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We investigate the impact of quenched disorder on the zero-temperature dynamic structure factor of two-
leg quantum spin ladders. Using linked-cluster expansions and bond-operator mean-field theory, huge
effects on individual quasiparticles but also on composite bound states and two-quasiparticle continua are
observed. This leads to intriguing quantum structures in dynamical correlation functions well observable in
spectroscopic experiments.
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Disorder is an inevitable ingredient of any condensed
matter. On the one hand disorder can change or even
destroy the physical behavior of the associated clean
systems [1–3] or, on the other hand, it can induce
fundamentally new physics. This is especially true for
correlated quantum materials where the interplay of dis-
order and quantum fluctuations can result in technological
challenges or exotic phases of quantum matter like many-
body localization [4–7]. One important aspect in the
collective behavior of correlated quantum matter is the
formation of quasiparticles and their role in quantum
critical behavior. While many studies have investigated
the static and thermodynamic properties of such systems in
the presence of disorder [8–16], the fate of interacting
quasiparticles under disorder is only rarely studied.
Experimentally, however, increasingly improving resolu-
tion in spectroscopy like inelastic neutron or light scattering
as well as intentional doping to control disorder in quantum
materials [17–24] demands theoretical predictions for
dynamical correlation functions of correlated quantum
matter in the presence of disorder.
An outstanding arena, both experimentally and theoreti-

cally, to investigate the influence of quenched disorder on
quasiparticle excitations are low-dimensional quantum
magnets, which host a variety of interesting quantum
phases and elementary particles in the clean case.
Theoretically, the calculation of dynamical correlation
functions for disordered quantum magnets is challenging
[25–27]. Only recently [26] the effect of disorder on single
quasiparticles has been studied within bond-operator mean-
field (MF) theory for the bilayer square lattice Heisenberg
model, but the fate of quasiparticles under disorder beyond
MF theory is largely unexplored.
Particularly promising systems to advance are antiferro-

magnetic two-leg quantum spin ladders (QSLs) [28], which
have been investigated successfully over the last decades in
a number of experimental realizations [29–35] and by
various theoretical tools [36–41]. Clean QSLs have non-
ordered ground states and gapped triplon excitations

[37,42]. Inelastic neutron and light scattering allow us to
access one-triplon dispersions but also the formation
of two-triplon bound states and continua reflecting the
presence of large quantum fluctuations. Furthermore, it is
possible experimentally to intentionally dope QSL com-
pounds so that quenched disorder is induced into the
system, either by site disorder [43] or bond disorder
[44]. It is therefore important to understand the influence
of disorder on the spectral signatures of triplon quasipar-
ticles in QSLs. To this end quenched bond disorder is
optimal, since the types of magnetic interactions are
unchanged. This is exactly the punchline of this Letter.
We calculate the one- and two-triplon contribution of the
dynamic structure factor (DSF) at T ¼ 0 of two-leg QSLs
in the presence of quenched bond disorder. It is demon-
strated that disorder has huge effects on collective excita-
tions yielding intriguing quantum structures directly
relevant for spectroscopic experiments.
Disordered QSL.—The Hamiltonian of the disordered

QSL for a fixed disorder configuration fJg is given by

HðfJgÞ¼
X

ν

�
J⊥ν S⃗ν;1 · S⃗ν;2þ

X2

n¼1

Jkν;nS⃗ν;n · S⃗νþ1;n

�
; ð1Þ

where the sum runs over all rungs and n ¼ 1, 2 denotes the
legs of the QSL [see Fig. 1(a)]. The disorder configuration

fJg given by the antiferromagnetic J⊥ν and Jkν;n depends on
the type of quenched disorder. Here we focus on bimodal
disorder; i.e., the rung and leg exchanges can take either the
value Jκ1 with probability p or Jκ2 with probability 1 − p for
κ ∈ f⊥; kg. However, our technical treatment is more
general and allows us to consider any stationary quenched
bond disorder distribution.

Clean QSLs with J⊥ν ≡ J⊥ and Jkν;n ≡ Jk have an unor-
dered ground state and gapped triplon excitations for all
Jk=J⊥, which are adiabatically connected to the isolated
rung limit Jk ¼ 0. In this limit the ground state is a product
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state of singlets jsi ¼ ðj↑↓i − j↓↑iÞ= ffiffiffi
2

p
and excitations are

local triplets jtþ1i ¼ j↑↑i, jtþ0i ¼ ðj↑↓i þ j↓↑iÞ= ffiffiffi
2

p
, and

jt−1i ¼ j↓↓i. The low-energy spectrum of the clean QSL
obtained by pCUTs is shown for Jk=J⊥ ¼ 1=2 in Fig. 1(b).
The spin-one triplon corresponds to a dressed triplet which
has a finite cosinelike dispersion in this parameter regime
with a finite gap at k ¼ π. Two-triplon energies are either
part of the two-triplon continuum or correspond to two-
triplon (anti)-bound states, whose energies depend on the
total spin.We focus on the spin-one sector, which is relevant
for the DSF, where a two-triplon bound state exists for a
large range ofmomenta in the cleanQSLdue to the attractive
two-triplon interaction [38,39].
We then reformulate Eq. (1) in terms of triplet creation

and annihilation operators tð†Þν;α with t†ν;αjsi≡ jtαi and
α ∈ f�1; 0g on rung ν. Setting the average rung exchange
J̄⊥ ≡ ðJ⊥1 þ J⊥2 Þ=2≡ 1 and introducing the deviations
ΔJ̄⊥� from it, allows us to express Eq. (1) as

HðfJgÞ ¼ E0 þQþ
X2

n¼−2
T̂nðfJgÞ; ð2Þ

where E0 ¼ −3=4ðN r þ
P

νΔJ⊥ν Þ with N r the number
of rungs, the counting operator Q ¼ P

ν;αn̂ν;α with

n̂ν;α ¼ t†ν;αtν;α, and the T̂n with ½T̂n;Q� ¼ nT̂n change the
triplet number by n [45]. The T̂n depend explicitly on ΔJ̄⊥�
as well as Jk1;2 and therefore on the disorder configuration

fJg. Here T̂�2 correspond to pair creation and annihilation

processes, T̂0 contains triplet hopping as well as quartic
triplet-triplet interactions, and T̂�1 represent decay proc-
esses of one triplet into two or vice versa. Note that
T̂�1 ¼ 0 holds for the clean case where the QSL possesses
an exact reflection symmetry about the centerline giving
rise to a conserved parity quantum number �1.
The central quantity for inelastic neutron scattering on

disordered QSLs is the disorder averaged DSF

S�ðk;ωÞ≡ lim
N dc→∞

1

N dc
S�ðk;ω; fJgÞ; ð3Þ

with momentum k, frequency ω, number of disorder
configurations N dc, and

S�ðk;ω; fJgÞ≡ −
1

π
Imh0jO†

�
1

ω −Hþ i0þ
O�j0i; ð4Þ

where O�ðkÞ≡P
νe

ikνðSzν;1 � Szν;2Þ=ð2
ffiffiffiffiffiffiffi
N r

p
Þ. The index

� reduces to the parity quantum number for the clean QSL.
pCUT.—We perform pCUTs [50,51] as our main

approach as well as bond-operator MF theory (for the
latter see Ref. [45]). The major target of a pCUT is to

unitarily transform Eq. (2), order by order in Jkν;n and ΔJ̄⊥�,
to an effective Hamiltonian Heff which conserves the
number of triplons so that ½Heff ;Q� ¼ 0 holds. As a
consequence, the complicated quantum many-body system
is mapped to an effective few-body problem which is easier
to solve. A pCUTapplication has a model-independent step,
which expressesHeff in a sum of operator product sequences
of the T̂n operators with exactly known coefficients. The
most efficient way of performing the second model-
dependent step, which amounts to normal order Heff, is a
full-graph decomposition using the linked-cluster theorem.
Here the only graphs are ladders segments so that the
calculation for the clean QSL is very simple. In contrast,
in the presence of bimodal disorder, there are23N rþ1 different
graphs for a ladder segment ofN r rungs and a linked-cluster
expansion becomes unefficient since N dc is large. At this
pointwhite graphs [52] are essential, since it allows to specify
fJg only after the calculations on the graphs. In practice,
one determines the most general linked contribution of a
graph by allowing for a different exchange coupling on every
nearest-neighbor link of the graph. The resulting multi-
variable series can then be embedded on any specific fJg.
We calculated Heff in the one- and two-triplon sector up

to order 8 and we determined the corresponding effective
observablesOeff

� up to order 7. The convergence of the bare
series is similar to the clean QSL where it gives quantitative
results up to Jk=J⊥ ≲ 0.5 [39,40] and we therefore restrict
to this parameter regime below. The effective one- and two-
triplon problem is then diagonalized for finite QSLs with
N r ¼ 100 and the DSF for a fixed disorder configuration
is obtained using a finite broadening Γ ¼ 0.01. Averaging
over N dc ¼ 1000 disorder configurations then gives the

(a)

(b)

FIG. 1. (a) QSL with bimodal disorder. The two different rung

(J⊥ð1;2Þ) and leg (J
k
ð1;2Þ) couplings are shown as red and blue bonds.

The unit cell ν is indicated by the rectangular box. (b) Spectrum
of the clean QSL for Jk=J⊥ ¼ 1=2 as a function of momentum k
including one-triplon dispersion (black line), two-triplon con-
tinuum (gray), as well as spin-one two-triplon bound state (red
line) calculated by perturbative continuous unitary transforma-
tions (pCUTs).
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averaged DSF (3). All relevant aspects discussed below are
well converged despite the use of finite N r and N dc [45],
which is reasonable due to the finite localization and
correlation length of the QSL.
One-triplon contribution.—For the clean QSL, this

sector can be expressed as S−ðk;ωÞ ¼ a2ðkÞδðω − ωkÞ
with the one-triplon dispersion ωk and the one-triplon
spectral weights a2ðkÞ while Sþðk;ωÞ ¼ 0 due to the parity
symmetry. The dispersion ωk is cosine shaped with gap at
k ¼ π and the spectral weight a2ðkÞ is monotonic in k with
maximum at k ¼ π and minimum at k ¼ 0.
Representative pCUT results for the DSF in the presence

of the maximal pure rung or leg disorder are shown in Fig. 2
(see Ref. [45] for qualitatively the same MF results). These
two cases behave differently with respect to reflection
about the centerline. For rung disorder the associated parity
is still a conserved quantity and therefore Sþðk;ωÞ ¼ 0
holds for the one-triplon sector. In contrast, since the leg
disorder breaks the reflection symmetry, a finite one-triplon
contribution to Sþðk;ωÞ exists. However, this contribution
is orders of magnitude smaller and the dominant contri-
bution to the DSF is still S−ðk;ωÞ. We find that the DSF of
the disordered QSLs is fundamentally different to the one
for the clean counterpart. These differences do not originate
from large changes of the spectral weights. Indeed, devia-
tions to a clean QSL with constant mean exchange
couplings are small [45]. Certainly, the most important
effect of disorder on the DSF is the disorder-induced
localization of eigenfunctions and their corresponding
shape changes in momentum space. Furthermore, the
density of states is changed by the bimodal disorder [45].
There are fundamental differences between leg and rung

disorder, although eigenfunctions are localized in both

cases. This is understood in leading-order perturbation
theory: rung disorder leads to triplons hopping in a
disordered chemical potential while leg disorder yields
a disordered nearest-neighbor hopping and therefore to a
momentum-dependent disorder potential. Thus localization
is stronger for rung compared to leg disorder.
We find two separated energy regions for rung disorder

corresponding to J⊥1 and J⊥2 . This can be seen by compar-
ing to the one-triplon dispersions of a clean QSL with these
J⊥ν (white lines in Fig. 2). In first order this follows from
Gershgorin’s circle theorem which states that half of the
eigenvalues are bigger and half of them smaller than one in
the thermodynamic limit for this specific disorder.
The spectral weights are higher in the low-energy

region due to localization. Considering an eigenstate in
the lower (higher) region, it will be localized around states
with dominantly low (high) rung values. For the eigen-
states in the low-energy region the average ratio of leg and
rung coupling is therefore larger. Hence the spectral
weight is larger in the low-energy region. Most impor-
tantly, we observe a fragmentation of the one-triplon DSF
into energies carrying maximal spectral weights close to
k ¼ π. These energies with largest intensity are located
well above the one-triplon gap of the uniform QSL with
the lower rung value and can be understood by consid-
ering leading-order degenerate perturbation theory for
small Jk=ΔJ̄⊥ [45]. In this limit one has a fragmentation
of the disordered QSL into decoupled ladder segments
with constant J⊥ ¼ 0.6 of length L. In each open segment
one can easily solve the full one-triplon problem and

determine the lowest one-triplon energy ϵðLÞ1 . For k ¼ π,
we find that the one-triplon DSF has indeed local intensity
maxima at these energies (see solid white lines in Fig. 2).

FIG. 2. One-triplon contribution to the antisymmetric DSF S−ðk;ωÞ for pure rung (A-S rung) or leg (A-S leg) disorder and to the
symmetric DSF Sþðk;ωÞ for pure leg disorder (S leg). A-S rung: bimodal rung disorder with p ¼ 0.5 and rung exchanges J⊥1 ¼ 1.4 and
J⊥2 ¼ 0.6. The constant leg exchange is Jk ¼ 0.4. White lines represent one-triplon dispersions for a clean QSL with Jk ¼ 0.4 and

J⊥ ¼ 1.4 (dashed) or J⊥ ¼ 0.6 (dashed-dotted). Horizontal white lines indicate the lowest one-triplon energy ϵðLÞ1 of open ladder

segments of length L with J⊥ ¼ 0.6. A-S/S leg: bimodal leg disorder with p ¼ 0.5 and leg exchanges Jk1 ¼ 0.1 and Jk2 ¼ 0.4. The black
dashed line represents the one-triplon dispersion with mean hopping amplitudes.
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The approximate quantization of the one-triplon DSF is

therefore directly linked to the discrete energies ϵðLÞ1

arising from the strong rung disorder. Note that similar
quantum structures occur also for the high-energy region
of the one-triplon DSF which can be again traced back
to a fragmentation of the disordered QSL into almost
decoupled ladder segments. For leg disorder one has only
a single energy region which is well described with a one-
triplon dispersion using mean hopping amplitudes (black
line in Fig. 2). The spectral weight is largest at k ¼ π and
diminishes towards k ¼ 0. However, the intensities are
even smaller at small k as one expects from the spectral
weight, since it is distributed over a particularly broad
range of energies at k ¼ 0. This comes from disorder in
the local hopping amplitude (like for rung disorder) which
appears in subleading orders leading to an anisotropy
between k ¼ 0 and k ¼ π [45]. Further, the fragmentation
at k ¼ 0 is of similar origin as for rung disorder found for
all momenta. Finally, the shape of the one-triplon con-
tribution to Sþðk;ωÞ can be fully traced back to the
different type of observable. Although the spectral weight
vanishes exactly at k ¼ 0, it is distributed almost uni-
formly between k ¼ π=2 and k ¼ π [45]. The same is true
for the intensities at fixed energy. For the latter one has to
recapitulate that the local observable in real space only
injects a finite weight for single triplons if an asymmetry
of leg couplings is present in the local surrounding of the
observable. The probability of such an asymmetric and
connected region of length L, where OþðkÞ is active, is
exponentially descreasing with L. It follows that the
projection of eigenstates on these regions is almost flat
in momentum space.
Two-triplon contribution.—For the clean QSL, it is

contained solely in Sþðk;ωÞ while S−ðk;ωÞ ¼ 0. It

comprises a continuum and a two-triplon bound state
[see Fig. 1(b)]. By far most of the spectral weight is carried
by this bound state, which therefore dominates the DSF.
The two-triplon contributions obtained by pCUTs with

maximal pure rung or leg disorder are shown in Fig. 3. Note
that bond-operator MF does not yield satisfactory results in
this sector, since the attractive triplon interaction is neglected
completely [45]. Localization also occurs for two-triplon
states so that eigenstates have almost all their weight on a
finite part of the two-triplon space in the position basis [45].
Further, the states carrying most of the weight will be two-
triplon states localized on a finite region of the lattice. For
rung disorder, there are three possible values for the sum of
two local hopping amplitudes resulting in three distinct
structures in the DSF. The spectral weight of these structures
decreases from lower to higher energy, which can be
understood from the decreasing average ratio of leg and
rung couplings as described for the one-triplon case above.
Each region contains a bound state and a continuum,
although only the bound state carries significant spectral
weight (see Fig. 3, left). They gain a finite lifetime due to the
disorder. The same is true for leg disorder. One observes two
bound-state structures, which fuse at k ¼ π. The two
structures, one more dispersive than the other, can be linked
to the bound states of clean QSLs taking the larger or lower
leg coupling (see Fig. 3, middle). Interestingly, the maximal
weight at k ¼ π is located at a lower energy compared to the
bound states of the clean QSLs. This is likely caused by
scattering events of lower-energy bound states with k < π
yielding a final momentum k ¼ π. Finally, the two-triplon
contribution to S−ðk;ωÞ (see Fig. 3, right), which is induced
by the leg disorder, has an order of magnitude larger weight
compared to the one-triplon contribution to Sþðk;ωÞ
although the shape is similar. Notably, the maximum

FIG. 3. Two-triplon contribution to the symmetric DSF Sþðk;ωÞ for pure rung (S rung) or leg (S leg) disorder and to the antisymmetric
DSF S−ðk;ωÞ for pure leg disorder (A-S leg). S rung: bimodal rung disorder with p ¼ 0.5 and rung exchanges J⊥1 ¼ 1.4 and J⊥2 ¼ 0.6.
The constant leg exchange is Jk ¼ 0.4. The three dashed lines represent the dispersion of the two-triplon bound state for the clean QSL

using J⊥ ¼ 1.4, J⊥ ¼ 1.0, and J⊥ ¼ 0.6. S/A-S leg: bimodal leg disorder with p ¼ 0.5 and leg exchanges Jk1 ¼ 0.1 and Jk2 ¼ 0.4. The

dashed lines represent the dispersion of the two-triplon bound state for the clean QSL with Jk1 (white) and Jk2 (black).
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intensity is at the same energy as for Sþðπ;ωÞ and is again
associated with bound states.
Conclusions.—The pCUT method is an efficient tool to

investigate the fate of quasi-particles under quenched
disorder, which we exemplified by calculating the DSF
of disordered QSLs. Disorder-induced quantum structures
like the quantization of collective triplon excitations in the
DSF emerge which are of direct relevance for spectroscopic
experiments. We therefore suspect that our findings trigger
experimental as well as further theoretical investigations on
the fate of quasi-particles in disordered correlated quantum
matter.

We thank Bruce Normand and Christian Rüegg for
fruitful discussions. M. H. and K. P. S. acknowledge finan-
cial support from DFG Project No. SCHM 2511/10-1.

*max.hoermann@fau.de
†paul.wunderlich@fau.de
‡kai.phillip.schmidt@fau.de

[1] T. Vojta, J. Phys. A 39, R143 (2006).
[2] T. Vojta, J. Low Temp. Phys. 161, 299 (2010).
[3] R. B. Griffith, Phys. Rev. Lett. 23, 17 (1969).
[4] D. M. Basko, I. L. Aleiner, and B. L. Altshuler, Ann. Phys.

(Amsterdam) 321, 1126 (2006).
[5] V. Oganesyan and D. A. Huse, Phys. Rev. B 75, 155111

(2007).
[6] M. Znidaric, T. Prosen, and P. Prelovsek, Phys. Rev. B 77,

064426 (2008).
[7] A. Pal and D. A. Huse, Phys. Rev. B 82, 174411 (2010).
[8] A. Furusaki, M. Sigrist, P. A. Lee, K. Tanaka, and N.

Nagaosa, Phys. Rev. Lett. 73, 2622 (1994).
[9] E. Westerberg, A. Furusaki, M. Sigrist, and P. A. Lee, Phys.

Rev. Lett. 75, 4302 (1995).
[10] N. Nagaosa, A. Furusaki, M. Sigrist, and H. Fukuyama,

J. Phys. Soc. Jpn. 65, 3724 (1996).
[11] T. Miyazaki, M. Troyer, M. Ogata, K. Ueda, and D.

Yoshioka, J. Phys. Soc. Jpn. 66, 2580 (1997).
[12] M. Greven and R. J. Birgeneau, Phys. Rev. Lett. 81, 1945

(1998).
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