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The last decade has witnessed remarkable progress in our understanding of thermalization in isolated
quantum systems. Combining the eigenstate thermalization hypothesis with quantum measurement theory,
we extend the framework of quantum thermalization to open many-body systems. A generic many-body
system subject to continuous observation is shown to thermalize at a single trajectory level. We show that
the nonunitary nature of quantum measurement causes several unique thermalization mechanisms that are
unseen in isolated systems. We present numerical evidence for our findings by applying our theory to
specific models that can be experimentally realized in atom-cavity systems and with quantum gas
microscopy. Our theory provides a general method to determine an effective temperature of quantum many-
body systems subject to the Lindblad master equation and thus should be applicable to noisy dynamics or
dissipative systems coupled to nonthermal Markovian environments as well as continuously monitored
systems. Our work provides yet another insight into why thermodynamics emerges so universally.
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Statistical mechanics offers a universal framework to
describe thermodynamic properties of a system involving
many degrees of freedom [1–8]. Systems described by
statistical mechanics can be divided into three distinct
classes: (i) systems in contact with large thermal baths,
(ii) isolated systems, and (iii) systems coupled to non-
thermal environments. Thermalization in the first class can
be described by a phenomenological master equation in
which the detailed balance condition ensures that the
system always relaxes to the Gibbs ensemble with the
temperature of the thermal bath [9–14]. The last decade has
witnessed considerable progress in our understanding of
thermalization in the second class [15–38], as promoted by
quantum gas experiments [39–43]. In particular, the eigen-
state thermalization hypothesis (ETH) [6,7,28–38] has
emerged as a generic mechanism of thermalization under
unitary dynamics of isolated quantum systems. The ETH
has been numerically verified for a number of many-body
Hamiltonians [28–38] with notable exceptions of inte-
grable [44–50] or many-body localized systems [51,52].
In class (iii), coupling to a nonthermal environment

violates the detailed balanced condition, as it permits
arbitrary nonunitary processes such as continuous mea-
surements [53–72] and engineered dissipation [73–89].
There, the bath temperature does not exist in general,
and a number of fundamental questions arise. Does the
system still thermalize and, if yes, in what sense? How are
steady states under such situations related to the thermal
equilibrium of the system Hamiltonian? These questions
are directly relevant to recent experiments realizing various
types of controlled dissipations and measurements [83–89]

and to the foundations of open-system nonequilibrium
statistical mechanics. The related questions were previ-
ously addressed in numerical studies of specific examples
[53,65,90–92]. Yet, model-independent, general under-
standing of thermalization and dynamics in open many-
body systems is still elusive.
The aim of this Letter is to extend the framework of

quantum thermalization to many-body systems coupled to
Markovian environments permitted by quantum measure-
ments and controlled dissipations. We consider open-
system dynamics under a continuous measurement process,
i.e., weak and frequently repeated measurement, which can
be realized by experimental setups of, e.g., atom-cavity
systems [93–95] and quantum gas microscopy [96,97].
Combining the ETH and quantum measurement theory, we
derive a matrix-vector product expression of the time-
averaged density matrix, and show that a generic many-
body system under continuous observation will thermalize
at a single trajectory level. The obtained density matrix can
also be used to determine an effective temperature of open
many-body systems governed by the Lindblad master
equation. Our results can thus be applied to dissipative
many-body dynamics of a system coupled to a (not
necessarily thermal) Markovian environment [74–90] or
under noisy unitary operations [98–107]. We also present
numerical evidence of these findings by applying our
theory to specific models. Our results give yet another
insight into why thermodynamics emerges so universally.
Quantum many-body dynamics under measurement.—

We consider a generic (nonnintegrable) quantum many-
body system subject to continuous observation. We assume
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that the system is initially prepared in a thermal equilibrium
state ρ̂eq, which is characterized by the mean energy E0, or,
equivalently, by the corresponding temperature T0 ¼ 1=β0.
We set ℏ ¼ 1 and kB ¼ 1 throughout this Letter. Following
the standard theory of quantum measurement [108], we
model a measurement process as repeated indirect mea-
surements. We start from a separable state

ρ̂totð0Þ ¼ ρ̂eq ⊗ P̂0; ð1Þ
where P̂0 is a projection operator on the reference state of
the meter. The system interacts with a meter during a time
interval δt via the total Hamiltonian Ĥtot ¼ Ĥ þ V̂, where
Ĥ is the many-body Hamiltonian of the measured system
and V̂ ¼ v

P
M
m¼1 L̂m ⊗ Âm describes the system-meter

interaction, where M is the number of possible interaction
terms. We assume that L̂m is either a single local operator or
the sum of local operators on the system and conserves the
total particle number. We also assume that Âm acts on the
state of the meter such that P̂lÂm ¼ δlmÂm, where P̂l’s are
projection operators satisfying

P
M
l¼0 P̂l ¼ 1. After each

interaction, we perform a projection measurement fP̂lg on
the meter to read out an outcome l ¼ 0; 1;…;M. The meter
is then reset to the reference state P̂0, which ensures that the
dynamics is Markovian (see the Supplemental Material
[109] for discussions on a non-Markovian case). For each
measurement process, the meter exhibits either (i) a change
in the state of the meter corresponding to outcome m ¼
1; 2;…;M or (ii) no change. Case (i) is referred to as a
quantum jump process and accompanied by the following
nonunitary mapping:

Emðρ̂Þ ¼ TrM½P̂mÛðδtÞρ̂totÛ†ðδtÞP̂m� ≃ γδtL̂mρ̂L̂
†
m; ð2Þ

where TrM½·� denotes the trace over the meter, ÛðτÞ ¼
e−iĤtotτ, and γ ¼ v2δtTrA½P̂0Â

†
mÂm� [110]. In deriving the

last expression in Eq. (2), we assume γδt ≪ 1. The case
(ii) is referred to as a no-count process, leading to

E0ðρ̂Þ ≃ ð1 − iĤeffδtÞρ̂ð1þ iĤ†
effδtÞ; ð3Þ

where Ĥeff ¼ Ĥ − iΓ̂=2 is an effective non-Hermitian
Hamiltonian with Γ̂ ¼ γ

P
mL̂

†
mL̂m. Each outcome l is

obtained with probability pl ¼ Tr½Elðρ̂Þ�. Taking the limit
δt → 0 while keeping v2δt finite, the system exhibits a
nonunitary stochastic evolution, which is continuous in time
and known as the quantum trajectory dynamics [108,
111–114]. Each realization of a trajectory is characterized
by a sequence of measurement outcomes and given as

ϱ̂Mðt; T Þ ¼ Π̂M
t;T ρ̂eqΠ̂

†M
t;T ; ð4Þ

where M ¼ ðm1;…; mnÞ and T ¼ ðt1;…; tnÞ denote
the types and occurrence times of quantum jumps, and

Π̂M
t;T ¼ Q

n
i¼1½ÛðΔtiÞ

ffiffiffi
γ

p
L̂mi

�Ûðt1Þ with Δti ¼ tiþ1 − ti,

tnþ1 ¼ t, and ÛðτÞ ¼ e−iĤeffτ.
Statistical ensemble.—We are interested in the

thermalization process caused by the interplay between
many-body dynamics and measurement backaction of
continuous observation. We consider a situation in which
the equilibration time in the measured many-body system
is shorter than a typical waiting time between quantum
jumps. We ensure this by taking the limit γ → 0 while
keeping γt finite. This guarantees that a finite number of
quantum jumps typically occur during a given time interval
½0; t�, but that the system has not yet reached a steady state
(such as an infinite-temperature state) even in the long-
time regime.
For closed many-body systems, it has been argued that

the equilibration time can be estimated as the Boltzmann
time ℏ=kBT with T being the temperature of the system
[115–117]. In the present context, these results imply
the fast equilibration during no-jump process since the
dominant contribution of Ĥeff in the above limit is the
(Hermitian) many-body Hamiltonian Ĥ. Indeed, our
numerical results presented below support this expectation,
though its mathematically rigorous proof remains open.
When the waiting time exceeds the equilibration time,

the exact state and its time-averaged density matrix become
indistinguishable in terms of an expectation value of a
physical observable. The reason is that the time-dependent
elements of the density matrix make negligible contribu-
tions to an expectation value due to their rapid phase
oscillations [19]. This emergent time-independent feature
indicates that the memory of the occurrence times T will be
lost and expectation values of physical observables can be
studied by the time-averaged density matrix

ϱ̂MðtÞ ¼
Z

t

0

dtn � � �
Z

t2

0

dt1ϱ̂Mðt; T Þ: ð5Þ

To proceed with the calculation, we assume that for each
eigenstate jEai of Ĥ the expectation values of arbitrary few-
body observables coincide with those of the corresponding
Gibbs ensemble. This condition is generally believed to
hold when the system satisfies the ETH [36], as numeri-
cally supported for a number of different Hamiltonians
[28–38]. The leading contribution to ϱ̂M can be given upon
the normalization as

ρ̂M ¼ ΛM½ρ̂eq�
ZðMÞ ; ð6Þ

where we define ΛM ¼ Q
n
i¼1 ðΛ∘Lmi

∘ΛÞ with Lm½Ô� ¼
L̂mÔL̂†

m, Λ½Ô�¼P
aP̂aÔP̂a and P̂a ¼ jEaihEaj, and

ZðMÞ is a normalization constant. While the non-
Hermiticity in Ĥeff can slightly modify the energy
distribution, its contribution can be neglected in the
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thermodynamic limit [109]. This follows from strong
suppression of fluctuations in the decay rate Γ̂ among
eigenstates that are close in energy [see, e.g., the top panel
in Fig. 1(c)]. This suppression can be understood from the
ETH [6,36], which predicts the exponential decay of the
fluctuations of the matrix elements in the energy basis in
the thermodynamic limit.
In the matrix representation, the ensemble (6) has a

simple factorized form:

ρ̂M ∝
X

a

½Vmn
� � �Vm1

peq�aP̂a; ð7Þ

where we introduce the vector ðpeqÞa ¼ hEajρ̂eqjEai and
the matrix ðVmÞab ¼ jhEajL̂mjEbij2. It follows from the
cluster decomposition property [47,118,119] of thermal
eigenstates for local operators Ôx;y that

lim
jx−yj→∞

Tr½ÔxÔyP̂a� − Tr½ÔxP̂a�Tr½ÔyP̂a� ¼ 0: ð8Þ

Then we can show [109] that the standard deviation of
energy in the ensemble (7) is subextensive and thus its
energy distribution is strongly peaked around the mean
value ĒM. We introduce an effective temperature βMeff from
the condition ĒM ¼ Tr½Ĥρ̂βMeff � with ρ̂β ¼ e−βĤ=Zβ being

the Gibbs ensemble. The ETH then guarantees that, if we
focus on a few-body observable Ô, ρ̂M is indistinguishable
from the Gibbs ensemble:

Tr½Ôρ̂M� ≃ Tr½Ôρ̂βMeff �: ð9Þ

Here and henceforth we understand ≃ to be the equality in
the thermodynamic limit. Thus, a generic quantum system
under a measurement process thermalizes by itself at a
single-trajectory level.
The derivation of the matrix-vector product ensemble

(MVPE) in Eq. (7) is one of the main results in this Letter.
In open many-body dynamics it is highly nontrivial to
precisely estimate an effective temperature of the system.
One usually has to design ad hoc techniques for each
individual problem. In contrast, the MVPE provides a
general and efficient way to determine an effective temper-
ature under physically plausible assumptions as demon-
strated later. If the ETH holds, any physical quantity can
be calculated from the Gibbs ensemble at an extracted
temperature.
Before examining concrete examples, we discuss some

general properties of thermalization under quantum meas-
urement in comparison with thermalization in isolated
systems. First, since Ĥ has no local conserved quantities,
it satisfies ½Ĥ; L̂m� ≠ 0 and thus the matrix Vm should
change the energy distribution. It is this noncommutativity
between the Hamiltonian and measurement operators that
leads to heating or cooling under measurement. Second, it

is worthwhile to mention similarities and differences
between Eq. (7) and the density matrix of isolated systems
under slow time-dependent operations [36] or a sudden
quench [28,120–122]. Both density matrices are diagonal
in the energy basis and coefficients are represented in the
matrix-vector product form. The unitarity inevitably leads
to the doubly stochastic condition of the transition matrixP

aðVÞab ¼
P

bðVÞab ¼ 1, which causes the energy of the
system to increase or stay constant [26,27,123]. However,
in the nonunitary evolution considered here, V cannot be
interpreted as the transition matrix and the doubly stochas-
tic condition is generally violated. This is why it is possible
to cool down the system if one uses artificial (typically non-
Hermitian) measurement operators L̂m [74,75].
Numerical simulations.—To demonstrate our general

approach, we consider a Hamiltonian Ĥ ¼ K̂ þ Û of
hard-core bosons on an open one-dimensional lattice
with nearest- and next-nearest-neighbor hopping and an
interaction: K̂ ¼ −

P
lðthb̂†l b̂lþ1 þ t0hb̂

†
l b̂lþ2 þ H:c:Þ and

Û ¼ P
lðUn̂ln̂lþ1 þ U0n̂ln̂lþ2Þ, where b̂l (b̂

†
l ) is the anni-

hiliation (creation) operator of a hard-core boson on site l
and n̂l ¼ b̂†l b̂l. This model is, in general, nonintegrable and
has been numerically confirmed to satisfy the ETH
[29,33,36,38]. We set the system size and the total number

(a)

(b)

(c)

FIG. 1. (a) Time evolution of the distribution with the jump
operator L̂ ¼ P

lð−1Þln̂l, which gives the difference N̂e − N̂o of
particle numbers at even and odd sites. Every time a quantum
jump occurs, the distribution peaks at L̂ ¼ �4 after which it
rapidly relaxes toward an equilibrium profile due to the non-
commutativity of L̂ with the system Hamiltonian Ĥ. (b) The
corresponding dynamics of hn̂k¼0i. Superimposed are the pre-
diction from the MVPE conditioned on a sequence of quantum
jumps that have occurred by time t (red dashed lines) and that
from the Gibbs ensemble ρ̂βMeff (green dashed lines). (c) Diagonal

values of the detection rate Γ̂ (top panel) and the energy
distributions after each jump (the other panels). We set γ ¼
0.02 and th ¼ U ¼ t0h ¼ U0 ¼ 1 except for the integrable case in
(c) where we use th ¼ U ¼ 1 and t0h ¼ U0 ¼ 0.
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of particles to be Ls ¼ 18 and N ¼ 6. As a measurement
process, we consider L̂ ¼ P

lð−1Þln̂l, which can be imple-
mented by monitoring photons leaking out of a cavity
coupled to a certain collective mode of atoms [65].
To test the validity of the MVPE (7) for describing open

many-body dynamics, it suffices to use an energy eigen-
state as the initial state. Results for a general initial
distribution peq can be obtained simply as a linear sum
of the results for individual eigenstates. To be specific, we
start from an eigenstate jE0i corresponding to the initial
temperature T0 ¼ 3th. Without loss of generality, we
choose the first detection time of a quantum jump as t ¼ 0.
Figure 1 shows a typical realization of the quantum

dynamics under measurement. Figure 1(a) plots the time
evolution of the distribution of L̂ ¼ P

lð−1Þln̂l, which is
the difference of particle numbers at even and odd sites.
Each detection creates a catlike postmeasurement state
having large weights on L̂ ¼ �4. It then quickly decays
into a thermal state since Ĥ does not commute with L̂. In
Fig. 1(b), the corresponding dynamics of hn̂k¼0i, which is
the average occupation number at zero momentum, is
compared with the predictions from the MVPE ρ̂M and
the Gibbs ensemble ρ̂βMeff . We find an excellent agreement

between the exact values and the MVPE. Note that the
MVPE is time independent by definition; the plotted values
correspond to the MVPE conditioned on a sequence of
quantum jumps that have occurred by time t. Figure 1(c)
shows the diagonal values Γa of the detection rate (top
panel) and energy distributions after each jump (the other
panels). The latter shows a rapid collapse of the energy
distribution into that of the Gibbs ensemble after only a few
jumps. The similar results are also found in numerical
simulations for a local density measurement L̂i ¼ n̂i [109],
which is directly relevant to quantum gas microscopy.
Figure 2 shows relative deviations of the MVPE pre-

dictions from time-averaged values of n̂k¼0 with varying

system-meter coupling γ. Finite-size scaling analyses
indicate that the relative deviations become exponentially
small with increasing the system size for small γ [see, e.g.,
Fig. 2(b)], while they no longer converge for larger values
(typically γ ≳ 0.08th) in which the minimally destructive
limit breaks down. A relatively slow convergence of the
Gibbs ensemble predictions in Fig. 2(b) can be attributed to
broad energy distributions and large fluctuations in diago-
nal elements of n̂k¼0 in finite-size systems (see Ref. [91] for
a similar observation).
Application to many-body Lindblad dynamics.—Having

established the validity of the MVPE, we now discuss its
application to the Lindblad dynamics. The quantum tra-
jectory dynamics offers a numerical method to solve the
Lindblad master equation [14,92]:

dρ̂
dt

¼ L½ρ̂� ¼ −iðĤeff ρ̂ − ρ̂Ĥ†
effÞ þ γ

X

m

L̂mρ̂L̂
†
m; ð10Þ

where ρ̂ðtÞ ¼ P
Mϱ̂MðtÞ is the density matrix averaged

over all trajectories. Equation (10) can describe the tem-
poral evolution of a system weakly coupled to its envi-
ronment [14] or a system under noisy unitary operations
[98–101,107]. Yet, especially for a many-body system, it is
often very demanding to take the ensemble average due to a
vast number of possible trajectories.
For the case of a translationally invariant Hamiltonian Ĥ

and a local operator L̂m, our approach suggests a simple
way to overcome the above difficulty. In this case, the
matrix Vm is independent of a spatial label m and thus the
MVPE in Eq. (7) is characterized by the number n of
quantum jumps alone: ρ̂n ∝

P
a½Vnpeq�aP̂a. As the detec-

tion rate Γ̂ of quantum jumps consists of few-body
observables, the distribution of n is sharply peaked around
the mean value n̄ if the ETH holds. These observations
lead to

Tr½ÔeLtρ̂eq� ≃ Tr½Ôρ̂n̄t � ≃ Tr½Ôρ̂βn̄teff
�; ð11Þ

where n̄t is the mean number of quantum jumps during
½0; t� that can be determined from the implicit relation t ≃Pn̄t

n¼0 1=Γn with Γn ¼ Tr½Γ̂ρ̂n�, and βn̄teff is the correspond-
ing effective temperature. Thus, expectation values of
physical observables in the many-body Lindblad dynamics
agree with those predicted from the typical MVPE or the
Gibbs ensemble at an appropriate effective temperature.
Since solving Eq. (10) requires the diagonalization of a
D2 ×D2 Liouvillean with D being the dimension of the
Hilbert space, our approach (11) allows a significant
simplification of the problem. We have applied our
approach to the Lindblad dynamics of the above lattice
model and demonstrated the relation (11) aside from
stepwise finite-size corrections (Fig. 2c).
Summary and discussions.—Combining the ideas of the

ETH and quantum measurement theory, we find that a
generic quantum many-body system under continuous

(a) (b)

(c)

FIG. 2. (a) Relative deviations of MVPE predictions from time-
averaged values of n̂k¼0 plotted against measurement strength γ
for different system sizes Ls. (b) Finite-size scaling analyses of
the relative deviations of MVPE (solid circles) and the corre-
sponding Gibbs ensemble (open circles) from time-averaged
values of hn̂k¼0i. (c) Comparison between the MVPE predictions
(red solid lines) and the Lindblad dynamics (black dashed curve)
for n̂k¼0 with Ls ¼ 18. We use th ¼ U ¼ t0h ¼ U0 ¼ 1 and set
γ ¼ 0.02 in (b) and (c).
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observation thermalizes at a single trajectory level. We have
presented thematrix-vector product ensemble (7), which can
quantitatively describe the dynamics and give an effective
temperature of an open quantum many-body system. This
can also be used to analyze a many-body Lindblad master
equation and thus should have broad applicability to dis-
sipative [74–89] or noisyMarkovian systems [98–101,107],
in addition to continuously monitored ones. These findings
are supported by numerical simulations of nonintegrable
systems under continuous measurement, which can be
experimentally realized in atom-cavity systems or by quan-
tum gas microscopy.
The present study opens several research directions.

First, it is intriguing to elucidate thermalization at the
trajectory level when the system Hamiltonian is integrable
[44–50]. Under measurements, quantum jumps act as
weak integrability-breaking perturbations and, if their
effects are insignificant, we expect prethermalization
[25,44], i.e., a phenomenon in which observables
approach quasistationary values consistent with the gen-
eralized Gibbs ensemble [44]. Ultimate thermalization
will happen when quantum jumps sufficiently mix the
distribution, leading to the unbiased probability weights
on nonthermal rare states admitted in the weak variant of
the ETH [25,30,124,125]. We present our first attempt to
outline this scenario in the Supplemental Material [109]
and leave a detailed analysis as an interesting future
problem. Another important system is a many-body
localized system [51,52] where even the weak ETH
can be violated [126]. Second, it remains an important
problem to extend our analysis to non-Markovian open
dynamics [127]. While an application of a non-Markovian
trajectory approach [128] to a many-body system is
challenging in general, our MVPE approach may still
be useful if the support of a jump operator is restricted
[109]. Third, it is interesting to explore possible con-
nections between the predictions made in the random
unitary circuit dynamics [101–106] and the nonintegrable
open trajectory dynamics studied here. They share several
intriguing similarities; they satisfy the locality, have no
energy conservation, thus relaxing to the infinite-temper-
ature state, and obey the Lindblad master equation upon
the ensemble average (at least) in a certain case [101]. It is
particularly interesting to test the predicted scrambling
dynamics [104,105] or the Kardar-Parisi-Zhang universal
behavior [103] in the present setup.
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