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Topological nodal-line semimetals are predicted to exhibit unique drumheadlike surface states (DSSs).
Yet, direct detection of such states remains a challenge. Here, we propose spin-resolved transport in a
junction between a normal metal and a spin-orbit coupled nodal-line semimetal as the mechanism for their
detection. Specifically, we find that in such an interface the DSSs induce resonant spin-flipped reflection.
This effect can be probed by both vertical spin transport and lateral charge transport between antiparallel
magnetic terminals. In the tunneling limit of the junction, both spin and charge conductances exhibit a
resonant peak around zero energy, providing unique evidence of the DSSs. This signature is robust to both
dispersive DSSs and interface disorder. Based on numerical calculations, we show that the scheme can be
implemented in the topological semimetal HgCr2Se4.
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The discovery of topological materials has evinced one
of the main recent advances in condensed matter physics
[1–3]. Depending on whether the bulk states are gapped or
gapless, topological materials can be largely divided into
topological insulator phases [1,2] and topological semi-
metal phases [4]. In both categories, the material’s bulk
bands are characterized by topological invariants, which
additionally result in gapless surface states according to a
bulk-boundary correspondence [5]. Therefore, detection of
topological surface states is key for the identification
of topological materials. For insulating phases, the edge
or surface states are energetically well separated from the
bulk ones, and can be readily identified by transport
measurement [6,7], scanning tunneling microscopy [8,9],
or angle-resolved photoemission spectroscopy (ARPES)
[10]. Topological semimetals are more subtle, because the
Fermi level crosses both the bulk and the surface states.
Nevertheless, extensive progress has been achieved on the
observation of exotic Fermi arc states in Weyl and Dirac
semimetals [11–13] by ARPES [14] and transport mea-
surements [15].
Recently, another kind of topological semimetal, a

nodal-line semimetal (NLS), has attracted increasing
research interests [16–33]. These 3D materials are charac-
terized by band crossings along closed loops, with each
loop carrying a π Berry flux [16]. A direct result of the NLS
band topology is the existence of drumheadlike surface
states (DSSs) nestled inside the projection of the nodal
loops onto the 2D surface Brillouin zone [20]. There are a

variety of candidates for a NLS [17–29], and their exper-
imental characterization has seen recent progress using
ARPES [29,34–37] and quantum oscillation [38–41] mea-
surements. However, direct evidence of novel DSSs, the
hallmark of a NLS, is still missing: in the ARPES experi-
ments, the surface states are veiled in the bulk bands, which
can only be identified via a comparison with the results of a
first-principles’ calculation; the experiments on quantum
oscillations only focus on bulk states, so that no informa-
tion on the surface states can be extracted.
In this Letter, we propose two types of transport experi-

ments for the detection of the DSSs. These experiments rely
on the spin-resolved scattering in a junction between a
normal metal and a NLS, see Fig. 1(a). The DSSs induce a
resonant spin-flipped reflection (RSFR) for spin-polarized
(along the z axis) electrons incident from the normal metal.
This effect manifests in a nearly pure spin current flowing
perpendicular to the junction [Fig. 2(a)], or in a lateral
charge transport between two antiparallel magnetic termi-
nals [Fig. 2(d)]. In the tunneling limit, both setups show a
resonant peak in their spin or charge conductance around
the energy level of the nodal loop, that can serve as a direct
evidence of the DSSs. We analytically detail our predic-
tions in a minimal NLSmodel and numerically demonstrate
these signatures for a real material HgCr2Se4 [42].
We consider spin-polarized electrons incident in the z

direction, see Fig. 1(a). We assume that the incident
electron spin is polarized in the z direction and is injected
into the metal (z < 0) by a ferromagnetic lead. In the z > 0
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region, we use a minimal continuous model to describe the
nodal-line semimetal as

HSMðkÞ ¼ λkzσx þ Bðk20 − jkj2Þσz; ð1Þ

where jkj2 ¼ k2x þ k2y þ k2z is the total momentum squared
and the Pauli matrices σx;z operate in the spin space.
The Hamiltonian Eq. (1) has eigenvalues E� ¼
�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ2k2z þ B2ðk20 − jkj2Þ2

p
and corresponding eigenstates

ju�ðkÞi. The resulting two bands are degenerate at k2x þ
k2y ¼ k20 and kz ¼ 0, thus defining a nodal loop in momen-
tum space, see Fig. 1(a). Considering the transverse wave
vector kk ¼ ðkx; kyÞ as a parameter, the Hamiltonian Eq. (1)
describes an effective 1D system in the z direction.
Whenever kk lies inside the nodal loop, that is jkkj < k0,
the effective 1D system is insulating with an energy gap

ΔðkkÞ ¼ λk00 opening around kz ¼ k00 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k20 − jkkj2

q
, see

inset of Fig. 1(a). The gap varies with kk, and reaches its
maximum Δ0 ¼ λk0 at kk ¼ 0. Interestingly, the effective
1D model has a nontrivial band topology that is charac-
terized by the Berry phase γB ¼ π, with γB ¼
i
R
∞
−∞ dkzhu−ðkÞj∂kz ju−ðkÞi [3,26]. In the presence of chiral

symmetry, such nontrivial topological winding implies the
appearance of a zero-energy end state at an open boundary
[45,46]. As kk varies inside the nodal loop, these topo-
logical end states appear and form the DSSs, which are
encircled by the projection of the nodal loop onto the
surface Brillouin zone, see Fig. 1(a). When the transverse

FIG. 2. (a) Setup for spin transport DSSs detection. A normal metal with weak spin-orbit coupling, such as Al, Au, is fabricated into a
Hall cross. Spin-up electrons are injected from a ferromagnetic metal (FM). The inverse spin Hall effect in the normal metal results in a
transverse drift of electrons, yielding a transverse voltage drop VSH between two Hall probes [43,44]. (b) Spin (thick lines) and charge
(thin lines) conductance for different interface barrier heights, cf. Eq. (3). Inset: Zoom of the sharp peak with Z ¼ 8. (c) Effect of finite
dispersion of the DSSs on spin conductance with Z ¼ 10. (d) Setup for charge transport DSSs detection. The polarizations of the FM
leads are taken to be antiparallel and transport through the device is possible only due to spin-flipping processes at the metal-NLS
boundary. (e) Charge conductance for different interface barrier heights. (f) Effect of finite dispersion of the DSSs on charge
conductance with Z ¼ 2. All other parameters are the same as those taken in Fig. 1.

FIG. 1. (a) Schematic illustration of a junction between a normal
metal and a nodal line semimetal (NLS). The drumheadlike surface
states at the boundary are encircled by the projection of the bulk
nodal loop onto the surface Brillouin zone. Whenever an incident
electron from the metal is reflected, its spin is flipped when the
transverse momentum lies inside the drumhead. The inset shows
the kz-dependent energy bands of effective 1D channels in the z
direction when the transverse momentum kk lies inside (blue solid
lines) and outside (red dashed lines) the drumhead. (b) Probability
of spin-flipped reflection at theboundarybetween thematerials as a
function of energy with the following parameters: θ ¼ π=6,
kF ¼ 1.1k0 ¼ 1.54, C ¼ B ¼ 1, λ ¼ 0.01, cf. Eq. (2).
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wave vector kk lies outside the nodal loop, the effective 1D
system becomes a trivial insulator with an energy gap
around kz ¼ 0 [inset of Fig. 1(a)], and no surface states
show up at an open boundary.
In the z < 0 region, lies the spin-degenerate normal

metal, described by the Hamiltonian HNM ¼ Cjkj2 − μ0,
where C is a mass dependent parameter and μ0 is the
chemical potential corresponding to the Fermi wave vector
jkFj ¼

ffiffiffiffiffiffiffiffiffiffiffi
μ0=C

p
. The interface scattering is considered using

a Dirac-type barrier UδðzÞ. The scattering of the incident
electron from the normal metal onto the NLS is solved by
substituting kz ¼ −i∂z and keeping kk a good quantum
number [47]. Importantly, we obtain that incident spin-up
electrons with jkkj < k0 engender a spin-flipped reflection
amplitude [47]

rf ¼ −
4

ðηþ 1=ηþ iZ0Þ2ϒ1 þ ðη − 1=ηþ iZ0Þ2=ϒ1

; ð2Þ

where η ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vNM=vSM

p
is the square root of the ratio of

perpendicular velocities in the normal metal and NLS, with
vNM ¼ 2CjkFj cos θ and vSM ¼ 2Bk00, respectively, θ
is the electron’s incident angle (relative to the z axis),
Z0 ¼ 2U=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
vNMvSM

p
is a dimensionless interface barrier

height, and ϒ1 ¼ ½Eþ Bðk21 − k020 Þ�=ðk1λÞ with k1 ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k020 − ðλ2 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4E2B2 þ λ4 − 4λ2B2k020

p
Þ=ð2B2Þ

q
.

The obtained spin-flipped reflection probability,
Rf ¼ jrfj2, exhibits a sharp resonant peak around zero
energy in the tunneling limit (Z0 ≫ 1), see Fig. 1(b) [51].
This result can be understood by rewriting Eq. (2) in the
tunneling limit as a summation over Feynman paths
constructed by multiple reflection between the barrier
and the NLS surface [47,52]. It turns out that the condition
of RSFR is identical to the Bohr-Sommerfeld quantization
condition for a surface bound state, which indicates that the
RSFR is directly induced by the topological surface state.
Moreover, this scenario can also be understood by a

tunneling Hamiltonian description. In the tunneling limit,
for each 1D channel inside the nodal loop (jkkj < k0),
we can use a tunneling Hamiltonian to describe the
coupling between the DSSs and the normal metal
as HT ¼ P

kz
Vkðc†k↑ þ ic†k↓Þγkk þ H:c:, where γkk ¼R

dzðf�kk ðzÞ=
ffiffiffi
2

p Þ½ψ↑ðzÞ − iψ↓ðzÞ� is the Fermi operator

for the DSSs exhibiting some spatial distribution fkk ðzÞ,
ck↑;↓ are annihilation operators of electron in the normal
metal, and Vk is the coupling strength [47]. The DSSs are
spin-polarized along the y direction [47], thus resulting in
an equal coupling strength to both spin states in the normal
metal. Such a tunneling Hamiltonian has the same form as
that of a resonant tunneling through a single-level system
[53], when we regard the two spin states in the normal
metal as two spinless leads and the surface state in each

kk channel as the single level. A direct calculation leads
to a result of RSFR with a Lorentzian form, i.e.,
RfðEÞ ¼ Γ2=ðE2 þ Γ2Þ (Γ is level-width function) [47],
which is consistent with the result in Fig. 1(b).
We propose two experimental schemes to probe the

RSFR: (i) vertical spin transport in the setup in Fig. 2(a),
and (ii) lateral charge transport in the setup in Fig. 2(d). For
scheme (i), spin-polarized electrons are injected from a
ferromagnetic lead, and then reflected with spin flipping at
the junction. The resulting nearly pure spin current can be
measured as a spin Hall voltage VSH [54] in the inverse spin
Hall effect [43,44], see Fig. 2(a). For scheme (ii), charge
current flows between two antiparallel magnetic terminals,
which cannot happen without the spin-flipped reflection.
The RSFR can be well characterized in both setups by a
resonant peak in the spin or charge conductance.
The spin current in setup (i) is defined as Is ¼ I↑ − I↓,

where Iσ with σ ¼ ↑;↓ are spin-polarized currents flowing
in the z direction. In order to generate the spin Hall voltage,
the spin is polarized along the x direction, see Fig. 2(a). In
the RSFR regime, incident and reflected electrons have
opposite spin polarizations as well as opposite velocities.
Consequently, the RSFR enhances the spin current, while
the charge current I ¼ I↑ þ I↓ is strongly suppressed. This
results in a nearly pure spin current flowing in the normal
metal. To reveal the energy dependence of the spin trans-
port, we calculate the differential spin conductance
GsðeVÞ ¼ ∂Is=∂V [55] using

GsðEÞ ¼ G0

Z
π=2

0

dθ sin 2θ½1þ Rfðθ; EÞ − Rcðθ; EÞ�; ð3Þ

where G0 ¼ ðAk2F=4πÞðe2=hÞ is the single-spin conduct-
ance of the uniform normal metal with a cross section area
A, and Rc ¼ jrcj2 is the probability of spin-conserved
reflection. The spin conductance Gs as a function of
the bias voltage eV for different barrier strengths Z ¼
U=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
CjkFjBk0

p
is plotted in Fig. 2(b). In the transparent

case (Z ¼ 0), Gs exhibits a heightened ridge in the region
eV ∈ ð−Δ0;Δ0Þ, corresponding to strong spin-flipped
reflection below the gap Δ0 [Fig. 1(b)]. As Z increases,
a narrower peak forms and moves towards zero energy, as
expected for RSFR. At the same time, the height of the peak
reduces because the RSFR peaks become sharper in all
transport channels [Fig. 1(b)], and the resonant energies do
not match one another. Note that although the reduced spin
conductance becomes small in the tunneling limit, the
absolute value of Gs around the resonant peak is still quite
large. Concurrently, the charge conductance G ¼ ∂I=∂V
becomes much smaller than Gs within the gap, indicating a
high-purity spin current, see Fig. 2(b). Outside the gap, Gs
andG tend to be equal, and transmission through the barrier
(rather than RSFR) dominates the transport.
In real materials, chiral symmetry is usually broken on

the open surface, and the DSSs are commonly dispersive.
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To model this effect, we add a spin independent term
εðkkÞ ¼ A1ðjkkj2 − k20Þ to Eq. (1). This introduces a band-
width δ ¼ A1k20 to the DSSs. Such a kk-dependent potential
leads to further separation of RSFR levels in different
channels. As a result, the peak of Gs is broadened and also
shifted, as shown in Fig. 2(c). In the tunneling limit, the
width of the resonant peak is approximately equal to the
width of the surface band δ, so that the bandwidth of
the DSSs can be directly inferred from the width of the
resonant peak in Gs [47], see also Figs. 2(f), 3(b), and 3(d).
The charge current in setup (ii) [Fig. 2(d)] flows in the

normal metal in the x direction, parallel to the interface of
the junction. The normal metal is sandwiched by two
antiparallel ferromagnetic terminals. Without spin-flipped
reflection at the junction, electrons injected from one
terminal cannot enter the other. Therefore, setup (ii) can
be used to detect the RSFR. The conductance G is
calculated numerically (using KWANT [48]) based on a
lattice version of our model [47], see Fig. 2(e). The
conductance is normalized by G0, the single-spin conduct-
ance in the x direction through the normal metal. In the
transparent limit of the junction (Z ¼ 0), electrons transport
in the energy window eV ∈ ð−Δ0;Δ0Þ, corresponding to
the energy scale of spin-flipped reflection. As Z increases,
G exhibits a sharp peak around zero energy, which signals
the RSFR. In the setup in Fig. 2(d), multiple scattering
occurs at all the surfaces of the normal metal, so that the
conductance shows fluctuation. The effect of finite
dispersion of the DSSs is also investigated, and the results
are shown in Fig. 2(f). It shifts and spreads the resonant

peak, similar to the results reported for the spin transport in
scheme (i), cf. Fig. 2(c).
In realistic setups, there would be several additional

imperfections that should be taken into account, such as
interface imperfections and nonpure spin injection [56]. In
experiments, interface imperfections commonly exist, such
that the clean tunneling limit is difficult to obtain. For both
transport schemes, we numerically investigate this effect
by introducing interface disorder (see Fig. S.2 in the
Supplemental Material [47]). One can see that apart from
some broadening of the general features, the resonant peak
in the spin and charge conductances is robust to strong
disorder with the strength close to the interface barrier,
reflecting the robustness of topological DSSs. Similarly,
spin-polarization averaging leads to an overall reduction
prefactor that does not qualitatively change the overall
transport signatures [47].
Our analysis has, thus far, relied on aminimal NLSmodel

[Eq. (1)]. For experimental realizations, we consider the
topological semimetal HgCr2Se4 [42] as a promising can-
didate. In the jJ;MJibasis j 32 ; 32i ¼ ð1= ffiffiffi

2
p ÞjðX þ iYÞ↑i and

jS↓i, an effective two-band model for HgCr2Se4 can be
written as

HHCSðkÞ ¼
�
Bðk20 − jkj2Þ Dkzk2−

Dkzk2þ −Bðk20 − jkj2Þ

�
; ð4Þ

with k� ¼ kx � iky. The eigenenergies of this model are

E0
� ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
B2ðk20 − jkj2Þ2 þD2k2z jkkj4

q
. Therefore, the gap

closesalongexactly thesamenodal lineas thatof theminimal
model Eq. (1). For each kk channel, the effective gap is

Δ0ðkkÞ ¼ Dk00jkkj2, and its maximum isΔ0
0 ¼ 2Dk30=ð3

ffiffiffi
3

p Þ
when jkkj ¼

ffiffiffiffiffiffiffiffi
2=3

p
k0. Additionally, the model Eq. (4)

exhibits two Weyl nodes in the z axis at kz ¼ �k0. The
Weyl nodes only introduce a single gapless 1D channel, and
the corresponding Fermi-arc surface states do not appear at
an open boundary in the z direction, so that the DSSs remain
the dominating transport effect at a metal-NLS junction in
Fig. 1(a).
We numerically calculate the spin and charge conduc-

tances in schemes (i) and (ii) [Figs. 2(a) and 2(d)] for the
lattice version of Eq. (4) [47]. All the results agree well with
those of the minimal model. Gs and G for different barrier
heights are shown in Figs. 3(a) and 3(c). For a transparent
junction, Gs is heightened and G has a peak spreading in
the energy window eV ∈ ð−Δ0

0;Δ0
0Þ, which is generated by

the spin-flipped reflection. As Z increases, a resonant peak
shows up, indicating the DSSs induced RSFR. The effect of
dispersive DSSs is shown in Figs. 3(b) and 3(d) and leads to
widening of the RSFR peak. The resonant peak is robust
against interface disorder and nonpure spin injection [47].
It is worthwhile to compare the DSSs induced RSFR

with other spin relaxation processes. Most spin relaxation

FIG. 3. Numerical results for HgCr2Se4. Spin conductance of
vertical spin transport for different (a) interface barriers, and
(b) dispersions of DSSs (with Z ¼ 2). Inset in (a): Zoom of the
peak structure with Z ¼ 8. Charge conductance of lateral charge
transport for different (c) interface barriers, and (d) dispersions of
DSSs (with Z ¼ 2). All the parameters are the same as those in
Fig. 1, except that D ¼ 0.01=k20.
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mechanisms can only lead to weak dissipation of spin
signatures [57], strongly different from the RSFR-induced
enhancement of the spin signature. Consider, for example,
spin-flipped scattering induced by magnetic impurities at
the interface of the junction: in order to obtain a comparable
resonance strength, a high density of impurities with the
same energy level is required. Similarly, the electrons will
have a very small rate of colliding with bulk impurities due
to the vanishing density of states in the bulk of the NLS.
To conclude, we have shown that resonant spin-flipped

reflection can serve as unambiguous evidence of the
drumheadlike surface states in the spin-orbit coupled
nodal-line semimetal. Recent experimental progress on
spin-resolved transport in HgCr2Se4 [58] paves the way
to the realization of our proposal. Our analysis can be
extended to other types of nodal-line semimetals, i.e., both
to additional materials but also engineered systems such as
photonic nodal-line systems.
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