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Monopoles are intriguing topological objects, which play a central role in gauge theories and topological
states of matter. While conventional monopoles are found in odd-dimensional flat spaces, such as the Dirac
monopole in three dimensions and the non-Abelian Yang monopole in five dimensions, more exotic objects
were predicted to exist in even dimensions. This is the case of “tensor monopoles,” which are associated
with tensor (Kalb-Ramond) gauge fields, and which can be defined in four-dimensional flat spaces. In this
work, we investigate the possibility of creating and measuring such a tensor monopole in condensed-matter
physics by introducing a realistic three-band model defined over a four-dimensional parameter space. Our
probing method is based on the observation that the topological charge of this tensor monopole, which we
relate to a generalized Berry curvature, can be directly extracted from the quantum metric. We propose a
realistic three-level atomic system, where tensor monopoles could be generated and revealed through
quantum-metric measurements.

DOI: 10.1103/PhysRevLett.121.170401

Introduction.—Magnetic monopoles were originally
introduced by Dirac in 1931 [1], in view of proving the
quantization of the electric charge in quantum electrody-
namics. While the Dirac monopole has played an important
role in high-energy physics, in particular due to its topo-
logical nature [2,3], an experimental confirmation of its
existence is still lacking. Since Dirac’s original work, a zoo
of monopoles have been identified in the context of gauge
theory. Prominent examples are the ’t Hooft–Polyakov
monopole [4,5] found in Yang-Mills theory coupled to a
Higgs field, and the non-Abelian monopole introduced by
Yang [6], which can exist in five dimensions (5D).
Importantly, all these monopoles carry a quantized “mag-
netic” charge, which has a topological origin. Specifically,
the monopole charge can be related to a topological
invariant [2], which is given by the real-space integral of
the curvature (or field strength tensor) associated with the
monopole’s gauge field [7]. This topological invariant
corresponds to the “first Chern number” in the case of
three-dimensional (3D) monopoles [2], while the “second
Chern number” appears as the relevant invariant in 5D [6].
The monopoles mentioned above are all associated with

vector gauge fields, an example of which is the well-known
electromagnetic gauge potential [2]. However, it was
suggested that tensor gauge fields could also be defined
and that these more exotic gauge structures could also give
rise to monopoles [8–10]. In this distinct class of monop-
oles, the simplest representative is the so-called “tensor
monopole”: an Abelian monopole defined in a four-
dimensional (4D) space and whose magnetic charge is
given by the integral of the curvature associated with a
tensor (Kalb-Ramond) gauge field [11], which represents a

direct generalization of the electromagnetic potential [12].
It also plays an important role in string theory, where
currents naturally couple to a tensor gauge field [13–15].
The search for monopoles is of fundamental relevance in

high-energy physics, and their detection still constitutes a
severe challenge. So far, none of these topological objects
has been identified, and there is no concrete evidence that
these could be accessed in current experiments. However,
monopoles also naturally appear in condensed-matter
physics, where various forms of effective gauge potentials
can emerge. A prominent example is the so-called Berry
connection, which plays the role of a gauge potential in the
parameter space of a quantum system, and which is
responsible for the geometric (Berry) phase [7,16].
Importantly, the monopoles associated with the Berry
connection were shown to be deeply connected to the
existence of topological states of matter [17,18]; see also
Ref. [19] on monopoles in spin ice. For instance, the
topological invariant associated with the quantum Hall
effects [16,18] and the recently discovered Weyl semimet-
als [20,21], the so-called Chern number, can be simply
attributed to fictitious Dirac monopoles defined in momen-
tum space. Moreover, artificial Dirac and Yang monopoles
have been implemented in ultracold atoms [22,23], where
the high control over the physical parameters allows for
tunable synthetic gauge potentials [24,25].
The goal of this work is twofold. First, we demonstrate

how monopoles associated with the Berry connection of a
quantum system can be directly extracted from the quan-
tum-metric tensor (or Fubini-Study or Bures metric) [26],
following an approach initially developed in high-energy
physics for treating real-space monopoles [8,27]. This
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result is particularly useful for systems where the Berry
curvature cannot be measured or calculated explicitly, as
we further discuss below. We remind the reader that the
quantum metric is related to several physical observables
[28–32] and that it could be directly measured in cold
atoms [33].
Second, we introduce a minimal three-level model

realizing a tensor monopole in a 4D parameter space.
This model, which is inspired by the recent proposal [34]
for realizing spin-1 monopoles, could be realized in ultra-
cold gases by coupling three internal states of an atom. In
particular, it generalizes in a nontrivial way the recent
experimental setting that realized non-Abelian Yang
monopoles in cold atoms [23]: As stated above, the tensor
monopole resulting from our model is defined in a 4D
parameter space, and its topological charge is related to the
existence of a generalized Berry curvature associated with a
tensor gauge field. In this Letter, we discuss how this exotic
topological object could be extracted from quantum-metric
measurements [33]. Moreover, our model exhibits an
intriguing topological state that gives rise to a nontrivial
generalization of Weyl semimetals in 4D, similar to that
recently proposed in Ref. [35]. This work represents a first
step towards the analysis and implementation of novel
classes of monopoles and higher-dimensional topological
states of matter in quantum engineered systems [36].
Monopoles and the quantum metric.—We start by recall-

ing notions related to the Dirac monopole in the context of
electromagnetism. Defining the electromagnetic potential
Aμ, the charge of a monopole located in R3 is obtained by
integrating the Faraday tensor F μν ¼ ∂μAν − ∂νAμ over a
sphere S2 that surrounds it; see Fig. 1(a). This nonvanishing

flux identifies the charge ð1=2πÞRS2F¼ν1, which is quanti-
zed in terms of the topological Chern number ν1; here we
introduced the 2-form F ¼ dA ¼ ð1=2ÞF μνdxμ ∧ dxν, the
wedge (∧) product, and the exterior (d) derivative [7]. Since
the magnetic field emanating from a monopole is purely
radial, the calculation of the total flux through S2 essentially
reduces to calculating the sphere’s surface. This suggests an
interesting relation between the Faraday tensor associated
with amonopole and the determinant of themetric tensor gμν,
which is defined on a sphere surrounding it [8,27]:

F μν ¼ ϵμνk
ffiffiffiffiffiffiffiffiffiffiffiffiffi
det gμν

q
; ð1Þ

where k is a suitable normalization constant, and ϵμν is the
Levi-Cività symbol. Note that the expression (1) for the
Faraday tensor is still gauge invariant and antisymmetric.
Remarkably, it was demonstrated that such a relation
between the Faraday tensor and a sphere’s metric is not
specific to the Dirac monopole: It can be systematically
generalized to any pointlike or extended monopole in any
spatial dimension [8,27]. In particular, this approach is
particularly useful to identify tensor monopoles [8], as will
be illustrated below.
We first describe how this approach applies to fictitious

Dirac monopoles, as defined in the parameter space of a
quantum system. Consider an eigenstate juðqÞi of a
quantum system defined over some 3D parameter space
spanned by q (e.g., a state in a given Bloch band with
quasimomentum q). The geometric properties of this state
are captured by the quantum geometric tensor, which can
be split into real and imaginary parts [26,29,30]:
χμν ¼ gμν þ ði=2ÞF μν, where F μν ¼ ∂μAν − ∂νAμ is the
Berry curvature, Aμ ¼ ihuj∂μui is the (Abelian) Berry
connection, and where

gμν ¼
1

2
ðh∂μuj∂νui þ h∂νuj∂μui

− h∂μujuihuj∂νui − h∂νujuihuj∂μuiÞ; ð2Þ

is the quantum-metric tensor [26,29,30]. Here, all deriva-
tives are taken with respect to the parameters, i.e.,
∂μ ¼ ∂qμ . While the Berry curvature F is associated with
the geometric (Berry) phase [16] and can be viewed as a
Faraday tensor in q space [16,36], the quantum metric g
measures the (infinitesimal) distance between two nearby
quantum states in q space; see Refs. [28–33,37–39] for
physical manifestations of the quantum metric.
In analogy with electromagnetism, a finite Chern number

ν1 ¼ ð1=2πÞ RS2 F signals the presence of a fictitious
monopole in q space [21] located inside some sphere S2.
Such objects appear in the context of Weyl semimetals,
where the vector q represents the quasimomentum of a
lattice system [21]. Inspired by Eq. (1), we now propose
that such monopoles can also be detected through the

FIG. 1. (a) Pictorial representations of a Dirac monopole in 3D
(left) and of a Yang monopole in 5D (right). Both are defined as
pointlike objects, which are sources of a vector gauge field Aμ.
The total flux associated with Aμ through the surrounding spheres
(S2 and S4, respectively) is quantized in terms of the first (resp.,
second) topological Chern number. (b) A tensor monopole is a
pointlike source of a tensor (Kalb-Ramond) gauge field Bμν,
which can exist in a 4D space. The corresponding flux that comes
out of the surrounding sphere S3 is also quantized [Eq. (10)].
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determinant of a metric: the quantum-metric tensor in
Eq. (2). To illustrate this approach, we consider a minimal
model realizing a monopole in parameter space: the Weyl
Hamiltonian [21]

Ĥ3D ¼ qxσx þ qyσy þ qzσz; ð3Þ

where q ¼ ðqx; qy; qzÞ denotes the momentum and where
σx;y;z are the Pauli matrices. The corresponding energy

spectrum supports a Weyl cone E ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2x þ q2y þ q2z

q
, and

the Berry curvature associated with the low-energy eigen-
vector ju−ðqÞi reads

F ¼ F μνdqμ ∧ dqν; F μν ¼ ϵμνλ
qλ

2ðq2x þ q2y þ q2zÞ3=2
:

ð4Þ

This corresponds to the Faraday tensor associated with a
fictitious Dirac monopole at q ¼ 0, as can be verified by
calculating the corresponding charge; see Eq. (6) below.
Inspired by Eq. (1) and the approach of Refs. [8,27], we
now show that this topological charge can be obtained
from the determinant of the quantum-metric tensor.
Introducing the spherical coordinates qx ¼ r sin θ cosϕ,
qy ¼ r sin θ sinϕ, qz ¼ r cos θ, the components of the
quantum-metric tensor (2) associated with the eigenvector
ju−ðqÞi read [33]

gθθ ¼ 1=4; gϕϕ ¼ sin2θ=4; gθϕ ¼ 0: ð5Þ

This corresponds to the metric of a sphere S2 of fixed radius
r ¼ 1=2, which surrounds the Weyl node (i.e., the monop-
ole) in q space. Hence, the topological charge Q of the
Dirac monopole is encoded in the quantum metric through
the relation

Q ¼ 1

2π

Z
S2
F ¼ 1

2π

ZZ
ð2 ffiffiffi

g
p Þdθdϕ ¼ 1; ð6Þ

where g ¼ det gab is the determinant of the 2 × 2 metric
tensor in Eq. (5), with a, b ¼ fθ;ϕg. Going back to
Cartesian coordinates, we find a direct relation between
the components of the Berry curvature in Eq. (4) and the
quantum metric [Eq. (2)] associated with ju−ðqÞi,

F μν ¼ ϵμνð2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
det gμ̄ ν̄

q
Þ; ð7Þ

where gμ̄ ν̄ is the 2 × 2 quantum-metric tensor defined in the
proper 2D subspace (e.g., qμ̄; qν̄ ¼ fqx; qyg for the calcu-
lation of F xy). Equation (7) is the direct analogue of Eq. (1)
when applied to the Berry curvature, and it indicates how
quantum-metric measurements [30,33] could directly
reveal Dirac monopoles in q space. It is the scope of the

next paragraph to apply such an approach to a 4DWeyl-like
Hamiltonian supporting a tensor monopole [8].
Tensor monopoles in 4D parameter space.—As recalled

in the previous paragraph, Weyl nodes are sources of Dirac
monopoles in 3D parameter space [21]. This phenomenon
can be generalized to Dirac-like nodes exhibiting a triple-
point crossing, which lead to so-called spin-1 monopoles
[34,41]. Regarding higher dimensions, Dirac nodes appear-
ing in 5D parameter space were shown to be associated
with non-Abelian Yang monopoles [23,42,43]; see also
Ref. [44] on extended monopoles in 5D. Importantly, all
these monopoles defined in 3D and 5D spaces are described
by conventional (vector) Berry connections [16], i.e.,
vector gauge fields. In this paragraph, we explore monop-
oles defined in 4D spaces, which are captured by tensor
Berry connections [45,46,51], i.e., tensor gauge fields [8].
Tensor gauge fields have been mainly analyzed in the

context of high-energy physics [8,9,11–15], with some
applications in topological states of matter [52–61]. The
idea consists of introducing an Abelian antisymmetric
tensor field Bμν called the Kalb-Ramond field, which
naturally generalizes the usual electromagnetic potential
Aμ [11,12]. It transforms under a Uð1Þ gauge transforma-
tion as follows:

Bμν → Bμν þ ∂μξν − ∂νξμ; ð8Þ

where ξμ is a vector that contains the redundant gauge
degree of freedom of the field Bμν. The corresponding
(3-form) curvature tensor H ¼ dB has components

Hμνλ ¼ ∂μBνλ þ ∂νBλμ þ ∂λBμν: ð9Þ

FIG. 2. Energy dispersion of the three-level Hamiltonian H4D
in Eq. (11), at qz ¼ qw ¼ 0. One eigenvalue of the Hamiltonian is
always zero, and there appears a degenerate triple point at
qD ¼ ð0; 0; 0; 0Þ, where the tensor monopole lies. This three-
band configuration, with a single degenerate triple point, offers a
minimal setting realizing an Abelian tensor monopole [40]. This
spectrum is also reminiscent of that found in 3D spin-1 Weyl
semimetals [41] and spin-1 monopoles [34].
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It is gauge invariant and antisymmetric, in analogy with the
Faraday tensor. As shown in Refs. [8,9], Bμν gives rise to a
novel type of monopole in 4D space, which is Abelian and
pointlike: This tensor monopole generalizes the 3D Dirac
monopole to 4D. Specifically, if one surrounds the
tensor monopole with a three-dimensional sphere S3 [see
Fig. 1(b)], one can derive a topological charge associated
with the (3-form) curvature Hμνλ,

QT ¼ 1

2π2

Z
S3
dxμ ∧ dxν ∧ dxλHμνλ: ð10Þ

This is a topological invariant known as the Dixmier-
Douady invariant [35,62,63], a generalization of the better-
known Chern number [7]; this invariant is associated with
the third homotopy group π3ðS3Þ ¼ Z and characterizes a
Uð1Þ “bundle gerbe” [64,65]. Importantly, the result in
Eq. (1) can be directly generalized to tensor monopoles [8],
which indicates that the topological charge in Eq. (10) can
be calculated through the determinant of the metric tensor
defined on S3.
The goal of this paragraph is to show how the parameter-

space (Berry-type) analogue of the curvatureHμνλ [Eq. (9)]
as well as its topological charge [Eq. (10)] can be
determined through the quantum-metric tensor of a quan-
tum system. To do so, we consider a minimal Weyl-type
Hamiltonian defined in a 4D parameter space [40] spanned
by q ¼ ðqx; qy; qz; qwÞ,

Ĥ4D ¼ qxλ1 þ qyλ2 þ qzλ6 þ qwλ�7;

¼

0
B@

0 qx − iqy 0

qx þ iqy 0 qz þ iqw
0 qz − iqw 0

1
CA; ð11Þ

where the λ matrices are 3 × 3 Gell-Mann matrices [66].
The corresponding spectrum is given by

E0 ¼ 0; E� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q2x þ q2y þ q2z þ q2w

q
; ð12Þ

where we recognize the presence of a triple-degenerate
Dirac-like point at qD ¼ ð0; 0; 0; 0Þ; see Fig. 2. We now
demonstrate that this 4D Dirac-like node is a source of a
tensor monopole based on the approach developed in the
previous paragraph: Inspired by Ref. [8] and Eqs. (7) and
(9), we write the generalized Berry curvature tensor as

Hμνλ ¼ ϵμνλ
�
4

ffiffiffiffiffiffiffiffiffiffiffiffiffi
det gμ̄ ν̄

q �
; ð13Þ

where gμ̄ ν̄ is the 3 × 3 quantum-metric tensor defined in the
proper 3D subspace (e.g., qμ̄, qν̄ ¼ fqx; qy; qzg for the
calculation of Hxyz). This quantum metric can be
directly evaluated using Eq. (2), and the expression
for the low-energy eigenstate of Ĥ4D in Eq. (11):
ju−i ¼ ð1= ffiffiffi

2
p Þðv1;−1; v2Þ⊤,

v1 ¼
qx − iqy

jEj ; v2 ¼
qz − iqw

jEj : ð14Þ

Similar to the case of the 3D Weyl Hamiltonian [Eq. (5)],
we find that the corresponding quantum metric identifies a
three-sphere S3 with fixed radius surrounding the Dirac-like
node. Furthermore, when combined with the ansatz in
Eq. (13), we obtain

Hμνλ ¼ ϵμνλγ
qγ

ðq2x þ q2y þ q2z þ q2wÞ2
; ð15Þ

which indeed coincides with the curvature of a tensor
monopole in 4D [8]. Introducing the hyperspherical coor-
dinates ðr; θ1; θ2;φÞ (see Ref. [67]), we explicitly calculate
the topological charge QT associated with Hμνλ,

QT ¼ 1

2π2

Z
S3
dqμ ∧ dqν ∧ dqλHμνλ

¼ 1

2π2

Z
π

0

dθ1

Z
π

0

dθ2

Z
2π

0

dφsin2θ1 sin θ2 ¼ 1: ð16Þ

One verifies that the charge QT is immune to smooth
deformations of the Hamiltonian that preserve the Dirac-
like node, in agreement with its topological nature.
We point out that the topological charge in Eq. (16) was

identified through the quantum metric only, using the
relation in Eq. (13). An alternative approach consists of
determining the 2-form Berry connection Bμν, which is
related to the curvature through H ¼ dB. As shown in
Refs. [46,51], a proper 2-form Berry connection associated
with the state in Eq. (14) can be expressed as

Bμν ¼
i
3

X3
j;k;l¼1

ϵjklϕj∂μϕk∂νϕl; ð17Þ

where ϕ1 ¼ −i log v2 and ϕ2 ¼ ϕ�
3 ¼ v�1. One verifies that

the corresponding curvature Hμνλ ¼ ∂μBνλ þ ∂νBλμ þ
∂λBμν indeed reproduces the result in Eq. (15).
If we identify the parameters qwith the quasimomenta of

a suitable 4D lattice model, Eq. (11) can be seen as the
linearized Hamiltonian of a generalized Weyl semimetal
defined in 4D, similar to that proposed in Ref. [35].
Moreover, by taking a slice of our 4D model, at some
fixed qw ¼ const, we obtain a three-dimensional gapped
phase, which describes a topological insulator in the chiral
class AIII; indeed, the Hamiltonian Ĥ4D preserves chiral
symmetry according to

UĤ4DðqÞU−1 ¼ −Ĥ4DðqÞ; U ¼

0
B@

1 0 0

0 −1 0

0 0 1

1
CA:

ð18Þ
Such AIII topological phases were recently explored in a
3D model [68]. In principle, 4D lattice models leading to
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the Hamiltonian in Eq. (11) could be realized in optical
lattices, e.g., using synthetic dimensions [69,70].
Ultracold-atoms implementation.—In this paragraph, we

present a possible physical realization of a tensor monopole
through the manipulation of three atomic levels. A natural
choice would be three sublevels within the hyperfine
ground states of 87Rb atoms coupled by two (rf or micro-
wave) driving fields [23,34]. The corresponding three-level
Hamiltonian can be written in the general form

Ĥexp ¼

0
B@

−δ12 ω12e−iϕ12 0

ω12eiϕ12 0 ω23eiϕ23

0 ω23e−iϕ23 δ23

1
CA; ð19Þ

where ωij and ϕij are the Rabi amplitudes and phases of the
coupling fields [24,25], respectively, and where δij capture
the detuning from resonances. In contrast with previous
proposals [34], we now neglect these detuning effects
(δij ¼ 0), which we assume to be small compared to the
Rabi amplitudes. In this regime, the Hamiltonian Ĥexp

depends on four independent parameters only, and it can
therefore be mapped onto the Hamiltonian in Eq. (11)
through the following identifications:

ω12eiϕ12 ¼ qx þ iqy; ω23eiϕ23 ¼ qz þ iqw: ð20Þ
Hence, this minimal platform supports a (fictitious) tensor
monopole in the parameter space spanned by
fω12;ϕ12;ω23;ϕ23g, and it is characterized by a nonzero
topological charge QT ; see Eq. (16). As shown in the
previous paragraph, this topological invariant can be
directly obtained from the quantum metric associated with
the Hamiltonian’s eigenstates. Following the protocol of
Ref. [33], the components of the quantum metric could be
individually obtained by initially preparing the system in
the low-energy eigenstate of the Hamiltonian (19) and then
monitoring the excitation rate upon modulating the system
parameters in time [46]; see Ref. [71] for a recent
measurement and Ref. [30] for other possible probes of
the metric. This would represent a direct method to reveal,
for the first time, the existence of tensor monopoles through
the identification of their monopole charge via quantum-
metric measurements.
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