativity through a truncation to classical terms of the multigraviton, two-body, on-shell
scattering amplitudes between massive fields. Since only long-distance interactions corresponding to
nonanalytic pieces need to be included, unitarity cuts provide substantial simplifications for both post-
Newtonian and post-Minkowskian expansions. We illustrate this quantum field theoretic approach to
classical general relativity by computing the interaction potentials to second order in the post-Newtonian
expansion, as well as the scattering functions for two massive objects to second order in the post-
Minkowskian expansion. We also derive an all-order exact result for gravitational light-by-light scattering.
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Today it is universally accepted that classical general
relativity can be understood as the ℏ → 0 limit of a quantum
mechanical path integral with an action that, minimally,
includes the Einstein-Hilbert term. It describes gravitational
interactions in terms of exchanges and interactions of spin-2
gravitons with themselves (and with matter) [1,2]. The
language of effective field theory encompasses this view-
point, and it shows that a long-distance quantum field
theoretic description of gravity is well defined order by order
in a derivative expansion [3,4]. Quantum mechanics thus
teaches us that we should expect classical general relativity to
be augmented by higher-derivative terms. More remarkably,
what would ordinarily be a quantum mechanical loop
expansion contains pieces at an arbitrarily high order that
are entirely classical [5,6]. A subtle cancellation of factors of
ℏ is at work here. This leads to the radical conclusion that one
can define classical general relativity perturbatively through
the loop expansion. Then ℏ plays a role only at intermediary
steps, a dimensional regulator that is unrelated to the classical
physics the path integral describes.
For the loop expansion, central tools have been the

unitarity methods [7] that reproduce those parts of loop
amplitudes that are “cut constructable,” i.e., all nonanalytic
terms of the amplitudes. This amounts to an enormous

simplification, and most of today’s amplitude computations
for the Standard Model of particle physics would not have
been possible without this method. In classical gravity, the
long-distance terms we seek are precisely of such a
nonanalytic kind, being functions of the dimensionless
ratio m=

ffiffiffiffiffiffiffiffi
−q2

p
, where m is a massive probe, and qμ

describes a suitably defined momentum transfer [4]. This
leads to the proposal that these modern methods be used to
compute post-Newtonian and post-Minkowskian perturba-
tion theory of general relativity for astrophysical processes
such as binary mergers. This has acquired new urgency due
to the recent observations of gravitational waves emitted
during such inspirals.
While the framework for classical general relativity as

described above would involve all possible interaction
terms in the Lagrangian, ordered according to a derivative
expansion, one can always choose to retain only the
Einstein-Hilbert action. Quantum mechanically this is
inconsistent, but for the purpose of extracting only classical
results from that action, it is a perfectly valid truncation.
This scheme relies on a separation of the long-distance
(infrared) and short-distance (ultraviolet) contributions in
the scattering amplitudes in quantum field theory. We will
follow that strategy here, but one may apply the same
amplitude methods to actions that contain, already at the
classical level, higher-derivative terms as well. In the
future, this may be used to put better observational bounds
on such new couplings.
In Ref. [8], Damour proposed a new approach for

converting classical scattering amplitudes into the
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effective-one-body Hamiltonian of two gravitationally
interacting bodies. In this Letter, we take a different route
and we show how scattering amplitude methods, which
build on the probabilistic nature of quantum mechanics,
may be used to derive classical results in gravity. We show
how tree-level massless emission from massive classical
sources arises from quantum multiloop amplitudes, thus
providing an all-order argument extending the original
observations in Ref. [6]. We apply this method to derive the
scattering angle between two masses to second post-
Minkowskian order using the eikonal method.
We start with the Einstein-Hilbert action coupled to a

scalar field ϕ:

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p �
1

16πG
Rþ 1

2
gμν∂μϕ∂νϕ −

m2

2
ϕ2

�
: ð1Þ

Here R is the curvature and gμν is the metric, defined as the
sum of a flat Minkowski component ημν and a perturbation

κhμν with κ ≡ ffiffiffiffiffiffiffiffiffiffiffi
32πG

p
. It is coupled to the scalar stress-

energy tensor Tμν ≡ ∂μϕ∂νϕ − ðημν=2Þð∂ρϕ∂ρϕ −m2ϕ2Þ.
Scalar triangle integrals [9] are what reduces the one-

loop, two-graviton scattering amplitude to classical general
relativity [4,10–12] in four dimensions. For the long-
distance contributions these are the integrals that produce
the tree-like structures one intuitively associates with
classical general relativity. To see this, consider first
the triangle integral of one massive and two massless
propagators,

ð2Þ

with p1¼ðE;q⃗=2Þ, p2¼ðE;−q⃗=2Þ and q≡p1−p0
1¼ð0;q⃗Þ,

and E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

1 þ q⃗2=4
p

, and we work with the mostly
negative metric ðþ−−−Þ. The curly lines are for massless
fields and the left solid line is for a particle of in-
coming momentum p1, outgoing momentum p0

1, and mass
p2
1 ¼ p02

1 ¼ m2
1.

In the large mass approximation, we focus on the region
jl⃗j ≪ m1, andwe have ðlþp1Þ2−m2

1¼l2þ2lp1≃2m1l0;
therefore the integral reduces in that limit to

1

2m1

Z
d4l
ð2πÞ4

1

l2 þ iϵ
1

ðlþ qÞ2 þ iϵ
1

l0 þ iϵ
: ð3Þ

We perform the l0 integration by closing the contour of
integration in the upper half-plane to get

Z
jl⃗j≪m

d3l⃗
ð2πÞ3

i
4m

1

l⃗2

1

ðl⃗þ qÞ2
¼ −

i
32mjq⃗j : ð4Þ

This result can be obtained by performing the large mass
expansion of the exact expression for the triangle integral as
shown in the Supplemental Material [13].
In Eq. (4) we recognize the three-dimensional integral of

two static sources localized at different positions, repre-
sented as shaded blobs, and emitting massless fields

ð5Þ

Below we show how this allows us to recover the first post-
Newtonian correction to the Schwarzschild metric from
quantum loops. We now explain how the classical part
emerges from higher-loop triangle graphs, starting with
two-loop triangles

ð6Þ

In the large mass limit jl⃗ij ≪ m1 for i ¼ 1, 2, 3 and
approximating ðli þ p1Þ2 −m2

1 ≃ 2lip1 ≃ 2m1l0
i , the

integral reduces in that limit to

I⊳⊳ð1Þðp1; qÞ

¼ −
Z Y3

i¼1

d4li

ð2πÞ4
1

l2
i þ iϵ

×
ð2πÞ3δð3ÞðP3

i¼1 l⃗i þ q⃗Þ
ðl1 þ qÞ2 þ iϵ

× 2πδðl0
1 þ l0

2 þ l0
3Þ

×
�

1

2m1l0
1 þ iϵ

1

2m1l0
2 − iϵ

þ 1

2m1l0
3 þ iϵ

1

2m1l0
1 − iϵ

þ 1

2m1l0
3 þ iϵ

1

2m1l0
2 − iϵ

�
: ð7Þ

We note that

PHYSICAL REVIEW LETTERS 121, 171601 (2018)

171601-2



δðl0
1 þ l0

2 þ l0
3Þ
�

1

2m1l0
1 þ iϵ

1

2m1l0
2 − iϵ

þ 1

2m1l0
3 þ iϵ

1

2m1l0
1 − iϵ

þ 1

2m1l0
3 þ iϵ

1

2m1l0
2 − iϵ

�

¼ 0þOðϵÞ; ð8Þ

so that only the l0 residue at 2m1l0 ¼ �iϵ contributes,
giving

I⊳⊳ð1Þðp1; qÞ ¼
i

4m2
1

Z
d3l⃗1

ð2πÞ3
d3l⃗2

ð2πÞ3
1

l⃗2
1

1

l⃗2
2

×
1

ðl⃗1 þ l⃗2 þ q⃗Þ2
1

ðl⃗1 þ q⃗Þ2
: ð9Þ

We now consider the large mass expansion of the graph

ð10Þ

which, to leading order, reads

I⊳⊳ðdÞðp1; qÞ

¼ −
1

3

Z Y3
i¼1

�
d4li

ð2πÞ4
1

l2
i þ iϵ

�

× ð2πÞ3δð3Þðl1 þ l2 þ l3 þ qÞ

× 2πδðl0
1 þ l0

2 þ l0
3Þ
�

1

2m1l0
1 þ iϵ

1

2m1l0
2 − iϵ

þ 1

2m1l0
3 þ iϵ

1

2m1l0
1 − iϵ

þ 1

2m1l0
3 þ iϵ

1

2m1l0
2 − iϵ

�
;

ð11Þ

and evaluates to

I⊳⊳ð2Þðp1; qÞ ¼
1

12m2
1

Z
d3l⃗1

ð2πÞ3
d3l⃗2

ð2πÞ3
1

l⃗2
1

1

l⃗2
2

1

ðl⃗1 þ l⃗2 þ q⃗Þ2
:

ð12Þ

Equations (9) and (12) are precisely the coupling of three
static sources to a massless tree amplitude

ð13Þ

A generalization of the identity [Eq. (8)] implies that the
sum of all the permutation of n massless propagators
connected to a massive scalar line results in the coupling
of classical sources to multileg tree amplitudes [20,21]. The
same conclusion applies to massive particles with spin as
we will demonstrate elsewhere.
This analysis applies directly to the computation of an

off-shell quantity such as the metric itself. Consider the
absorption of a graviton

hp2jTμνjp1i

¼ −i
2m1

Z
d4l
ð2πÞ4

Pρσ;αβ

l2þ iϵ

Pκλ;γδ

ðlþqÞ2þ iϵ

×
τρσ1 ðp1−l;p1Þτκλ1 ðp1−l;p2Þτ3μναβ;γδðl;l−qÞ

ðlþp1Þ2−m2
1þ iϵ

; ð14Þ

where τ1 is the vertex for the coupling of one graviton to a
scalar given in Ref. [[22], Eq. (72)], τ3 is the three graviton
vertex given in Ref. [[22], Eq. (73)], and Pμν;ρσ is the
projection operator given in Ref [[22], Eq. (30)]. In the
large m limit jqj=m ≪ 1 projects the integral on the 00-
component of the scalar vertex τμν1 ðp1 − l; p1Þ ≃ iκm2

1δ
μ
0δ

ν
0.

Focusing on the 00 component, we have in this limit [21]

hp2jT00jp1i≃4iπGm3
1

Z
d4l
ð2πÞ4

�
3

8
q⃗2−

3

2
l⃗2

�

×
1

ðl2þ iϵÞ½ðlþqÞ2þ iϵ�½ðlþp1Þ2−m2
1þ iϵ�

¼3κ2m3

128
jq⃗j; ð15Þ

where we used the result of the previous section to evaluate
the triangle integral. This reproduces the classical first post-
Newtonian contribution to the 00-component of the
Schwarzschild metric evaluated in Ref. [22]. It also immedi-
ately shows how to relate a conventional Feynman-diagram
evaluation with the computation of Duff [23] who derived
such tree-like structures from classical sources.
Scalar interaction potentials.—For the classical terms

we need only the graviton cuts, and instead of computing
classes of diagrams, we apply the unitarity method directly
to get the on-shell scattering amplitudes initiated in
Ref. [10] and further developed in [11,12]. We first
consider the scattering of two scalars of masses m1 and
m2, respectively. At one-loop order this entails a two-
graviton cut of a massive scalar four-point amplitude. We
have shown that classical terms arise from topologies with
loops solely entering as triangles that include the massive
states. When we glue together the two on-shell scattering
amplitudes, we thus discard all terms that do not corre-
spond to such topologies. Rational terms are not needed, as
they correspond to ultralocal terms of no relevance for the
long-distance interaction potentials.
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We first recall the classical tree-level result from the one-
graviton exchange

ð16Þ

where incoming momenta are p1 and p2 and p2
1¼p02

1 ¼m2
1,

p2
2 ¼ p02

2 ¼ m2
2 and the momentum transfer q ¼ p1 − p0

1 ¼
−p2 þ p0

2.
The two-graviton interaction is clearly a one-loop

amplitude that can be constructed using the on-shell

unitarity method [10–12]. The previous analysis
shows that the classical piece is contained in the triangle
graphs

ð17Þ

with, for the interaction between two massive scalars,

cðm1; m2Þ ¼ ðq2Þ5 þ ðq2Þ4ð6p1 ⋅ p2 − 10m2
1Þ þ ðq2Þ3ð12ðp1 ⋅ p2Þ2 − 60m2

1p1 ⋅ p2 − 2m2
1m

2
2 þ 30m4

1Þ
− ðq2Þ2ð120m2

1ðp1 ⋅ p2Þ2 − 180m4
1p1 ⋅ p2 − 20m4

1m
2
2 þ 20m6

1Þ
þ q2ð360m4

1ðp1 ⋅ p2Þ2 − 120m6
1p1 ⋅ p2 − 4m6

1ðm2
1 þ 15m2

2ÞÞ þ 48m8
1m

2
2 − 240m6

1ðp1 ⋅ p2Þ2: ð18Þ

At leading order in q2, using the result of Eq. (4), the two
gravitons exchange simplifies to just, in agreement with
Ref. [[24], Eq. (3.26)] and Refs. [10,25],

M2¼
6π2G2

jq⃗j ðm1þm2Þ½5ðp1 ⋅p2Þ2−m2
1m

2
2�þOðjq⃗jÞ: ð19Þ

Note the systematics of this expansion. The Einstein
metric is expanded perturbatively, and all physical
momenta are provided at infinity. Contractions of momenta
are performed with respect to the flat-space Minkowski
metric only, and no reference is made to space-time
coordinates. This is a gauge invariant expression for the
classical scattering amplitude in a plane wave basis that is
independent of coordinate choices (and gauge choices). To
derive a classical nonrelativistic potential, we need to
choose coordinates: we Fourier transform the gauge invari-
ant momentum-space scattering amplitude. This introduces
coordinate dependence even in theories such as quantum
electrodynamics. Moreover, just as in quantum electrody-
namics, we must also be careful in keeping subleading
terms of this Fourier transform and thus expand in q0

consistently. This forces us to keep velocity-dependent
terms in the energy that are of the same order as the naively
defined static potential. One easily checks that the overall
sign of the amplitudes in Eqs. (16) and (19) are precisely
the ones required for an attractive force.
The result of this procedure has been well documented

elsewhere, starting with the pioneering observations of
Iwasaki [5], and later reproduced in different coordinates in
Refs. [10,26]. Although we are unable to reproduce the
individual contributions in Ref. [[5], Eqs. (A.1.4)–(A.1.6)]
our final result for the interaction energy is to this order:

H ¼ p⃗2
1

2m1

þ p⃗2
2

2m2

−
p⃗4
1

8m3
1

−
p⃗4
2

8m3
2

−
Gm1m2

r
−
G2m1m2ðm1 þm2Þ

2r2

−
Gm1m2

2r

�
3p⃗2

1

m2
1

þ 3p⃗2
2

m2
2

−
7p⃗1 ⋅ p⃗2

m1m2

−
ðp⃗1 ⋅ r⃗Þðp⃗2 ⋅ r⃗Þ

m1m2r2

�
;

ð20Þ

which precisely leads to the celebrated Einstein-Infeld-
Hoffmann equations of motion. It is crucial to correctly
perform the subtraction of the iterated tree-level Born term
in order to achieve this.
The post-Minkowskian expansion.—The scattering prob-

lem of general relativity can be treated in a fully relativistic
manner, without a truncated expansion in velocities. To this
end, we consider here the full relativistic scattering ampli-
tude and expand inNewton’s constantG only. For the scalar-
scalar case we thus return to the complete classical one-loop
result [Eq. (17)]. The conventional Born-expansion expres-
sion that is used to derive the quantum mechanical cross
section is not appropriate here, even if we keep only the
classical part of the amplitude. That expression for the cross
section is based on incoming plane waves, and will not
match the corresponding classical cross section beyond the
leading tree-level term. In fact, even the classical cross
section is unlikely to be of any interest observationally. So a
more meaningful approach is to use the classical scattering
amplitude to compute the scattering angle of two masses
colliding with a given impact parameter b.
We use the eikonal approach to derive the relationship

between small scattering angle θ and impact parameter b.
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Generalizing the analysis of Refs. [27,28] (please refer to
the Supplemental Material [13] for some details on the
eikonal method to one-loop order) to the case of two scalars
of masses m1 and m2, we focus on the high-energy regime
s, t large, and t=s small. Note that in addition to expanding
in G, we are also expanding the full result [Eq. (17)] in q2,
and truncating already at next-to-leading order. We go to
the center of mass frame and define p≡ jp⃗1j ¼ jp⃗2j. The
impact parameter is defined by a two-dimensional vector b⃗
in the plane of scattering orthogonal to p⃗1 ¼ −p⃗2, with
b≡ jb⃗j. In the eikonal limit we find the exponentiated
relationship between the scattering amplitude

Mðb⃗Þ≡
Z

d2q⃗e−iq⃗⋅b⃗Mðq⃗Þ; ð21Þ

and scattering function χðbÞ to be

Mðb⃗Þ ¼ 4pðE1 þ E2Þðeiχðb⃗Þ − 1Þ: ð22Þ

In order to compare with the first computation of post-
Minkowskian scattering to order G2 [29], we introduce
new kinematical variables M2 ≡ s, M̂2 ≡M2 −m2

1 −m2
2.

We go to the center of mass frame where p2 ¼
ðM̂4 − 4m2

1m
2
2Þ=4M2. In terms of the scattering angle θ

we have t≡ q2 ¼ ½ðM̂4 − 4m2
1m

2
2Þ sin2ðθ=2Þ�=M2, and

4pðE1 þ E2Þ ¼ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M̂4 − 4m2

1m
2
2

q
. Keeping, consistently,

only the leading order in q2 of the one-loop amplitude
[Eq. (21)], we obtain

2 sinðθ=2Þ ¼ −2Mffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M̂4 − 4m2

1m
2
2

q ∂
∂b ½χ1ðbÞ þ χ2ðbÞ�; ð23Þ

where χ1ðbÞ and χ2ðbÞ are the tree-level and one-loop
scattering functions given respectively by the Fourier
transform of the scattering amplitudes

χiðbÞ ¼
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M̂4 − 4m2

1m
2
2

q
Z

d2q⃗
ð2πÞ2 e

−iq⃗⋅b⃗Miðq⃗Þ: ð24Þ

At leading order in q2 the tree-level and one-loop ampli-
tudes in Eqs. (16) and (19) read

M1ðq⃗Þ ¼
8πG
q⃗2

ðM̂4 − 2m2
1m

2
2Þ;

M2ðq⃗Þ ¼
3π2G2

2jq⃗j ðm1 þm2Þð5M̂4 − 4m2
1m

2
2Þ; ð25Þ

where higher order terms in q2 correspond in position
space to quantum corrections. Only the triangle con-
tribution contribute to the one-loop scattering function
because the contributions from the boxes and cross-boxes

contributed to the exponentiation of the tree-level ampli-
tude [28,30]. The Fourier transform around two dimensions
is computed using

μ2−D
Z

dDq
ð2πÞD e−iq⃗⋅b⃗jq⃗jα ¼ ð2πμÞ2−D

4π

�
2

b

�
αþD Γ ðαþD

2Þ
Γ ð2−α−D

2Þ
:

ð26Þ

The scattering functions then read

χ1ðbÞ¼ 2G
M̂4−2m2

1m
2
2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M̂4−4m2
1m

2
2

q
�

1

d−2
− logðπμbÞ− γE

�
;

χ2ðbÞ¼
3πG2

8

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M̂4−4m2

1m
2
2

q m1þm2

b
ð5M̂4−4m2

1m
2
2Þ; ð27Þ

where μ is a regularization scale. The scattering angle to
this order reads

2 sin

�
θ

2

�
¼ 4GM

b

�
M̂4 − 2m2

1m
2
2

M̂4 − 4m2
1m

2
2

þ 3π

16

Gðm1 þm2Þ
b

5M̂4 − 4m2
1m

2
2

M̂4 − 4m2
1m

2
2

�
: ð28Þ

This result agrees with the expression found by Westpfahl
[29] who explicitly solved the Einstein equations to this
order in G and in the same limit of small scattering angle.
We find the present approach to be superior in efficiency,
and very easily generalizable to higher orders in G.
Taking the massless limit m2 ¼ 0 and approximating

2 sinðθ=2Þ ≃ θ, we recover the classical bending angle of
light θ ¼ ð4Gm1=bÞ þ ð15π=4ÞðG2m2

1=b
2Þ, including its

first nontrivial correction in G, in agreement with
Ref. [[31], §101]. We have additionally computed the full
expression for the classical part of the scalar-fermion (spin
1=2) amplitude up to and including one-loop order, but do
not display the results here for lack of space. We stress that
the small-angle scattering formula derived above is based
on only a small amount of the information contained in the
full one-loop scattering amplitude [Eq. (17)].
Light-by-light scattering in general relativity.—Photon-

photon scattering is particularly interesting, as our analysis
will show how to derive an exact result in general relativity.
As explained above, classical contributions from loop
diagrams require the presence of massive triangles in the
loops. For photon-photon scattering, there are no such
contributions to any order in the expansion, and we
conclude that photon-photon scattering in general relativity
is tree-level exact, as follows:
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ð29Þ

where the traces are evaluated over the Lorentz indices
and fμνi ¼ ϵμi p

ν
i − ϵνi p

μ
i are the field strength of the photon

fields. When considering polarized photons, it is immediate
to check that this amplitude is nonvanishing only for
scattering of photons of opposite helicity as no force is
expected between photons of the same helicity. Similarly
the force between parallel photons vanishes [32].
Conclusion.—We have explicitly shown how loops of

the Feynman diagram expansion become equal to the tree-
like structures coupled to classical sources thus demystify-
ing the appearance of loop diagrams in classical gravity,
and, at the same time, linking the source-based method
directly to conventional Feynman diagrams. Interestingly,
the manner in which the l0 integrations conspire to leave
tree-like structures from loops of triangle graphs also forms
the precise bridge to classical general relativity com-
putations based on the world-line formulation (see, e.g.,
Refs. [33–39]).
Enormous simplifications occur when computing what

corresponds to on-shell quantities, based on the unitarity
method [7]. Nonanalytic terms [4] involving powers of
m=

ffiffiffiffiffiffiffiffi
−q2

p
produce the long-distance classical contributions

from the loops. By the rules of unitarity cuts, we can
reconstruct these nonanalytic pieces by gluing tree-level
amplitudes together while summing over physical states of
the graviton legs only [10–12,24,25,30].
Scalar interaction potentials form the backbone of

gravitational wave computations for binary mergers. The
fact that the unitarity method provides these results
straightforwardly provides hope that this is the beginning
of a new approach to both post-Newtonian and post-
Minkowskian calculations in general relativity, including
those relevant for the physics of gravitational waves. Since
the method applies to the general effective field theory of
gravity, this opens up a way to constrain terms beyond the
Einstein-Hilbert action that may affect the observational
signal of gravitational waves.
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