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We use computer simulations to study the relaxation of strongly deformed highly entangled polymer
melts in the nonlinear viscoelastic regime, focusing on anisotropic chain conformations after isochoric
elongation. The Doi-Edwards tube model and its Graham-Likhtman-McLeish-Milner (GLaMM) exten-
sion, incorporating contour length fluctuation and convective constraint release, predict a retraction of the
polymer chain extension in all directions, setting in immediately after deformation. This prediction has
been challenged by experiment, simulation, and other theoretical studies, questioning the general validity
of the tube concept. For very long chains we observe the initial contraction of the chain extension parallel
and perpendicular to the stretching direction. However, the effect is significantly weaker than predicted
by the GLaMM model. We also show that the first anisotropic term of an expansion of the 2D scattering
function qualitatively agrees to predictions of the GLaMM model, providing an option for direct
experimental tests.
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The reptation model and its extensions, based on con-
formational properties and entanglement effects in dense
polymer systems, represent the basis of our current under-
standing of viscoelastic properties of modern polymer
materials, which are omnipresent in our daily life products
and in technology. In the linear viscoelastic regime, the
theory originally developed by Doi, Edwards, and de
Gennes [1–6] based on the original tube concept of
Edwards [7] successfully describes dynamics and viscoe-
lasticity, e.g., stress relaxation, of highly entangled polymer
melts. It is strongly supported in detail by simulation
[8–18] and experiment [19–22]. To account for finite chain
length corrections, refinements of the original concept have
been developed, namely the effect of contour length
fluctuation (CLF) [4,23–27], and constraint release (CR)
[24,28–33]. These modify pure reptation and correctly
reproduce the disentanglement time of τd;N ∝ N3.4,N being
the degree of polymerization of the chains. In the nonlinear
viscoelastic regime, Doi and Edwards [5] assume that
polymer chains in a melt deform affinely along the chain
contour, following the sample deformation. On scales
above the tube diameter this has recently been confirmed
by us [34]. The chain radius of gyration along the stretching
direction increases and simultaneously decreases in the
perpendicular direction. Immediately after deformation—
still within the affinely deformed tube—the stress along the
contour of the chain causes an initial retraction along the
tube. All linear dimensions of deformed chains are expected
to first decrease, while the chains try to retract back into the
tube. Following the refined Graham-Likhtman-McLeish-
Milner (GLaMM) tube model [35] [includes CLF, CR,
and convective constraint release] this initial retraction is
expected to last for up to the Rouse time of the chains.

However, it is not clear in which way these concepts apply
to local conformational properties and the nonlinear vis-
coelasticity of polymer melts.
Based on neutron scattering experiments of highly

stretched polystyrene melts Wang et al. [36] question the
validity of the whole tube concept. By careful analysis of
two-dimensional anisotropic small-angle neutron scattering
(SANS) spectra of polymer melts having Z ¼ N=Ne ¼ 34
entanglements per chain (Ne being the entanglement
length), they could not observe the predicted initial chain
retraction. Their subsequent molecular dynamics simula-
tion [37] of a standard, fully flexible bead spring model of
polymer melts [9,12] of Z ¼ 33 supports their experimental
findings (taking Ne ≈ 85, as estimated through a primitive
path analysis [38,39], Z ≈ 24). In contrast, earlier work
on nonlinear rheology of highly entangled polymer melts
[40–42] supports the theoretical prediction of chain retrac-
tion by SANS. In Refs. [40,42–44] the authors observe
clear signatures of anisotropically deformed conformations
of monodisperse entangled polystyrene melts in nonlinear
flow, and even for unentangled chains subject to extremely
fast flow [45]. In Refs. [40,42] the authors also show the
subsequent relaxation in agreement with the GLaMM tube
model. In Ref. [41], Blanchard et al. observe a minimum
in the deformed radius of gyration perpendicular to the
stretching direction after cessation of flow for long, well-
entangled polyisoprene chains of Z ¼ 58. In view of these
contradictory results we present a study of the conforma-
tional relaxation behavior of polymer melts right after a
large step elongation for different numbers of entangle-
ments per chain ranging from about Z ¼ 18 to Z ¼ 72. By
comparing chain conformations and an expansion of small
angle scattering patterns [36,37] in spherical harmonics
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[46] we demonstrate how the overall scattering patterns
infer the internal structure of the chain conformations.
We have performed extensive molecular dynamics (MD)

simulations of strongly deformed polymer melts [34]
using the ESPResSo++ package [47]. Starting from fully
equilibrated melts of highly entangled bead-spring chains
with a weak bond bending constant of kθ ¼ 1.5ϵ
[9,17,18,39,48] chains behave as ideal chains above the
Kuhn length corresponding to 2.8ð1Þlb, lb ≈ 0.964σ being
the bond length. Isothermal MD simulations at temperature
T ¼ 1ϵ=kB have been performed (for details see the
Supplemental Material in Ref. [34]). Lennard-Jones energy,
time, and length units denoted by ϵ, τ, and σ, respectively,
are used throughout this work. For these parameters the
entanglement length corresponds to Ne ¼ 28 monomers
[17,39]. We apply an isochoric and uniaxial elongation
along the x direction with a deformation rate _ε ¼
77τ−1R;N ¼ ð77=Z2Þτ−1e , i.e., τ−1R;N < _ε < τ−1e , up to a total
strain of λ ¼ Lx=L0 ¼ 5. Here, τR;N ¼ τ0N2 with τ0 ¼
2.89τ and τe ¼ τ0N2

e are Rouse times of a chain of lengthN
and of an entanglement length Ne, respectively. This is the
relevant nonlinear viscoelastic regime, where a delicate
interplay between deformation rate and internal conforma-
tional relaxation plays a crucial role [24,32,33,35]. For
times up to about the Rouse time of the chains we have seen
that the relaxation along the tube is by no means homo-
geneous; i.e., the primitive paths [49–51] exhibit long-lived
clustering of topological constraints in the deformed state,
leading to significantly delayed relaxation [34]. This is not
accounted for by any of the current theoretical concepts.
Here, however, we focus on the initial relaxation of
experimentally more directly accessible global conforma-
tional properties of deformed polymer melts, where
observed deviations from the GLaMM model [35] have

been taken to question the validity of the tube concept as a
whole [36,37,41].
Subject to uniaxial elongation the average conformation

of single chains in a melt exhibits axial symmetry along
the stretching direction (x axis). Therefore, the mean
square radius of gyration which describes the chain con-
formations should be decomposed into two components
parallel and perpendicular to the stretching direction,
i.e., hR2

gi ¼ hR2
g;ki þ hR2

g;⊥i, and hR2
g;ki ¼ hR2

g;⊥i=2 in

equilibrium.
Based on the tube model one would expect an over-

damped initial retraction process in both directions parallel
and perpendicular to the x axis [5,35]. While this is obvious
for the extension parallel to the stretching direction, this
effect is expected to be much weaker for the perpendicular
one, as it eventually has to turn and increase towards the
equilibrium value. Time evolution of the rescaled two
components of radius of gyration, ðhR2

g;⊥i=hR2
g;⊥i0Þ1=2

and ðhR2
g;ki=hR2

g;ki0Þ1=2, for single chains of sizes N ¼
500, 1000, and 2000 (Z ≈ 18, 36, and 72) in melts during
relaxation are shown in Fig. 1 and compared to the
GLaMM model [35,52] (see Supplemental Material
[53]). The symbols h� � �i and h� � �i0 stand for the average
over nc ¼ 1000 chains in deformed and unperturbed (i.e.,
fully equilibrated) polymer melts, respectively. The param-
eters cν ¼ 0.1 and Rs ¼ 2.0 are set to the same values as
they were tested in the GLaMM model [35]. Except for
ðhR2

g;⊥i=hR2
g;⊥i0Þ1=2 of the shortest chains of N ¼ 500 (i.e.,

Z ≈ 18), we see that both components of Rg for deformed
polymer melts initially decrease with increasing relaxation
time. Evidently, our results qualitatively capture the sig-
nature of the initial chain retraction mechanism [5,35] right
after a large step elongation.
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FIG. 1. Log-log plot of the rescaled root mean square radius of gyration in the direction perpendicular and parallel to the stretching
direction, ðhR2

g;⊥ðtÞi=hR2
g;⊥i0Þ1=2 (a) and ðhR2

g;kðtÞi=hR2
g;ki0Þ1=2 (b), respectively, plotted versus inverse rescaled time, ðt=τR;NÞ−1, for

N ¼ 500, 1000, and 2000, as indicated. The corresponding disentanglement times t ¼ τd;N are pointed by solid arrows near one on the y
axis. Theoretical predictions from the GLaMM model [35] versus ðt=τR;ZÞ−1 are shown for comparison. Minimum values of
hR2

g;⊥ðtÞi=hR2
g;⊥i0 are marked by dashed arrows, which also indicate the onset of relaxation delay in (b). The horizontal line in (a) gives

ðhR2
g;⊥ðtÞi=hR2

g;⊥i0Þ1=2 right after elongation for N ¼ 1000 and 2000. Straight lines (agx−bg ) indicate best fits to our simulation data for
ðτR;N=tÞ < 1.0 (cf. text). For comparison, data for N ¼ 2000 at λ ¼ 1.8 are shown in the inset of (a).
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Since the chains finally must relax to their equilibrium
conformation, ðhR2

g;⊥i=hR2
g;⊥i0Þ1=2 will go through a mini-

mum until it increases towards unity. In Fig. 1(a) we see
that ðhR2

g;⊥i=hR2
g;⊥i0Þ1=2 first decreases, reaches a minimum

at t=τR;1000 ¼ 0.09 for N ¼ 1000 and t=τR;2000 ¼ 0.30 for
N ¼ 2000, and then turns around and gradually increases.
With increasing Z the minimum becomes more pronounced
and is shifted to later times, however, still below τR;N.
The GLaMM model predicts a minimum at t ≈ τR;Z and a
significantly stronger signature of retraction for the same
values of Z, thus only qualitatively agreeing to our data.
[Note that our data for N ¼ 2000 and λ ¼ 1.8 shown in
Fig. 1(a) (inset) indicate the signature becomes much
weaker with decreasing λ. From that it is not surprising
that the minimum in hR2

g;⊥i has not been observed in
Ref. [37] ]. It is tempting to extrapolate the data to
ðhR2

g;⊥i=hR2
g;⊥i0Þ1=2 ¼ 1 by a fitting function fðxÞ ¼

agx−bg for t > τR;N. For N ¼ 500 we estimate bg ¼ 0.16
and ag ¼ 0.58. Assuming the same power law for
N ¼ 1000, 2000, because all systems are deep in the
entangled regime, we arrive at ag ¼ 0.50 and 0.43, for
N ¼ 1000, 2000. By that we obtain equilibration time
estimates of teq;N ½¼ ð1=agÞ1=bgτR;N � ¼ 30τR;500, 76τR;1000,
and 195τR;2000, close to τd;N=2, τd;N ¼ ðN=NeÞ1.4τR;N .
For the GLaMM model, one obtains teq;Z ¼ 50τR;Z¼18,
148τR;Z¼36, and 363τR;Z¼72 with the parameters bg¼0.21
and ag ¼ 0.44, 0.35, and 0.29 for Z ¼ 18, 36, and
72, respectively, teq;Z ≈ ð1þ 15%Þτd;Z based on τd;Z ¼
Z1.4τR;Z. The above assumes an unperturbed relaxation
until isotropic chain conformations are reached. Though
intuitive, this most probably cannot be the case, as
indicated by the data for hR2

g;ki, as well as by previous

primitive path analysis [34]. ðhR2
g;ki=hR2

g;ki0Þ1=2 decreases

monotonically with time t while the relaxation rate still

becomes smaller with time (N ¼ 1000, 2000). Eventually,
we observe the signature of an intermediate plateau well
above and significantly earlier than the regime predicted by
GLaMM, pointing towards a significantly delayed con-
formational relaxation. This relaxation retardation of the
deformed chains has been attributed to an inhomogeneous
distribution of entanglement points along the primitive
paths [34], not accounted for in current theoretical models.
A similar delay has been observed in the context of
rheological experiments of very long, highly entangled
polymer chains by several authors [54–56]. The GLaMM
model predicts the equilibrium melt disentanglement time
of the chain to be the longest relaxation time.
Experimentally scattering functions are more easily

accessible. The normalized single chain structure factor
SðqÞwill easily detect any anisotropy after deformation. As
for Rg, we distinguish Skðqk ¼ qxÞwhere the wave vector q
is oriented in the x direction parallel to the stretching
direction, and S⊥½q⊥ ¼ ðq2y þ q2zÞ1=2�. Note that here we
discuss the static structure factor for deformed polymers in
melts at certain selected relaxation times. In Fig. 2,
we present the two components SkðqkÞ and S⊥ðq⊥Þ for
N ¼ 2000 in deformed (λ ¼ 5) melts. After a large step
elongation, SkðqkÞ and S⊥ðq⊥Þ strongly deviate from
ideality. In the Guinier regime, q < 2π=Rg, our data are
very well described by the decomposed Debye function, as
indicated. With increasing relaxation time, the range over
which the ideal behavior holds slowly extends, however, it
remains still far from that of ideal chains. As expected from
Rg the chain retraction as observed for N ¼ 2000, clearly
shows up in the Kratky plot of the structure factor S⊥ðq⊥Þ
[Fig. 2(b)]. The peak height first increases for times up to
t=τR;2000 ¼ 0.3, the time where hR2

g;⊥i reaches a minimum
(see Fig. 1). Then it decreases as hR2⊥i turns to increase.
This reduction for t=τR;2000 > 0.3, reveals a reduction of the
anisotropy.
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FIG. 2. Kratky plot of the two components of the single chain structure factor parallel and perpendicular to the stretching direction,
q2kSkðqkÞ and q2⊥S⊥ðq⊥Þ, respectively (a), and q2⊥S⊥ðq⊥Þ for 0.1σ−1 < q⊥ < 0.7σ−1 (b). Data are for chains of size N ¼ 2000. Several

values of the relaxation time t=τR;N are shown, as indicated. Data for the unperturbed polymer melt (red curve) and the decomposed

Debye functions [57,58]: SðDebyeÞα ðq ¼ qαÞ ¼ 2½expð−XαÞ − 1þ Xα�=X2
α with Xα¼k ¼ 3q2khR2

g;ki and Xα¼⊥ ¼ 3q2⊥hR2⊥i=2 are also

shown in (a) for comparison. Note that SðDebyeÞk ðqÞ ¼ SðDebyeÞ⊥ ðqÞ for unperturbed polymer melts.
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To compare this to theoretical predictions we follow
previous work of Refs. [36,37] and employ an expansion
with respect to spherical harmonics to the single chain
structure factor SðqÞ. This should reveal the relationship
between anisotropic chain structure and chain retraction for
the leading anisotropic term. To take into account axial
symmetry, we choose the polar angle θ to be the angle
between q and the x axis. Then the structure factor is
independent of the azimuthal angle ϕ, implying that the
expansion with respect to the spherical harmonics Ym

l ðθ;ϕÞ
exhibits only terms with m ¼ 0, Y0

lðθÞ. In practice,
we simply set ϕ ¼ 0 and thus obtain Sðqx ¼ q cos θ;
qz ¼ q sin θÞ ¼ P

l¼0;2;4;…S0lðqÞY0
lðθÞ, where odd l val-

ues do not occur for reasons of mirror symmetry. Focusing
on the leading order anisotropy, we present in Fig. 3 the
coefficient S02ðqÞ, for polymer melts of our three different
chain sizes within the elongation process at five selected
strain values λ, and during the relaxation process at fixed
λ ¼ 5.0. Since polymer chains deform affinely, and
q ∝ 1=hR2

gi1=2 ∝ 1=N1=2, we rescale q to ðN=2000Þ1=2q
in Fig. 3(a). As expected, we observe a nice data collapse
for chains of different N. With increasing λ, the anisotropy
of deformed polymer chains in a melt is enhanced. The
differences between the gyration radii along the x and z
axes become more pronounced, resulting in a horizontal
shift of S02ðqÞ to smaller values of q. Meanwhile, the
orientation anisotropy becomes stronger; i.e., the minimum
of S02ðqÞ becomes deeper. So far the agreement between the
GLaMM model and the simulation is excellent.
As the deformed chains start to relax, the situation

changes. For all cases [Figs. 3(b) and 3(c)], we indeed
see a horizontal shift of S02ðqÞ to larger values of q due to
the shrinkage of chains within the initial relaxation up to
about the Rouse time. The minimum of S02ðqÞ becomes
more shallow, depending on the number of entanglements
Z. For better illustration, the minima at t=τR;N ≈ 0 and 1.0
are indicated by arrows. As observed directly by analyzing
Rg the GLaMM model seems to reproduce this relaxation
better for small Z, indicating significant deviations from
the GLaMM relaxation mechanisms with increasing chain
length. Results of the higher order terms S04ðqÞ and S06ðqÞ
are shown in the Supplemental Material [53].
In summary, both results of the radius of gyration and the

one-dimensional structure factor of deformed melts indi-
cate that chain retraction in all directions sets in during
initial relaxation before reaching the Rouse time. We find
that the signature becomes more pronounced with an
increasing number of entanglements Z as predicted by
the GLaMM model. Such an effect was not observed in
Refs. [36,37]. Our data indicate that there the number of
entanglements Z is not big enough and/or the applied strain
is not large enough; i.e., the stretch ratio λ ¼ 1.8 is too
small. We have also shown that during the relaxation
process up to the Rouse time, the leading anisotropic term

of the single chain structure factor follows a similar pattern
as predicted by the GLaMM tube model. Beyond the
initial agreement with the GLaMM model at short times
significant deviations have been observed for larger times.
This relaxation retardation needs further investigation, as it
points to different, not yet understood relaxation pathways
in the nonlinear viscoelastic regime of highly entangled
polymer melts.
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FIG. 3. Leading anisotropic term of the single chain structure
factor S02ðqÞ plotted versus q for elongated polymer melts (a) and
upon subsequent relaxation for chain sizes N ¼ 500 (b), and
2000 (c). In (a) five values of stretching ratio λ, and three different
chain sizes N are chosen, as indicated. In (b),(c) data are for
several subsequent relaxation times t=τR;N after stretching, as
indicated. The predicted results from the GLaMM model are
shown by black curves for all cases in (b), but only for t=τR;2000 ¼
0 and 1 in (c). Note that for the GLaMM model q here is rescaled
to 0.62qN−1=2

e such that simulation data and theoretical predic-
tions are coincidental in (a).
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