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Trapping of bodies by waves is extended from electromagnetism to gravity. It is shown that gravitational
waves endowed with angular momentum may accumulate near its axis all kinds of cosmic debris. The
trapping mechanism in both cases can be traced to the Coriolis force associated with the local rotation of the
space metric. The same mechanism causes the Trojan asteroids to librate around the Sun-Jupiter stable
Lagrange points L4 and L5. Trapping of bodies in the vicinity of the wave center could also be related to the
formation of galactic jets.
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It has been established in Refs. [1–3] that electromag-
netic waves endowed with angular momentum (e.g.,
Bessel beams) can trap charged particles in the vicinity
of the beam center. In this Letter, we prove that the
gravitational waves carrying angular momentum have the
same property. In Fig. 1 we plotted the projection of
the particle orbit onto the plane perpendicular to the beam
direction for the electromagnetic and the gravitational
case. The close similarity between the two plots is the best
proof that in both cases we are dealing with very similar
phenomena. The mechanism which is responsible for
trapping of bodies near the center of the gravitational
wave is the same as that encountered in many diverse
physical systems: it is the Coriolis force. This force leads
to stable orbits of Trojan asteroids [4] and ions in the Paul
trap [5], to stable wave packets of electrons in high
Rydberg states moving in a circularly polarized electro-
magnetic wave [6] and electrons in rotating molecules [7].
The angular momentum production for compact binaries

in the final stages of their merger is huge. In the simplest
case of two equal massesm in circular orbits with the radius
R, the angular momentum luminosity is [8]

dL
dt

¼ 4

5

mc2

ðR=RSÞ7=2
; ð1Þ

where RS is the Schwarzschild radius for mass m. For
example, for two black holes having 30 solar masses
inspiraling at a distance of 10 RS the gravitational radiation
carries away every second about 6 × 106 times the angular
momentum of Earth in its orbital motion.
In contrast to the electromagnetic case, the trapping in

the gravitational case is universal; it does not depend on the
mass of the body. The simplest model of a gravitational

wave carrying angular momentum is the Bessel beam.
Bessel beams are nondiffractive; they have the same width
along the direction of propagation which is usually chosen
as the direction of the z axis. The Riemann tensor for Bessel
beams in the weak field approximation has been obtained
in [9]. Its components can be constructed [10] from the
components of the rank-four symmetric spinor ϕABCD:

Rμναβðr; tÞ ¼ ℜ(SABμν SCDαβ ϕABCDðr; tÞ); ð2Þ

where SABμν are built from Pauli matrices,

fS01; S02; S03g ¼ −iσyfσx; σy; σzg; ð3aÞ

fS23; S31; S12g ¼ ifS01; S02; S03g: ð3bÞ

The sign of the Riemann tensor in (2) is opposite to that
used in [9,10] because we use now a more common sign

FIG. 1. Projection of the trajectory on the xy plane for a charged
particle trapped by the electromagnetic wave (left) and for a
massive particle trapped by the gravitational wave (right). The
parameters in the gravitational case were chosen to show the
correspondence with the electromagnetic case and not to describe
a realistic situation.
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convention for the Riemann tensor, instead of the one used
in the spinorial formalism.
The five independent components of ϕABCD for the

gravitational Bessel beam can be written in the form [9]:

2
6666664

ϕ0000

ϕ0001

ϕ0011

ϕ0111

ϕ1111

3
7777775
¼ Arω

2eiΦ

2
6666664

e−2iφJM−2ðκρÞ
iλqe−iφJM−1ðκρÞ

−q2JMðκρÞ
−iλq3eiφJMþ1ðκρÞ
q4e2iφJMþ2ðκρÞ

3
7777775
; ð4Þ

where Φ ¼ λðkzz − ωtþMφÞ, λ ¼ �1 is the beam hel-

icity, ω ¼ c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2z þ κ2

p
, κ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2x þ k2y

q
, ℏM is the compo-

nent of the total angular momentum along the beam axis
(per one graviton) and q ¼ cκ=ðωþ ckzÞ. The dimension-
less amplitude Ar of the Riemann tensor will be adjusted
later. We associated angular momentum with gravitons to
make the connection with electromagnetism, where the
language of photons is used to describe light beams
carrying angular momentum. However, the number of
gravitons (if they really exist) is so huge that purely
classical analysis is fully justified.
The spinorial components (4) are obtained with the use

of the procedure introduced by Penrose [11] who has
shown that every solution of the wave equation for a
massless particle can be written (up to a Lorentz trans-
formation) in the form [9]

ϕAB…Lðr; tÞ ¼ DADB…DL χðr; tÞ; ð5Þ

where fD0; D1g ¼ f1=c∂t − ∂z;−∂x − i∂yg and χðr; tÞ is
the generating function: a complex solution of the scalar
d’Alembert equation. To obtain a gravitational Bessel
beam, we choose this solution in the form

χMðρ;φ; z; tÞ ¼ eiλðkzz−ωtþMφÞJMðκρÞ: ð6Þ

Exact Bessel beams (both electromagnetic and gravita-
tional) are unphysical, since their energy flux is infinite.
However, they can be treated as a useful approximation of
the radiation from the physical source, when we consider
only the region to the vicinity of the beam center.
The most natural source of gravitational radiation is a

close binary system of compact massive objects. The
distribution of the angular momentum of the gravitational
radiation generated by such a system in the linearized
approximation can be computed using the framework
developed in [12,13]. Consider a binary system moving
on quasi-Keplerian orbits in the xy plane. We compute the
radiative (time dependent) components of the metric
generated by such a system using the formula (73) in
[12]. Next, we compute the energy-momentum tensor τμν
for this metric using the formula (23) from [12]. Finally the

distribution of the angular momentum jαμν ¼ 2x½μτν�α of the
gravitational radiation generated by the binary system can
be computed using the formula (19) from [13]. In Fig. 2 we
show the distribution of the z component of orbital angular
momentum (namely j012) in the vicinity of the rotation
axis of the system at the distance of 10 wavelengths from
the source. It is compared to the distribution of the
z component of the orbital angular momentum of the
Bessel beam with the angular frequency ω ¼ 1 Hz, which
corresponds to the binary system four days before the
merger, each component having 30 solar masses and
orbiting with angular velocity Ω ¼ ω=2.
Comparing these two plots we see that the distributions

of orbital angular momentum density in the vicinity of the
axis is very similar for both beams. They have minima at
the axis. The amplitude of the Bessel beam is such that the
distributions have the same values at first maximum (time
averaged in the case of binary system radiation). The width
of the minimum of the Bessel beam is controlled by the
kz=κ ratio. The value kz=κ ¼ 22.7 for Fig. 2 was found by
minimizing the integral of the square of the difference of the
two distributions on the interval around the axis in which the
time-averaged binary system angular momentum distribu-
tion has values smaller than half of the first maximum value.
We conclude that the description of the gravitational wave
in the vicinity of the wave axis by the Bessel beam is a
reasonable approximation.
In this Letter, we will only give the proof of concept

deferring a detailed analysis to a separate publication.

FIG. 2. The distribution of the z component of angular
momentum at 10 wavelengths from the binary system source
(solid line) at some given time. Dashed line represents the time
averaged distribution. Dotted line represents the Bessel beam
z-component angular momentum distribution. The horizontal
axis is in units of the wavelength.
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Namely, we will consider the motion of trapped bodies
close to the beam axis which enables us to obtain very
simple analytic solutions.
Numerical relativity [14,15] leads to the conclusion that

the dominant contribution to the gravitational radiation
from the binary system comes fromM ¼ 2. In what follows
we shall consider only this case. For M ¼ 2 there is a
simple geodesic motion: along the z axis with an arbitrary
constant velocity. This property can by established by
calculating the correction to the flat metric (in the TT
gauge) in terms of the Riemann tensor. For monochromatic
gravitational waves, such as Bessel beams, the formula
reads (cf. [16] p. 948)

hTTij ¼ 2

ω2
Ri0j0: ð7Þ

The amplitude Ah of the oscillations of the metric for the
binary system is given by the formula (23.46) in [17],

Ah ¼
8GΩ2mR2

c4r
¼ R2

s

2Rr
; ð8Þ

where R is the radius of the Kepler orbit and r is the
distance to the observation point. We have expressed the
amplitude Ah in terms of the black hole Schwarzschild
radius Rs ¼ 2GM=c2 to exhibit the universality of this
formula; when distances are measured in Rs, the mass of
the object does not matter. Having determined the value of
the amplitude Ah we can use (7) to find that Ar ¼ Ah=2.
The motion of the bodies will be found from the

equations of the geodesic deviation [16,18].

d2ξμ

dτ2
¼ Rμ

αβνu
αuβξν; ð9Þ

where uμ ¼ dxμ=dτ is the four-velocity of motion on the
reference geodesic, ξμ denotes small departures from the
reference geodesic, and τ is the proper time. The reference
geodesic will be chosen along the z axis. This is indeed a
geodesic line because the Christoffel symbols Γμ

αβ obtained
from the metric (7) vanish at the z axis for M ¼ 2 when
α and β take on the values of 0 or 3. Therefore, the geodesic
motion along the z axis is uniform: d2xμ=dτ2 ¼ 0. The
covariant derivatives in (9) were replaced by plain deriv-
atives because the relevant components of the Christoffel
symbol vanish on the reference geodesic. Wewill denote by
v the velocity of motion along the reference geodesic
(c ¼ 1),

uα ¼ ð1; 0; 0; vÞ=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
: ð10Þ

In the equation of the geodesic deviation the Riemann
tensor is evaluated on the reference geodesic where most of
its components vanish since only ϕ0000 in Eqs. (4) survives.

The only nonvanishing terms appearing in the equation of
the geodesic deviation (9) are

R1
αβ1u

αuβ ¼ −Arω
2 cosðωt − kzzÞ; ð11aÞ

R1
αβ2u

αuβ ¼ −Arω
2 sinðωt − kzzÞ; ð11bÞ

R2
αβ1u

αuβ ¼ −Arω
2 sinðωt − kzzÞ; ð11cÞ

R2
αβ2u

αuβ ¼ Arω
2 cosðωt − kzzÞ: ð11dÞ

Since the components R0
αβiu

αuβ and R3
αβiu

αuβ vanish, the
motion along the z axis is not influenced by the gravitational
wave. The dependenceof ξ0 and ξ3 onproper time is linear. In
order to secure the applicability of the equations of the
geodesic deviation, we must choose the corresponding
velocity to be the same as that for the reference geodesic,
i.e., ξ0 ¼ u0τ and ξ3 ¼ u3τ. Otherwise, the separation ξ
would not remain small. The argument of trigonometric
functions in (11) becomes, then, ωt − kzz ¼ ω̃τ, where ω̃ ¼
ðω − vkzÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − v2

p
is the Doppler-shifted wave frequency.

Taking into account the expressions (11), we can rewrite
the equations of the geodesic deviation for the two
remaining components of ξ1 ¼ ξ and ξ2 ¼ η in the form

d2ξ
dτ2

¼ −γω̃2½ξ cosðω̃τÞ þ η sinðω̃τÞ�; ð12aÞ

d2η
dτ2

¼ −γω̃2½ξ sinðω̃τÞ − η cosðω̃τÞ�; ð12bÞ

where γ ¼ ðω=ω̃Þ2Ar. The explicit dependence on the
proper time in (12) can be eliminated by the following
transformation to the rotating frame,

ξðτÞ ¼ xðτÞ cosðω̃τ=2Þ − yðτÞ sinðω̃τ=2Þ; ð13aÞ

ηðτÞ ¼ xðτÞ sinðω̃τ=2Þ þ yðτÞ cosðω̃τ=2Þ: ð13bÞ

The equations of motion in the rotating frame are

ẍðτÞ ¼ ð1=4 − γÞω̃2xðτÞ þ ω̃ _yðτÞ; ð14aÞ

ÿðτÞ ¼ ð1=4þ γÞω̃2yðτÞ − ω̃ _xðτÞ: ð14bÞ

The solutions of these linear equations with constant
coefficients are obtained by the standard substitution,

xðτÞ ¼ aeiλτ; yðτÞ ¼ beiλτ: ð15Þ

The nonzero solutions exist when the determinant of the set
of two equations,

λ4 − ω̃2λ2=2þ ð1=16 − γ2Þω̃4; ð16Þ
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vanishes. The four characteristic frequencies are λ�� ¼
�ω̃

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1=4� γ

p
. The general solution of (14) is a linear

combination of the solutions containing all four frequencies
with the coefficients depending on the initial data. These
solutions have the same general properties as those found in
Refs. [4–7]. Namely, due to the Coriolis force, the test
particles will be trapped by the gravitational wave, they
oscillate near the wave center.
After the transformation back to the laboratory frame,

with the use of the formulas (13), we obtain the following
final expression for the complex combination ζðτÞ ¼
ξðτÞ þ iηðτÞ:

ζðτÞ ¼ eiσ½cþþeiσ
ffiffiffiffiffiffiffiffi
1þ4γ

p
þ cþ−e−iσ

ffiffiffiffiffiffiffiffi
1þ4γ

p

þ c−þeiσ
ffiffiffiffiffiffiffiffi
1−4γ

p
þ c−−e−iσ

ffiffiffiffiffiffiffiffi
1−4γ

p
�; ð17Þ

where σ ¼ ω̃τ=2 and

cþ� ¼ ð∓q1 þ r1Þ=2; c−� ¼ −ið�q2 − r2Þ=2;
ð18aÞ

q1 ¼
ξ0 þ ið1þ 4γÞξR − ηRffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4γ
p ; r1 ¼ ξ0 þ iξR − ηR;

ð18bÞ

q2 ¼
η0 − ið1 − 4γÞηR − ξRffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 4γ
p ; r2 ¼ η0 − iηR − ξR:

ð18cÞ
The initial positions are ξð0Þ ¼ ξ0, ηð0Þ ¼ η0 and the
initial velocities ξ0ð0Þ and η0ð0Þ appear in these formulas
always in the renormalized form ξR ¼ ξ0ð0Þ=ð2γω̃Þ, ηR ¼
η0ð0Þ=ð2γω̃Þ.
Stable solutions exist only when the gravitational wave is

not too strong: jγj < 1=4. However, such an extreme value
of γ is totally unrealistic. It corresponds to both R and r
equal to the Schwarzschild radius. Of course, in the limit
when the gravitational wave is turned off completely
(γ ¼ 0) the motion is uniform with the initial velocity,
ξðτÞ ¼ ξ0 þ ξ00τ, ηðτÞ ¼ η0 þ η00τ.
A trapping of a body by the gravitational Bessel wave is

shown in Fig. 3. The periodic geodesic winding around the
reference geodesic proves that trapping is permanent. The
stability of the trapping for all values of parameters is best
illustrated by the average distance D from the beam center,

D2 ¼ ð1þ 2γÞðξ0 − ηRÞ2
1þ 4γ

þ ð1 − 2γÞðη0 − ξRÞ2
1 − 4γ

þ ð1þ 2γÞξ2R þ ð1 − 2γÞη2R: ð19Þ
In our analysis we disregarded the gravitational pull exerted
by the rotating binary system because it is predominantly
directed along the z axis. Therefore, it does not affect the
trapping in the xy plane.

To prove that the role of angular momentum is absolutely
essential for trapping, we derived forM ¼ 0 the counterpart
of Eqs. (12):

d2ξ
dτ2

¼ aξ cosðωτÞ þ bη sinðωτÞ; ð20aÞ

d2η
dτ2

¼ −bξ sinðωτÞ þ aη cosðωτÞ; ð20bÞ

where a and b are real coefficients built from the wave
parameters. These equations have only runaway solutions
in the form of Matthieu functions of complex arguments.
We have chosen a simple radiating system: two orbiting

compact objects. In this case it was possible to give in the
paraxial approximation a complete analytic solution of the
trapping phenomenon. The trapping by the gravitational
wave carrying angular momentum, however, is universal. It
can also take place at the galactic scale where it may play a
role in the formation of galactic jets.

Note added in proof.—After the submission of this Letter,
paper [19] has appeared and the manuscript with some
corrections by the same authors was posted [20], where the
connection between the electromagnetic trapping (Paul
trap) and the trapping by gravitational waves has been
discussed from a totally different perspective.
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