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Artificial neural networks have been recently introduced as a general ansatz to represent many-body
wave functions. In conjunction with variational Monte Carlo calculations, this ansatz has been applied to
find Hamiltonian ground states and their energies. Here, we provide extensions of this method to study
excited states, a central task in several many-body quantum calculations. First, we give a prescription that
allows us to target eigenstates of a (nonlocal) symmetry of the Hamiltonian. Second, we give an algorithm
to compute low-lying excited states without symmetries. We demonstrate our approach with both restricted
Boltzmann machines and feed-forward neural networks. Results are shown for the one-dimensional spin-
1=2 Heisenberg model, and for the one-dimensional Bose-Hubbard model. When comparing to exact
results, we obtain good agreement for a large range of excited-states energies. Interestingly, we find that
deep networks typically outperform shallow architectures for high-energy states.
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Introduction.—Artificial neural networks (ANN) for
machine learning (ML) are quickly becoming an indispen-
sable tool in fundamental sciences. In the context of
statistical physics, for instance,machine learning techniques
have been used successfully for classifying phases of matter
and phase transitions [1–6], speeding up Monte Carlo
simulations [7,8], molecular modeling [9,10] and more.
These applications are close in spirit to classicalML tasks, in
that the networks are trained using labeled data to learn a
certain target function known only on a finite number of data
points. In the context of many-body quantum physics, a
representation of the many-body wave function based on
ANN has been proposed in Ref. [11]. ANN representations
can be used in unsupervised applications of ANN and ML,
where no labeled data are given a priori. Applications in this
sense include the simulation of ground states [11–17], and
the reconstruction of quantum states from experimental
measurements [18,19].
The key difficulty in many-body problems is the expo-

nential growth of the wave-function complexity with the
number of particles. This can be circumvented in interesting
physical applications using either stochastic sampling
approaches or compact representations of the many-body
states. Popular techniques belonging to the two categories
are, respectively, quantum Monte Carlo methods [20,21],
and tensor-network approaches [22,23]. Known limitations
of these approaches are, however, the sign problem [24] for
quantum Monte Carlo calculations, and the entanglement
problem for tensor networks. As a result, interesting many-
body problems are currently inaccessible by state of the art
techniques, including key strongly interacting fermionic

problems in two dimensions, out-of-equilibrium dynamics,
and excited states. The learning scheme proposed in
Ref. [11] leverages the ability of ANN to compactly
represent highly dimensional functions, and thus belongs
to the second category of variational wave function
approaches. A distinct feature of this approach is its ability
to capture longer range correlations and entanglement
structures [15,25] leading to highly accurate representations
of many-body states [11,13,14,18,26,27].
Previous works [11–16] focused on obtaining ground

states with ANN variational quantum states. However,
for the method to become a comprehensive tool for
quantum many-body calculations, it is crucial to have
controlled access to low-lying excited states. This is needed
to answer questions such as: Is the ground state gapped
or gapless? What is the ground state degeneracy? What
are the structure and the dispersion of low-lying excita-
tions? In this Letter, we use ANN variational quantum
states to compute excited states and target states with fixed
quantum numbers (e.g., momentum). We achieve this in
two ways, first by taking advantage of Abelian spatial
symmetries such as translational symmetry and second by
orthogonalizing the wave function with respect to the
ground state. We demonstrate our approach with both
restricted Boltzmann machine (RBM) states and three-
layer feed-forward neural networks (FFNN) as varia-
tional wave functions. We test the methods on the
one-dimensional spin-1=2 Heisenberg model and on the
one-dimensional Bose-Hubbard model at filling one. When
comparing to available exact results, we obtain relative
errors between 10−5–10−3 on the variational energies.
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Restricted Boltzmann machine.—For concreteness, con-
sider a system of L spin-1=2 degrees of freedom denoted by
σj ¼ �1, j ¼ 1;…; L. RBMs were proposed in Ref. [11]
as a variational ansatz for many-body wave functions of
such systems. The RBM wave function is given by

ΨðσÞ ¼
X
h

e
P

j
ajσjþ

P
i
bihiþ

P
ij
hiWijσj ; ð1Þ

where the sum runs over h ¼ ðh1; h2;…; hMÞ with the spin
variables hi ∈ f−1; 1g for i ¼ 1;…;M. The physical spins
σ are called a visible layer, and h is interpreted as a
second—hidden—layer of auxiliary spins. The visible and
hidden layers can be thought of as classical spins subjected
to an interaction energy,

Eðσ; hÞ ¼ −
X
j

ajσj −
X
i

bihi −
X
ij

hiWijσj; ð2Þ

where aj and bi are known as the visible and hidden bias,
respectively, analogous to a local magnetic field, and Wij

are the weights corresponding to interactions between
visible and hidden nodes. Here, to apply the formalism
to general wave functions, complex-valued weights and
biases are used [11]. In this case, Eq. (2) does not have an
analog in classical statistical physics.
Tracing over the hidden variables h, Eq. (1) reduces to

logΨðσÞ ¼
X
j

ajσj þ
X
i

log

�
cosh

�
bi þ

X
j

Wijσj

��

ð3Þ
up to some additive constant corresponding to an overall
factor of the wave function.
Feed-forward neural network.—The second type of

network that we consider is a FFNN. The input to the
network is a configuration σ, indexing the many-body basis
states. It could be a binary vector for a spin half system or a
vector of integers for spinless bosons.
We construct an l-layer FFNN as follows. Let vn be the

Mn-component vector output from layer n and define
v0 ¼ σ, where Mn is the number of neurons in layer n.
At each layer, we apply an affine map followed by
elementwise nonlinear function f (the so-called activation
function) vn → vnþ1 ¼ fðWnvn þ bnÞ, where Wn is a
matrix of size Mnþ1 ×Mn known as the weight matrix
and bn is a vector called the bias. The activation function f
can be chosen freely. Since we would like the ansatz to be
generic, we again have to allow for complex-valued
parameters. Inspired by the effectiveness of the RBM,
we choose fðxÞ ¼ log ½coshðxÞ� from here on.
The final layer consists of one neuron so the output vl

is a one-dimensional vector which corresponds to the
value vl ¼ log ½ΨðσÞ�. For the case of a single hidden
layer followed by the final output layer, the ansatz can be
written as

logΨðσÞ ¼ W1½fðW0σ þ b0Þ�; ð4Þ

which reduces to the RBM in Eq. (3) without visible bias,
if W1 ¼ ð1; 1; 1;…Þ. We do observe in our tests that the
single hidden layer FFNN has a similar performance to the
RBM. Therefore, to go beyond the RBM we focus on a
FFNN with three layers: two hidden layers followed by an
output layer. The ansatz becomes

logΨðσÞ ¼ W2ðffW1½fðW0σ þ b0Þ� þ b1gÞ: ð5Þ
See the Supplemental Material [28] for information

regarding the optimization of the networks.
Abelian symmetries.—We now explain how to use a

network to represent an eigenstate with a certain symmetry.
Let fT̂1;…; T̂νg be the generators of a finite Abelian
symmetry group G of order ν, where the elements g ∈ G
act on the configurations of the system as gσ ¼ σ0. Since G
is Abelian, its irreducible representations are purely one
dimensional. A wave function belongs to an irreducible
representation with character fω1;…;ωνg corresponding
to the ν generators if

T̂ijΨi ¼ ωijΨi ⇒ ΨðT̂iσÞ ¼ ωiΨðσÞ: ð6Þ
In order to obtain the eigenstate corresponding to this

irreducible representation, we want the output of the
network to obey Eq. (6). Since the network represents
the logarithm of the wave function, this means
logΨðT̂iσÞ ¼ logωi þ logΨðσÞ. Because of the highly
nonlinear form of the wave function representation, it is
not straightforward to adjust the weights of the network
such that this condition is strictly satisfied. Instead, we
solve the problem of obtaining a neural-network represen-
tation with a specific eigenvalueωi as follows: Let log Ψ̃ðσÞ
represent the value obtained from the network as given by
Eqs. (3) or (5). Next, consider the equivalence classes of
configurations related by the symmetry group G, i.e.,
½σ� ¼ fgσ∶ ∀ g ∈ Gg. For each equivalence class, we
pick a canonical configuration σcanonical. We then define
the amplitude of a configuration σ to be

logΨðσÞ ¼
Xν
i¼1

ri;σ logωi þ log ½Ψ̃ðσcanonicalÞ�; ð7Þ

where the integers ri;σ are the number of times the generator
T̂i needs to be applied to map the canonical configuration
back to σ. They are implicitly defined though the equation
σ ¼ Q

ν
i¼1 T̂

ri;σ
i σcanonical. Such a procedure guarantees that

the condition in Eq. (6) is satisfied. Then, instead of
evaluating logΨðσÞ directly for generic σ, we evaluate
log Ψ̃ðσcanonicalÞ and obtain logΨðσÞ from Eq. (7).
Minimizing the energy with this expression for logΨðσÞ
in turn gives the lowest eigenstate in the selected symmetry
sector.

PHYSICAL REVIEW LETTERS 121, 167204 (2018)

167204-2



Let us illustrate this procedure for translational sym-
metry in one dimension. In this case, there is only a single
generator T̂. For a state jΨi with momentum k, the
amplitude of a configuration σ is given by

logΨðσÞ ¼ irσkþ log ½Ψ̃ðσcanonicalÞ�; ð8Þ

where σ ¼ T̂rσ σcanonical [33].
Excited states without symmetry.—Many interesting

physical problems possess (nearly) degenerate ground
states that are not distinguished by good quantum numbers,
for instance topologically ordered systems or spin glasses.
In this case, the following procedure can be applied. The
task is as follows: Given an ANN wave function which
represents the ground state of a Hamiltonian, sayΦ0ðσÞ, we
would like to find the wave function Ψ with the lowest
energy but orthogonal to Φ0. To that end, we define

Ψ ¼ Φ1 − λΦ0; ð9Þ
where λ is a complex scalar and Φ1 corresponds to a
different ANN variational wave function with its own set of
parameters. To enforce orthogonality between Ψ and Φ0,
i.e., hΦ0jΨi ¼ 0 we set λ ¼ ðhΦ0jΦ1i=hΦ0jΦ0iÞ, which
can be computed in standard Monte Carlo fashion

λ ¼
X
σ

�
Φ1ðσÞ
Φ0ðσÞ

� jΦ0ðσÞj2P
σ0 jΦ0ðσ0Þj2

≈
�
Φ1ðσÞ
Φ0ðσÞ

�
Ns

; ð10Þ

where the average is carried over Ns samples generated
from the distribution jΦ0ðσÞj2 through Monte Carlo
sampling.
The optimization scheme then proceeds in two steps.

(i) Sample the ground state wave function jΦ0ðσÞj2 to
compute λ as in Eq. (10). (ii) Perform the imaginary time

evolution with stochastic reconfiguration [29] on the full
wave function Ψ ¼ Φ1 − λΦ0 using the updated λ.
Notice that in this scheme it is crucial to recompute

λ at each step of the energy minimization, due to the
intrinsic statistical noise of the optimization algorithm used
here [see Eq. (4) of the Supplemental Material [28] ].
As a result of the stochastic process, the state Ψ cannot
be guaranteed to be exactly orthogonal to the ground state,
but only approximately. In order to quantify the accuracy
of the result, we can monitor the normalized overlap
ðhΦ0jΨihΨjΦ0iÞ=ðhΦ0jΦ0ihΨjΨiÞ, which can also be
computed as a Monte Carlo average.
Results.—To test the methods introduced above, we

study two one-dimensional models: the spin-1=2 antifer-
romagnetic Heisenberg chain and the nonintegrable [34]
Bose-Hubbard chain. The former is defined by the
Hamiltonian

Ĥ ¼ 4
XL
i¼1

Ŝi · Ŝiþ1; ð11Þ

where Ŝi are the spin-1=2 operators on site i and we choose
periodic boundary conditions. The momentum-resolved
spectrum of this model can be obtained using the Bethe
ansatz [35].
As a first benchmark, we computed the momentum

spectrum of the model with L ¼ 36 sites using both the
RBM and the three-layer FFNN and compared them to the
results from exact diagonalization (ED). We set the hidden
unit density defined by αn ¼ Mn=L to be α1 ¼ 3 for the
RBM and α1 ¼ 2 (α2 ¼ 0.5) for the first (second) layer of
the FFNN. The ANN results, compared to those obtained
from ED, are shown in Fig. 1(a). One can observe that the
relative error ϵ ¼ jðE − EexactÞ=Egroundj is much larger for

(c)(a) (b)

FIG. 1. (a) Momentum-resolved spectrum of the one-dimensional Heisenberg model with L ¼ 36 spins. The blue line shows the exact
values from ED, the green circles represent the energy obtained from a three-layer FFNN with hidden unit density α1 ¼ 2 (α2 ¼ 0.5) in
the first (second) hidden layer (corresponding to 3996 free parameters) and red dots show the energy from an RBM with hidden unit
density α1 ¼ 3. (b) Relative error ϵ as a function of system size, for the k ¼ π=2 state. For the RBM, we fix the hidden unit density
α1 ¼ 3, whereas for the FFNN we use a density of α1 ¼ 2 (α2 ¼ 0.5) in the first (second) hidden layer. For the k ¼ 0 sector the relative
error is ∼10−5. (c) Energy gap from the ground state to the first excited state of one-dimensional spin-1=2 Heisenberg model. The blue
line shows the exact values computed using ED, the green circles represents the energy gap obtained from an RBM with hidden unit
density α ¼ 2. FFNN results are identical to the RBM ones and are thus not shown here. The inset shows that the gap is inversely
proportional to system size. The relative error of the excited states is less than 3 × 10−4 for all cases.
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higher energy states, i.e., for momenta away from 0 or π.
Moreover, the relative error for the RBM is higher than that
of the three-layer FFNN, possibly suggesting that either the
RBM ansatz is less efficient at representing those excited
states or that the optimization of the network is caught in a
local minimum. We checked that increasing the number of
hidden units systematically improves the accuracy of the
network.
In Fig. 1(b), we show the scaling of the relative error with

system size for the two different network architectures,
which shows that the three-layer FFNN systematically
performs better than an RBM with a comparable number
of parameters. Whereas the relative error remains roughly
constant with system size for the FFNN, the RBM error
instead seems to increase linearly. Once again, this circum-
stance does not strictly imply that RBM machines are less
expressive than FFNNs, since optimization is also an
extremely crucial ingredient to be considered.
Next, using the two-step method described above, we

obtained the energy gap from the ground state to the first
excited state as a function of system size L. This way, we do
not use any information about the translation symmetry.
Exact values were computed using ED. The results are
shown in Fig. 1(c). Here, the hidden unit density of Φ1 [see
Eq. (9)] was fixed at α1 ¼ 2 (except the L ¼ 40 compu-
tation where we used α1 ¼ 4), while the ground state Φ0

was obtained using α1 ¼ 4. This choice of hidden unit
densities gives us a relative error below 3 × 10−5 for the
ground states and below 2 × 10−4 for the excited states. It is
necessary to compute the ground state accurately, since the
error necessarily propagates to the excited state wave
function due to the relation Ψ ¼ Φ1 − λΦ0. We verified
that the overlap with the ground state is below 1% for a
sample size of about 2000.

We now turn to the Bose-Hubbard model in one
dimension with periodic boundary conditions,

Ĥ ¼ −t
XL
i¼1

ðĉ†i ĉiþ1 þ H:c:Þ þU
2

XL
i¼1

n̂iðn̂i − 1Þ; ð12Þ

where ĉ†i and ĉi are the boson creation and annihilation
operators on site i, respectively, and n̂ ¼ ĉ†i ĉi represents the
local density at site i. For this problem, we experienced
significant difficulty in lowering the relative error in both
the two-layer FFNN and the RBM even with a large
number of hidden units, suggesting that either optimization
is difficult or that the expressiveness of the ansatz is limited.
A three-layer FFNN, on the other hand, converged signifi-
cantly better.
We set U ¼ 1 and consider two system sizes. First the

case of N ¼ 10 bosons on a one-dimensional periodic
lattice with L ¼ 10 sites, for which exact results are easily
obtained. We used a three-layer FFNN with hidden unit
density α1 ¼ 4 (α2 ¼ 1) in the first (second) hidden layer
(860 free parameters), and a RBM with hidden unit density
α1 ¼ 8 (890 free parameters). The relative error on the
FFNN was lower than 5 × 10−4 for all momenta, whereas
for the RBM one can see the error is increasing for larger
momenta. The results are shown in Fig. 2(b).
Next, we show in Fig. 2(b) the results for N ¼ 40 bosons

in L ¼ 40 sites. Here, the full (within the fixed particle
number sector) Hilbert space dimension (∼5 × 1022) is too
large to obtain results using ED. We could only infer the
eigenenergies of the lowest few momentum sectors by
matching with the lowest few eigenstates computed with
MPS, since it is not straightforward to include momentum
resolution in MPS. Although MPS [36,37] can in principle

(a) (b)

FIG. 2. Momentum-resolved spectrum of weakly interacting U ¼ 1 bosons on a one-dimensional periodic lattice. (a) N ¼ 10 bosons
in L ¼ 10 sites. The blue line shows the analytically calculated value and the green circles indicate the value obtained from a three-layer
FFNN with hidden unit density α1 ¼ 4 (α2 ¼ 1) in the first (second) hidden layer (860 free parameters). The red circles show the value
from an RBM with hidden unit density α1 ¼ 8 (890 free parameters). The dashed lines indicate the relative error. (b) N ¼ 40 bosons in
L ¼ 40 sites. The dashed blue line shows values inferred from MPS calculations. The green circles indicate the values obtained from a
three-layer feed-forward neural network with hidden unit density α1 ¼ 2 (α2 ¼ 1) in the first (second) hidden layer (6560 free
parameters) except for the last point k ¼ 18π=40 where we used α1 ¼ 2 (α2 ¼ 1) in the first (second) hidden layer (8180 free
parameters). We show only the first 10 momenta.
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be used to determine momentum spectra, it is challenging
to efficiently use this method to higher dimensions and
bosons.
Conclusions and outlook.—We showed that artificial

neural networks can be used as a variational Monte Carlo
ansatz for obtaining excited states. In particular, we showed
two ways to achieve this: first, by using Abelian spatial
symmetries such as translational symmetry and, second, by
using a superposition of two neural networks such that the
combined network represents a state orthogonal to the
ground state. While the methods presented here were
demonstrated using simple networks (RBM and FFNN),
they can in principle be used with any network architecture.
Note that the models we employed do not have a sign
problem overall. However, solving them in a sector of
constant nonzero momentum generally introduces a sign
problem: The wave function necessarily acquires complex
amplitudes. Future work on more challenging models may
require the use of more powerful networks, such as the
convolutional arithmetic circuits or recurrent neural net-
works, which were shown to be highly efficient in
representing entangled states [38]. Our strategy can be
generalized to cases beyond spatial symmetries, e.g.,
permutational symmetry in fermionic systems would be
a natural extension for future studies. Our results will be
useful for the study generic many-body quantum systems
which are hard to access with other methods. For instance,
all gapped chiral states in two dimensions are hard to
represent by tensor networks, but can be captured by RBM
states [39–41]. In addition, any three-dimensional strongly
correlated system, including topologically ordered spin
liquids, is a natural candidate for future studies. This opens
a new class of systems for numerical studies, which are
beyond the reach of ED and density matrix renormalisa-
tion group.

We would like to thank Frank Schindler for insightful
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supported by the European Unions Horizon 2020 research
and innovation program (ERC-StG-Neupert-757867-
PARATOP). K. C. thanks the Flatiron Institute, a division
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