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Predicting the non-Newtonian shear response of soft interfaces in biophysical systems and engineered
products has been compromised by the use of linear (Newtonian) constitutive equations. We present a
generalized constitutive equation, with tractable material properties, governing the response of Newtonian
and non-Newtonian interfaces subjected to a wide range of steady shear. With experiments spanning six
decades of shear rate, we capture and unify divergent reports of shear-thinning behavior of monomolecular
films of the lipid dipalmitoylphosphatidylcholine, the primary constituent of mammalian cell walls and
lung surfactant, at near-physiological packing densities.
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Colloidal particles, proteins, and other surface-active
materials such as phospholipids organize into a variety of
multiphasic two-dimensional (2D) soft matter systems at
fluid-fluid interfaces. Even under relatively small hydro-
dynamic stresses, the response of such systems is highly
nonlinear [1]. Accounting for this nonlinear shear response
is crucial to understanding many biophysical processes,
including the role of natural surfactant systems in pulmo-
nary flow [2] and the variable fluidity of mammalian cell
walls that facilitates nutrient exchange while providing
structural integrity to the cell [3]. Modeling and predicting
the nonlinear interfacial shear response also has critical
technological implications with interfacial rheology emerg-
ing as a paradigm for the design of controlled-release
systems (microcapsules) and stabilizers that prevent emul-
sion dissolution, ensuring long shelf life of pharmaceut-
icals, cosmetics, and foods [4–6].
A significant body of work aimed at describing the

rheology of these interfacial systems has been performed
under conditions that minimize the nonlinear hydrody-
namic effects associated with the coupling between the
interfacial and bulk flow stresses. This requires either an
infinite ratio of surface viscosity to the product of bulk
viscosity and a length scale, or a Stokes flow limit for the
bulk where flow inertia is negligible. The consequences of
these limits are that either the speed or oscillation of the
shearing probe needs to be very small or using very small
length scales [7–10]. In practice this restricts the upper limit

of shear that can be imposed on the interface, and many
condensed films cannot be sheared under these conditions.
Although rheological relationships have been estab-

lished, prediction of flow behavior (especially under con-
ditions that differ from those used to determine rheological
properties) has yet to be demonstrated due to the lack of
mechanistic models that can accurately predict the
observed nonlinear interfacial responses across flow con-
ditions and geometries [11]. Some studies quantify inter-
facial rheology at regimes where the bulk flow inertia is
non-negligible, but implement a simple linear additive
model to decompose the contributions from the interfacial
and bulk stresses to the measured response [12,13].
Predicting interfacial shear response requires prescribing

a constitutive equation for the interface. A constitutive
equation consists of material properties of the 2D system,
such as surface shear viscosity, which relate the imposed
stresses to the observed interfacial shear. The simplest
linear constitutive equation corresponding to a Newtonian
interface is the Boussinesq-Scriven surface model [14]. For
a purely shearing interfacial flow, where the effects of
surface dilatational viscosity are absent, the Newtonian
surface model becomes

τ̃s ¼ 2μsDs; ð1Þ

where μs is the surface shear viscosity, a single parameter
relating the surface stress tensor τ̃s to the surface rate of

PHYSICAL REVIEW LETTERS 121, 164502 (2018)

0031-9007=18=121(16)=164502(6) 164502-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.121.164502&domain=pdf&date_stamp=2018-10-17
https://doi.org/10.1103/PhysRevLett.121.164502
https://doi.org/10.1103/PhysRevLett.121.164502
https://doi.org/10.1103/PhysRevLett.121.164502
https://doi.org/10.1103/PhysRevLett.121.164502


deformation tensor Ds. This model (or its viscoelastic
generalizations) has been implemented to correlate mea-
sured torque [15] and rotational or translational drag [16] to
the shear imposed locally, thereby determining the surface
shear viscosity. The technique works well if the response is
linear, with a single value of surface shear viscosity
governing the interfacial response across flow conditions.
However, shear thinning and other nonlinear (non-
Newtonian) interfacial responses due to the presence of
large macromolecules, such as proteins or densely packed
condensed-phase monolayers of phospholipids, are
also interpreted using this linear constitutive equation.
Nonlinearity is inferred if the surface shear viscosity
depends on the imposed shear rate. This has led to reports
of “apparent” surface rheological properties that depend on
the rate of deformation and the flow geometry, leading to
inconsistent measurements and the inability to predict the
response under different flow conditions [11].
In this Letter, we present a non-Newtonian constitutive

equation for 2D soft matter systems under steady shear that
is two-way coupled to the fully nonlinear bulk flow; i.e., the
interfacial and the bulk flows are viscously coupled to each
other. The 2D constitutive equation takes the Newtonian
functional form, but the surface shear viscosity is gener-
alized to be a function of the imposed shear rate. For
shearing interfacial flows, the constitutive relation becomes

τ̃s ¼ 2μseffD
s; ð2Þ

where μseff is the effective surface shear viscosity, a function
of the magnitude of the local interfacial shear rate _γ. We
demonstrate the applicability of this equation to determine
the material properties that govern the nonlinear response
of a model interfacial film in a canonical axisymmetric flow
geometry.
Interfacial films of dipalmitoylphosphatidylcholine

(DPPC) play a crucial role in human physiology and
health. DPPC is the main constituent of pulmonary sur-
factant and the bilayer that forms cell-wall membranes.
Monolayers of DPPC also serve as a model for the lipid
layer that forms the outer portion of the tear film covering
our eyes. The melting temperature of DPPC is approx-
imately 41 °C; thus it predominantly exists in densely
packed condensed phases in the body [17]. Such con-
densed-phase monolayers of DPPC also serve as models of
a single leaflet of the cell membrane bilayer [18], with the
molecular area of the phospholipids constituting the bilayer
resembling a monolayer of DPPC at high surface pressures
[19] (Π > 15 mN=m, where surface pressure Π is the
reduction in surface tension of the monolayer-laden inter-
face compared to a clean interface).
Our choice for the functional form of μseff is motivated by

the multiple reports of shear-thinning in DPPC films at high
surface packing (corresponding to large surface pressure
Π≳ 30 mN=m) and its Newtonian response at low packing

(Π < 15 mN=m) [20–22], and is inspired by the Sisko
model in bulk (3D) rheology [23]:

μseff ¼ μs∞ þ K̃j_γjn−1; ð3Þ

where μs∞ is the surface shear viscosity at very large shear
rates, K̃ is the consistency index, and n is the power-law
index. μs∞, K̃, and n are material properties of the interface,
and as such are only functions of the thermodynamic state
of the material at the interface, i.e., the surface pressure Π
of the monolayer at a given temperature. In the limit
K̃ → 0, one recovers the Newtonian constitutive equation,
and the limit n → 1 with K̃ ≠ 0 corresponds to a Bingham
model incorporating a yield stress with a Newtonian excess
stress behavior. To model a shear-thinning film with a yield
stress, a term τ̃j_γj−1 could be added to the right-hand side of
Eq. (3), where τ̃ is the yield stress of the monolayer. In the
comparisons with the experiments presented below, we find
that the interfacial film is shear thinning, so K̃ ≠ 0 and
n ≠ 1. Ayield stress behavior could manifest at low enough
shear rates but does not affect the comparisons nor the
interpretation of the results for the range of shear rates
presented here. As such, we keep Eq. (3) as it stands for
ease of dissemination. The approach presented here is
general, allowing for different forms of μseff to account for
responses of steadily sheared films under various condi-
tions, making Eq. (3) applicable across a range of inter-
facial packing densities (Π) of monolayers such as DPPC.
We chose the knife-edge flow geometry as the canonical

axisymmetric system to examine how well Eq. (3) captures
the non-Newtonian response of DPPC monolayers. A
schematic of the knife-edge flow geometry is presented
in Fig. 1. There are four associated length scales: a the
knife-edge outer radius, aAR the cylinder radius, aAH
the bulk liquid depth, and ϵa the knife-edge thickness.
The knife-edge thickness ϵa is of secondary importance
(established experimentally by Slattery [24]), as is the bulk
liquid depth aAH. The length scale of primary importance
is the distance over which the interface is sheared,
aðAR − 1Þ. We nondimensionalize length with a. There
are two time scales for the flow, which are independent of
the monolayer: the knife-edge rotation time 1=Ω and the
bulk viscous diffusion time a2=ν, where Ω is the angular
velocity of the knife edge and ν is the kinematic viscosity of
the (Newtonian) bulk phase. Their ratio is the Reynolds
number Re ¼ Ωa2=ν. We use 1=Ω to nondimensionalize
time. The nondimensional shear rate is defined as

S ¼ ðaARÞ2 _γ=ν ¼ A2
RReð∂vs=∂r − vs=rÞ; ð4Þ

where vs is the azimuthal component of velocity at the air-
water interface z ¼ AH. Of the three interfacial material
properties, n is already dimensionless. The second, K̃, is
nondimensionalized to K defined by

PHYSICAL REVIEW LETTERS 121, 164502 (2018)

164502-2



K ¼ ½ðaARÞ2=ν�ð1−nÞK̃=μs∞: ð5Þ
With these definitions, the effective viscosity in Eq. (3) is
expressed as an effective Boussinesq number, Boeff ,

Boeff ¼ Boð1þ KjSjn−1Þ: ð6Þ
In Eq. (6), Bo ¼ μs∞=ðμaÞ is the Boussinesq number, the
third dimensionless interfacial material property, which is a
ratio of surface to bulk phase stresses, and μ is the dynamic
viscosity of the bulk phase liquid. The nondimensional
azimuthal component of the interfacial stress balance
[Eq. (2)] becomes

ð1þ nKjSjn−1Þ ∂
2vs

∂r2 þ ½1þ ð2 − nÞKjSjn−1�

×

�
1

r
∂vs
∂r −

vs

r2

�
¼ 1

Bo
∂v
∂z

����
z¼AH

: ð7Þ

Solving Eq. (7) gives vs ¼ vjz¼AH
, the nondimensional

azimuthal velocity at the interface. However, Eq. (7)
requires computing the normal gradient of v at the inter-
face, ∂v=∂zjz¼AH

, which is determined by simultaneously
solving the Navier-Stokes equations for the bulk flow in the
cylinder using Eq. (7) as the boundary condition at the
interface. The numerics involved are detailed in Ref. [25]; a
brief overview is presented in the Supplemental Material
[26], which includes Refs. [8,20–22,25,27–29].
To test the effectiveness of this model, steady-shear ex-

periments were conducted with DPPC monolayers spread
on pure water at 23 °C, with ν ¼ 9.33 × 10−7 m2=s and
μ ¼ 9.31 × 10−4 Ns=m2. Given that the microstructure of
a monolayer is sensitive to the spreading technique [30],
well-established methods were employed to obtain films
of reproducible surface pressure (see Ref. [22] for
details). The monolayers were sheared in a precision-made

knife-edge flow apparatus. A precision-bore glass tube of
inner diameter 2aAR ¼ 50.0 mm was cut to a height of
aAH ¼ 25.40 mm and bonded to an optical glass floor to
form the cylindrical dish. Two different precision-machined
stainless tubes were utilized as knife edges, one with
an outer diameter of 2a ¼ 25.40 mm and the other
2a ¼ 9.53 mm. The knife edges had very different thick-
nesses, the larger knife edge had a thickness ratio ϵ ¼ 0.02
and the smaller one had ϵ ¼ 0.167. The two different knife
edges were driven over a wide range of rotation rates.
Interfacial velocity field measurements were made pri-

marily using particle tracking velocimetry since it could
capture the entire interface, from the knife edge to the
cylinder. Independent measurements using Brewster angle
microscopy were made confirming that the seeding par-
ticles in particle tracking velocimetry do not affect the flow.
Experimental details, including how the monolayer was
prepared before the knife edge was lowered and its rotation
initiated, are provided in the Supplemental Material [26].
Figure 2 shows the radial profiles of azimuthal interfacial

velocity from the new nonlinear model (black lines), which
were computed using a single combination of the three
material properties with dimensionless parameter values of
K ¼ 700, n ¼ 7=16, and Bo (Bo ¼ 10 and Bo ¼ 3.75,
since Bo is scaled with the knife-edge radius). These
predictions show excellent agreement with the measured
profiles (symbols) over two decades of Re. The hydro-
dynamic regimes range from Stokes flow (Re ¼ 1.2) to

FIG. 1. Schematic of the knife-edge geometry, and the exper-
imental setup.

(a) (b)

(c) (d)

FIG. 2. Radial profiles of the azimuthal velocity at the interface
with a DPPC monolayer at surface pressure Π ¼ 40 mN=m in a
knife-edge flow geometry; (a) and (c) are driven by a knife edge
of radius a ¼ 0.47 cm, (b) and (d) are driven by knife edge of
radius a ¼ 1.27 cm, at Re as indicated. The symbols correspond
to experimental measurements, the thick black lines are the
computed velocity profiles with K ¼ 700 and n ¼ 7=16, and the
thin cyan lines are the computed Newtonian profiles (K ¼ 0 and
n ¼ 1), all at the corresponding Re with Bo ¼ 10 for (a) and (c),
Bo ¼ 3.75 for (b) and (d).
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flows where the inertia of the bulk phase is significant
(Re ¼ 225). The shear-rate distribution measured for the
two knife edges at various Re (presented in Fig. 2 of the
Supplemental Material [26]) shows that the locally imposed
shear varies by over six decades.
At the high surface packing of the monolayer employed,

the region inside the knife edge rotates essentially as a
solid body (not sheared), as seen from the flow profiles
computed with the new nonlinear model Eq. (3) for all
Re in Figs. 2(a) and 2(c) for the small knife edge
(0 < ar < 0.47 cm), and in Figs. 2(b) and 2(d) for the large
knife edge (0 < ar < 1.27 cm). Note that this part of the
interface is inaccessible to our interfacial velocity measure-
ments. Only the material between the knife edge and rim of
the glass cylinder [ar > 0.47 cm in Figs. 2(a) and 2(c) and
ar > 1.27 cm in Figs. 2(b) and 2(d)] is sheared in this flow
geometry, with the shear rate being largest in the vicinity of
the knife edge. Previously, we have shown that a strong flow
in the bulk phase is driven when an interfacial film of finite
surface shear viscosity is sheared [22]. The interfacial
response in this flow geometry only decouples from the
flow in the bulk phase in the Stokes flow limit or for a film of
infinite surface shear viscosity [27].
Computations with the Newtonian model (cyan curves)

for flow in the inner region of the small knife edge
[AR ¼ 5.25, Figs. 2(a) and 2(c)], using an estimated surface
shear viscosity (Bo ¼ 10), capture the solid-body behavior
for all Re. However, the Newtonian model with the same
estimate of surface shear viscosity (corresponding to
Bo ¼ 3.75) for the large knife edge [Figs. 2(b) and 2(d)],
predicts flows slower than solid-body behavior in the inner
region. This is due to viscous coupling between the bulk and
interfacial flows at finite surface viscosity and bulk flow
inertia.
The surface velocity profiles predicted using the

Newtonian interfacial model with the same estimated surface
shear viscosity are significantly faster on the outer knife edge
region than both the measured interfacial velocity profiles
(symbols) and predictions using the new non-Newtonian
model Eq. (3) (thick black curves) across all Re for both knife
edges. The slower flows in the outer regions indicate that the
effective viscosity of the interfacial films decreaseswhen they
are subject to large shear rates. Also, at higher rotation rates
(Re ¼ 225), the large knife edge drives a stronger bulk flow.
The interfacial response in these regimes is strongly coupled
to thedriven bulk phase flow.This bulk phase flow inertia also
manifests in the deviation between the predicted profiles of
the Newtonian model and the new non-Newtonian model.
The departure, which is greatest in the outer regions, grows
with increasing Re, with maximum deviation occurring for
Re ¼ 225 [Fig. 2(d)].
The departures in the velocity profiles at the interface are

critical to interpreting rheology. An estimate of shear rate
near a knife edge, or any other shearing probe, from the
profiles predicted by the Newtonian model is traditionally

used to calculate the local material response function (torque
or drag coefficient) and in turn used to determine the surface
viscosity. The departures described are currently accommo-
dated with an iterated estimate of the viscosity that mini-
mizes the differences between the applied and measured
stresses [15]. As shown, the departures are a strong function
of the rotation rate and the size of the shearing probe,
requiring the iterative estimate to be tailored for the imposed
shear-rate distribution (Re). With the new non-Newtonian
model, the local shear rate is accurately predicted, eliminat-
ing the need for iteration or the velocity profile correction
algorithms currently employed [15].
The experimental velocity profiles presented in Fig. 2

were used to determine the effective viscosity across the
range of imposed shear rates, and the results are shown
in Fig. 3. For each Re, the associated shear-rate distri-
bution was used in Eq. (3) to determine the effective
viscosity with K̃ ¼ 7.4 × 10−4 Ns−9=16m, n ¼ 7=16, and
μs∞ ¼ 4.2 × 10−5 Ns=m computed from the dimensionless
material parameters used for prediction: K, n, and Bo,
respectively. The results show that DPPC films at high
surface packing exhibit shear-thinning behavior across the
range of imposed shear rates. This is consistent with recent
measurements of μseffð_γÞ for DPPC at Π ¼ 40 mN=m in a
double-wall ring viscometer [21], which are included in
Fig. 3 as green diamonds. However, the new non-Newtonian
model Eq. (3) and the experimentally measured surface
velocity profiles shed new insight into the behavior of DPPC
films across a hitherto unexplored range of shear rates and
flow conditions that are physiologically relevant. In par-
ticular, our results indicate that even at low shear rates, such
as those experienced in the terminal bronchioles _γ ∼
10−3 s−1 [31], the power-law behavior persists. Our study
confirms and quantifies that condensed-phase DPPC films
possess viscosities that are 3–4 orders of magnitude larger
than highly fluid films at low surface packing. Themeasured

10−5 10−4 10−3 10−2 10−1 100 101 102 103
10−5

10−4

10−3

10−2

10−1

100

γ̇ [s−1]

μ
s e
ff

[N
s/

m
]

AR = 1.95

AR = 5.25

Ref. [21]

FIG. 3. Effective measured viscosity of DPPC monolayer at
surface pressureΠ ¼ 40 mN=m, determined from the experimen-
tal interfacial velocity profiles shown in Fig. 2. The black curve is
μseff ¼ μs∞ þ K̃j_γjn−1 [Eq. (3)] with K̃ ¼ 7.4 × 10−4 Ns−9=16 m,
n ¼ 7=16, and μs∞ ¼ 4.2 × 10−5 N s=m. Also included are data
fromRef. [21], taken in a double-wall ring apparatuswith DPPC at
Π ¼ 40 mN=m.
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high viscosity is consistent with the required rigid nature of
the “squeezed-out”monolayer of DPPC, which is critical to
the functioning of lung surfactant [32]. The non-Newtonian
model predicts that the response of densely packed shear-
thinning films transitions to purely Newtonian behavior at
very high shear rates (_γ ≳ 104 s−1). The film viscosity in this
high-shear limit is μs∞ ¼ 4.2 × 10−5 Ns=m, as indicated by
the large-_γ asymptote in Fig. 3.
In conclusion, the new constitutive equation establishes

non-Newtonian material properties K̃, n, and μs∞ that
accurately predict the nonlinear response of DPPC mono-
layers under steady shear across a wide range of flow
conditions, including hydrodynamic regimes where the
inertia of the bulk phase can significantly contribute to
the coupled interfacial response. This is especially impor-
tant when predicting the behavior of soft matter during
high-shear events in the body, such as coughing, during
which _γ ≳ 103 s−1 [33]. Measuring the interfacial velocity
profile and matching it to computations from a nonlinear
model allows us to explore global or macroscopic effects
and quantify interfacial material properties, as opposed to
the current practice of using an estimate of the shear rate in
the vicinity of the shearing probe to measure torque and
determine rheological properties. In contrast to previously
reported interfacial rheological models [34], knowledge of
the structural distribution of material at the interface is not
required to predict the flow behavior. The coupled flow
predictions and experiments indicate that the nonlinear
behavior of such sheared films does not stem purely from
the bulk phase stresses, but that the nonlinear response is
due to the inherent non-Newtonian nature of the material at
the interface. Across six decades of imposed shear rates
(using a combination of varying rotation rates and size of
the shearing probe) in the knife-edge flow geometry, the
new model shows excellent agreement to measurements
covering more than two decades of Re. The non-Newtonian
constitutive equation is versatile enough to be generalized
for DPPC films at other thermodynamic states to capture
linear and nonlinear responses. The framework of assigning
a certain functional form to the effective viscosity may also
be extended to predict the nonlinear behavior of other soft
matter assemblies at fluid-fluid interfaces. In systems
involving unsteady flows, appropriate interfacial constitu-
tive equations would be used, including features such as an
elastic modulus.
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