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Einstein-Podolsky-Rosen steering is known to be a key resource for one-sided device-independent
quantum information protocols. Here we demonstrate steering using hybrid entanglement between
continuous- and discrete-variable optical qubits. To this end, we report on suitable steering inequalities
and detail the implementation and requirements for this demonstration. Steering is experimentally certified
by observing a violation by more than 5 standard deviations. Our results illustrate the potential of optical
hybrid entanglement for applications in heterogeneous quantum networks that would interconnect
disparate physical platforms and encodings.
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The capacity for one part of a two-party entangled
quantum system to steer the other through measurement
is a fundamental feature of quantum mechanics and has
recently been recognized as a useful resource for quantum
networks [1]. This capacity known as Einstein-Podolsky-
Rosen steering (EPR steering) lies between entanglement
and Bell nonlocality [2,3]. EPR steering has applications in
various protocols when only one party can be trusted, called
one-sided device independent, including quantum key dis-
tribution [4], randomness generation [5,6], entanglement
estimation [7], and entanglement verification for quantum
networks [8,9]. It can also be used to test underlying
properties of systems and measurements in the form of
self-testing and rigidity statements, with broad applications,
for example, in delegated quantum computing [10,11].
Such strong motivations led to a variety of steering

demonstrations. These pioneering works followed the
traditional separation in quantum information science
between discrete- (DV) and continuous-variable (CV)
approaches. They were realized with light either in dis-
crete-variable systems verifying polarization entanglement
[12–15] or path entanglement for single photons [16,17],
or in continuous-variable systems using Gaussian states
[18–22]. However, in recent years, a growing body of
works appeared to bridge the two CV and DV approaches
in single hybrid experiments [23,24]. Experimental real-
izations of hybrid protocols include, for instance, the
teleportation of DV quantum bits using a continuous-
variable teleporter [25] or the development of a CV witness
for single-photon entanglement [26,27]. The recent dem-
onstration of hybrid entanglement of light between

discrete- and continuous-variable qubits [28,29] paved
the way towards the realization of hybrid quantum net-
works allowing for the transfer of information between CV
and DV nodes. Such networks require, however, the
implementation of robust entanglement verification
schemes to perform either fully or one-sided device-
independent protocols.
In this Letter, we report on the first demonstration of

EPR steering using a hybrid CV-DV entangled state.
A steering test free of postselection is implemented using
high-efficiency homodyne detections. Steering is then
conclusively certified through quantum tomography and
using semidefinite programming. We also provide a
detailed characterization of the requirements to achieve
this task. This demonstration realized in a scenario ame-
nable to one-sided device-independent schemes is an
important step towards operational protocols in hetero-
geneous quantum networks.
Principle.—In a steering scenario, Alice and Bob share

an entangled state, and Alice, who cannot be trusted, has to
convince Bob that she can remotely steer his system. To this
end, she performs a measurement θ, which yields a result a.
This information is then sent to Bob. Depending on the
measurement and result, Bob’s system is projected to the
state ρajθ with probability pðajθÞ. Whether steering is
observed or not will be determined by the information
contained in the set fpðajθÞ; ρajθga;θ obtained after
repeated measurements. Equivalently, one could consider
the set of unnormalized states fσajθga;θ called assemblage
defined by σajθ ¼ pðajθÞρajθ.
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In our case, Alice and Bob share the hybrid entangled
optical state jΨiAB initially demonstrated in Ref. [29]

jΨiAB ¼
ffiffiffiffi
R

p
j0iAjCSS−iB −

ffiffiffiffiffiffiffiffiffiffiffi
1 − R

p
j1iAjCSSþiB: ð1Þ

The vacuum and single-photon states j0i and j1i form
the basis of Alice’s DV mode, while Bob’s CV mode is
populated by the coherent-state superpositions jCSS�i ∝
ðjαi � j − αiÞ, which are also known as optical
“Schrödinger’s cat” states.
The steering scenario is detailed in Fig. 1. Both parties use

a homodyne detection setup—in Alice’s case to perform
quadrature measurements at phase θ and in Bob’s case to
perform tomographic reconstruction of the states ρajθ. For
each heralding event announcing the entangled state gen-
eration (labeled by #N), Alice chooses a measurement by
tuning the relative phase of her local oscillator θ among a set
of mA possible choices, then registers the result a obtained
by sign binning, i.e., separates them into two possible
outcomes fþ;−g. A quadrature measurement qA along
the relative phase of the local oscillator θ remotely prepares
Bob’s system into the state [30]

hqAjΨiAB ∝
ffiffiffiffi
R

p
jCSS−iB − qAeiθ

ffiffiffiffiffiffiffiffiffiffiffi
1 − R

p
jCSSþiB: ð2Þ

This results in a set of 2mA conditional states evenly spread
throughout the phase space (see the Supplemental Material
[31]):

σajθ ¼ pðajθÞ½RjCSS−ihCSS−j þ ð1 − RÞjCSSþihCSSþj
þ aeiθ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2Rð1 − RÞ=π

p
jCSS−ihCSSþj þ H:c:�; ð3Þ

where pðajθÞ ¼ 1=2 for all a and θ as positive and negative
quadrature measurements are equally likely.
Bob separately performs tomographic measurements by

recording the relative phase of his local oscillator and the
quadrature value obtained at each event #N. Having no
information from Alice for this particular event, Bob cannot
see the effect of her measurements yet. It is only after
associating Alice’s observations fθ; agN to the correspond-
ing heralding events that he is able to split his data into 2mA
subsets. He can then reconstruct the states fρajθga;θ and
obtain the assemblage fσajθga;θ. EPR steering is demon-
strated if the assemblage is impossible to describe with a
LHS model [2], in which case, Bob will be convinced and
the test successful.
Semidefinite programming and steering inequalities.—

A LHS strategy consists of Bob receiving a local quantum
state ρλ while Alice receives a related piece of clas-
sical information λ that will determine the result a of
her measurement θ according to a probability pðajθ; λÞ.
Denoting by μðλÞ the distribution of all λ, an assemblage
fσajθg following an LHS model satisfies

σajθ ¼
Z

dλμðλÞpðajθ; λÞρλ ∀ a; θ: ð4Þ

Checking an assemblage against any LHS representation is
hard in the general case [1], but it is possible to simplify the
problem when the number of measurements and outputs
made by Alice is finite. In that case, one can indeed
reformulate the task of verifying Eq. (4) as a semidefinite
program (SDP) [34], i.e., a convex optimization problem
that can be solved efficiently.
In the framework of the SDPs we will consider, the

condition for an existing LHS model can be written in the
form of steering inequalities: For any set of suitable [1]
operators fFajθga;θ, if assemblage fσajθg has a LHS model,
then

S¼̂ Tr

�X

a;θ

Fajθσajθ

�

≥ 0: ð5Þ

The SDP aims to minimize S over all valid fFajθga;θ. If the
minimum computed value Smin is negative, the LHS model
is not fit to describe the experiment, thereby demonstrating
EPR steering. In the following, we will use the set of
operators that provides Smin to define the optimal steering
inequality.

(a)

(b)

FIG. 1. Steering scenario with hybrid CV-DV entanglement of
light. (a) The two-mode hybrid entangled state is shared between
Alice, who cannot be trusted, and Bob. On the DV mode, Alice
locally performs quadrature measurements using homodyne
detection at different phases θ of her local oscillator (LO) and
registers the sign-binned measurement result a ¼ �. She then
sends the information to Bob, who uses it to sort his own
quadrature measurements depending on the phase choice and
sign result fθ; ag. (b) Via quantum state tomography, Bob is
able to reconstruct each conditional state ρajθ and the associated
Wigner functions. As detailed in the text, he obtains the
assemblage fσajθga;θ and tests it against any local hidden state
(LHS) model to prove that EPR steering has occurred.
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Experimental implementation.—The hybrid entangled
state is generated following the measurement-induced
method demonstrated in Ref. [29] that enables one to
create it at a distance, even with a very lossy channel
between the two parties. It relies on two optical parametric
oscillators (OPOs), one located with each party, pumped
below threshold by a continuous-wave frequency-doubled
Nd:YAG laser. The first OPO based on a type-II phase-
matched KTP crystal, is used as the DV source and enables
on its own the generation of single photons, with a
heralding efficiency above 90%, using high-efficiency
superconducting nanowire single-photon detectors [35].
The second OPO is based on a PPKTP crystal and
generates a 3-dB-squeezed vacuum state. For jαj2 ∼ 1, this
state presents close-to-unity fidelity with jCSSþi, as does
the photon-subtracted squeezed vacuum state with jCSS−i
in the same conditions. This latter state can be heralded by
tapping off a small amount of power at the output of the
OPO and detecting a single photon. The entangled state
jΨiAB is generated by mixing in an indistinguishable
fashion the two heralding paths. The parameter R can be
varied by adjusting the ratio between the heralding rates of
each separate source.
In order to model the experiment, several imperfections

have to be taken into account. First, one needs to consider
the overall transmission losses on Alice’s and Bob’s modes,
respectively, ηA and ηB. The escape efficiency of both
OPOs is estimated to be 90% [36], which directly translates
to 10% of intrinsic loss on both modes. Additionally,
Alice’s and Bob’s measurements are performed using a
homodyne setup that introduces overall 15% of detection
loss. The asymmetry of the steering scenario implies,
however, that these losses will not have the same impact
for the two parties. Indeed, Bob performs a full tomography
to reconstruct the assemblage using a maximum-likelihood
(MaxLik) algorithm [37,38] and is therefore able to correct
for detection losses. This is acceptable, as it is assumed Bob
has full knowledge of his setup and of the losses introduced
by his apparatus. On the other hand, no assumption can be
made with regard to Alice’s measurements, meaning that a
similar correction process is not acceptable. The last
imperfection relates to Alice’s quadrature measurements,
which are implemented by microcontroller-based locking
[39] of her local oscillator phase. The associated noise
exhibits a standard deviation of 3° over the acquisition.
Expected steering inequality violation.—Given these

experimental imperfections, the possibility of observing
a steering inequality violation was explored using SDP
codes supplied in Ref. [1] to choose the best settings.
Figure 2 provides the evolution of Smin with various
experimental settings.
The first setting choice is the number mA of measure-

ments performed by Alice. The left panel of Fig. 2(a) shows
the largest possible violation as a function of this number.
In our experimental conditions, one can see that at least

three measurements are needed; more measurements trans-
late to a larger theoretical violation. As more measurements
also complicate the experimental analysis, we chose to limit
to six measurements on Alice’s side. The variation of Smin
as a function of R for mA ¼ 6 is then given on the right
panel of Fig. 2(a). Because of the asymmetry in trans-
mission losses for the CV and DV modes, equal balance
between the two heralding rates is not optimal, and the best
violation is found for an unbalanced ratio R ¼ 0.37.
For these parameters, Fig. 2(b) finally presents the best

violation attainable depending on the transmission effi-
ciency on Alice’s side, which is not possible to correct for.
One can see that our demonstration of EPR steering is
challenging since it requires an overall transmission effi-
ciency higher than ηA ¼ 65%. At our experimental value
ηA ≈ 75%, a steering violation can be expected.
Experimental steered states.—We generated the hybrid

entangled state with R ¼ 0.36, in line with our simulation
for optimal violation and within our experimental preci-
sion. The state, which was heralded at a rate of 200 kHz,
was first checked using the homodyne setups available on
both the CV and DV modes, and the two-mode Wigner
function was reconstructed using a MaxLik algorithm. The
single-mode Wigner functions of the four projections on
the DV mode hijρABjji with i; j ∈ f0; 1g are plotted on the

(a)

(b)

FIG. 2. Expected maximum steering inequality violation.
(a) Left: Maximum violation depending on the number of
measurements mA performed by Alice calculated at the optimal
ratio R. Right: Expected violation as a function of R for mA ¼ 6.
In both panels, the overall efficiencies are assumed to be ηB ¼
90% for Bob and ηA ¼ 75% for Alice. (b) Maximum violation as
a function of Alice’s efficiency ηA for mA ¼ 6, ηB ¼ 90%, and
R ¼ 0.37. The red dot indicates the maximal violation possible in
our experimental conditions.
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left of Fig. 1. Higher-photon-number components in the
DV mode are limited to 2%. The entanglement negativity
reaches N ¼ 0.28� 0.01 when corrected for detection
losses [29,40].
After characterizing the hybrid state, we realized the

steering test with mA ¼ 6 measurements performed in
sequence by Alice, corresponding to six values of her
LO’s relative phase θ ¼ n × ðπ=6Þ with n ∈ ½0; 5�.
An accurate reconstruction of the assemblage required
the accumulation of 120 000 quadrature measurements
on Bob’s side for each value θ. Using a MaxLik algorithm,
we were able to reconstruct the complete assemblage
fσajθga;θ.
The experimental Wigner functions of each subset of the

assemblage are presented in Fig. 3. The unconditioned state
is shown at the center, σθ ¼

P
aσajθ. The nonsignaling

condition
P

aσajθ ¼
P

aσajθ0 for all θ, θ0 required for a
valid steering test [1] is verified here, since we measure an
average fidelity between unconditioned states F ðσθ; σθ0 Þ ¼
99.7� 0.1% within the bounds of the typical uncertainties
associated with a MaxLik reconstruction. The Wigner
functions of the 12 conditional states are displayed
along the perimeter of Fig. 3, at the angle and in the half
space respectively corresponding to Alice’s choice θ and
result a ¼ �. As expected, depending on Alice’s measure-
ments, Bob’s conditional state rotates around the phase-
space origin.

Experimental steering inequality violation.—To rule out
any LHS model for the observed assemblage, we tested it
against steering inequalities. The optimal inequality and the
associated set of operators fFopt

ajθga;θ was defined using the

SDP mentioned previously. Figure 4(a) shows the Wigner
functions of some experimental conditional states and the
corresponding optimal operators. Their structure can be
understood to some extent as S is found by integrating over
the phase space the product of both functions and then
summing over all a and θ. To obtain a negative value of S, it
is then apparent that the Wigner functions of the optimal
operators should present high negativity in the area where
the corresponding states exhibit greater Wigner function
values. Applying these operators to our assemblage, we
find a steering inequality violation Sopt ≃ −0.01, in good
agreement with our predicted value given the few percent
uncertainty on the experimental losses.
The steering test can, however, only be successful after

evaluating the associated error bar. As Alice is not trusted,
only Bob’s procedure has to be evaluated. The main source
of error is the maximum-likelihood reconstruction of the
steered states. One currently used technique for quantifying
tomographic uncertainties is bootstrapping [41], which
consists in resampling the data. While this procedure

FIG. 3. Experimental steered states. The Wigner function of
Bob’s unconditioned state is shown at the center of the disk.
When Alice makes measurement θ ∈ fnðπ=6Þg and gets result
a ¼ �, Bob’s state is projected to the corresponding ρajθ. The
associated Wigner function is displayed at the angle θ and in the
half-space corresponding to a. The steering resulting from Alice’s
measurements translates into a rotation of Bob’s state around the
phase-space origin.

(a)

(b)

FIG. 4. Experimental violation. (a) Examples of Wigner func-
tions of Bob’s states ρajθ conditioned here by Alice’s measure-
ments fðπ=6Þ; ð2π=6Þg giving results fþ;−g, and of the
corresponding optimal steering inequality operators Fopt

ajθ
determined by SDP. (b) Histogram of 5 × 107 values of
S ¼ TrðPa;θF

opt
ajθσajθÞ taking into account the errors induced

by the maximum-likelihood reconstruction via a Metropolis-
Hastings algorithm. The dashed lines delimit the area of 1
standard deviation confidence on the distribution. The measured
mean value is equal to −0.01, i.e., 5.5� 0.2 standard deviations
away from the local bound.
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generally provides a good estimate, the results are not always
reliable because the quantum state is inferred using a finite
number of measurements and, moreover, the obtained
bounds have no well-defined operational interpretation
[42–45]. We therefore followed a different method proposed
in Ref. [46] as quantum error bars and based on robust
confidence regions to accurately evaluate the error bound in
the EPR steering observation. While typical bootstrapping
procedures rely only on the state most likely to have been
observed, this method includes a broad exploration of the
state space through a Metropolis-Hastings algorithm (see the
Supplemental Material for details and comparison of the two
methods [31]). It therefore takes into account a wider range
of states that are close to maximal likelihood but that may
lead to a significantly different result in terms of steering
violation. The resulting probability histogram of S is
presented in Fig. 4(b). It shows that the steering inequality
is violated with a separation of 5.5� 0.2 standard deviations
from the LHS bound. This result represents a clear demon-
stration of EPR steering and a robust entanglement certif-
ication with one untrusted party.
Conclusion.—In summary, we have presented a detailed

study of EPR steering using for the first time a hybrid
entangled state shared between two remote parties relying
on different information encodings. Our implementation is
based on two local homodyne setups: one to steer the CV
system via quadrature measurements and sign binning on
the DV side, the other one to perform quantum tomography
of the resulting conditioned states. Because no postselec-
tion is used here, our steering test is free from detection
loophole [3,16,17]. An open question interesting to inves-
tigate will be whether one-way steering [2,18,22,47,48],
i.e., steering that can occur from one party to the other and
not the other way around, can be demonstrated with this
class of hydrid states. In addition to fully optical imple-
mentations of heterogeneous quantum networks, the entan-
glement certification presented here may also find
extensions to a variety of developing hybridized platforms
where CVoscillators are coupled to DV systems [24], such
as microwave fields or mechanical oscillators coupled to
two-level atomlike systems.
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