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Flows in fluid layers are ubiquitous in industry, geophysics, and astrophysics. Large-scale flows in thin
layers can be considered two dimensional with bottom friction added. Here we find that the properties of
such flows depend dramatically on the way they are driven. We argue that a wall-driven (Couette) flow
cannot sustain turbulence, no matter how small the viscosity and friction. Direct numerical simulations
(DNSs) up to the Reynolds number Re ¼ 106 confirm that all perturbations die in a plane Couette flow. On
the contrary, for sufficiently small viscosity and friction, perturbations destroy the pressure-driven laminar
(Poiseuille) flow. What appears instead is a traveling wave in the form of a jet slithering between wall
vortices. For 5 × 103 < Re < 3 × 104, the mean flow in most cases has remarkably simple structure: the
jet is sinusoidal with a parabolic velocity profile, and vorticity is constant inside vortices, while the
fluctuations are small. At higher Re, strong fluctuations appear, yet the mean traveling wave survives.
Considering the momentum flux barrier in such a flow, we derive a new scaling law for the Re dependence
of the friction factor and confirm it by DNS.
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A century and a half of ever-expanding studies of
turbulence onset in three-dimensional channel and pipe
flows has brought a wealth of fundamental and practical
knowledge; see, e.g., Ref. [1] and references therein. The
wall-driven flow is linearly stable, while the flow driven by
pressure gradient or other bulk force can be unstable for
large enough values of the Reynolds number (Re) [2,3].
Notwithstanding this difference and irrespective of linear
stability, all flows undergo the transition to turbulence at
sufficiently high Re when finite-amplitude perturbations
persist [1]. Some perturbations can take the form of
traveling waves of finite amplitude [4–6], yet all patterns
are unstable and transient, so the 3D flow is quite irregular
already at moderate Re [1,7].
In contrast, for quasi-two-dimensional channel flows, it

is not even known if they are able to produce turbulence at
all. This is despite a rapidly expanding interest motivated
by the needs of industry, astrophysics, geophysics, and
laboratory experiments in fluid layers and soap films
(see, e.g., Refs. [8,9], the recent collection [10], and the
references therein). To the best of our knowledge, in all
experiments in layers and films, external forces and
obstacles were needed to produce turbulence (see, e.g.,
Ref. [11]), and it is not known if such turbulence is able to
sustain itself in a channel flow past an obstacle. The reason
is that 2D ideal hydrodynamics conserves energy (squared
velocity) and enstrophy (squared vorticity). Force at inter-
mediate scales can generate two-cascade turbulence with
energy (enstrophy) cascading upscale (downscale). On the

contrary, in a wall or pressure-driven flow, the input is at
the largest scale, so that it is a priori unclear what kind
of turbulence, if any, can exist in the limit of low viscosity
and friction.
Combining analytic theory and direct numerical simu-

lation (DNS), we answer here this fundamental question.
We describe how turbulence appears and develops in
pressure-driven flows: as a “snake” traveling wave—a
jet meandering between counterrotating vortices and pre-
serving its form even for strong fluctuations; see Fig. 1.
Even more remarkably, we find that wall-driven flows relax
to the laminar state for all values of viscosity and friction
used, and they remain laminar for as long as we are able to
follow. Both findings substantially widen our fundamental
perspective on turbulence and may lead to diverse practical
applications.
We start our consideration by analyzing the interplay

between momentum and vorticity averaged along the
channel. Convection carries vorticity unchanged, while
viscosity diffuses it, so that any turbulence must lead to
vorticity mixing and homogenization. We thus expect the
mean cross-channel vorticity profile in a turbulent flow
(outside a viscous wall layer) to be more flat than the
laminar profile. On the other hand, turbulence transfers
momentum to the walls faster than a laminar flow, thus
increasing the drag and decreasing the mean velocity.
Averaged along the channel, vorticity is the transverse
derivative of the velocity. The requirements on momentum
and vorticity profiles are compatible for pressure-driven
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flows where turbulence flattens both the velocity and
vorticity profiles. On the contrary, the mean velocity profile
is monotonic for wall-driven flows, so decreasing velocity
in the bulk while keeping it at the walls would make the
vorticity profile more nonuniform. We then conclude that
the momentum and vorticity requirements on turbulence in
2D wall-driven flows are contradictory.
For a more formal argument, consider the 2D Navier-

Stokes equation with unit density and a uniform friction
rate α:

∂tvþ ðv · ∇Þv ¼ νΔv −∇p − αv; ∇ · v ¼ 0: ð1Þ

Already for the frictionless case (relevant, e.g., for flows on
superhydrophobic surfaces [12] or soap films under low air
pressure), a dramatic difference from the 3D case follows
from the relation between momentum and vorticity fluxes,
unique for two dimensions. Denote u, v the fluctuating
velocity components respectively parallel and perpendicular
to the walls, which are placed at y ¼ �L=2 and move with
�V=2. Let us average the x component of Eq. (1) with α ¼ 0
both over time and over x (zonally). The result can bewritten
using vorticity, ω ¼ ∇ × v:

∂yðνΩþ huviÞ ¼ νΩy − hvωi ¼ h∇pi: ð2Þ

Here ΩðyÞ is the vorticity averaged over time and x.
Turbulence adds extra fluxes of x momentum and vorticity,
related by the Taylor theorem: ∂yhuvi ¼ −hvωi. When
h∇pi ¼ 0, the first part of Eq. (2) gives the constancy of
the cross-flow momentum flux, whose direction is set by

viscosity at the wall. On the other hand, the second part
of Eq. (2) gives hvωi ¼ νΩy—that is, the existence of
turbulence would absurdly mean that the vorticity flux is
directed along the mean vorticity gradient. In other words,
the right direction of themomentum flux (from large to small
values) requires the wrong direction of the vorticity flux
(from small to large) in 2Dwall-driven flows. In essence, the
laminar profile U ¼ Vy=L already has a constant vorticity;
one cannot excite turbulence to make it more flat. If we
add bottom friction, then the laminar profile gets an
inflection point, but it is a vorticity minimum, so that the
flow is getting more stable according to the Fjortoft
criterium [13]. Indeed, adding to the viscous flow, extra
dissipation due to bottom friction could diminish fluctua-
tions but cannot create them.
These nonrigorous but plausible arguments suggest

that a wall-driven flow must relax to the laminar state,
UðyÞ ¼ V sinhðy ffiffiffiffiffiffiffiffi

α=ν
p Þ=2 sinhðL ffiffiffiffiffiffiffiffi

α=ν
p

=2Þ, for any ν and
α. This is supported by DNSs whose details are described in
the Supplemental Material [14]. Starting from different
multivortex configurations, we observe different transients
and eventual relaxation to the laminar flow in all cases.
These results strongly suggest that the laminar wall-driven
flow is the global attractor in two dimensions, no matter
how small the viscosity and friction. To the best of our
knowledge, this is the first such example in the whole fluid
mechanics.
From another perspective, the impossibility of turbulence

in a 2D wall-driven flow can be related to sign-definite mean
vorticity and shear. Even when we initially create vortices of
both signs, the vorticity of the sign opposite to the mean is
destroyed by the shear, while the same-sign vorticity is
homogenized back into the laminar profile. On the contrary,
for pressure-driven flows, the mean vorticity has opposite
signs at opposite walls, so that turbulence cannot homog-
enize vorticity back to the laminar profile.
We turn now to pressure-driven flows and define the

dimensionless control parameters ReA ¼ A1=2L3=2=ν and
RuA ¼ A1=2=αL1=2. Here A ¼ h∇pi is either the mean
pressure gradient divided by density or the gravity accel-
eration for soap films. There is a rich history of modeling
2D Navier-Stokes channel flows—see, e.g., Refs. [3,15,16]
and the references therein. In particular, extensively studied
were subcritical instability of the laminar flow at Rec ¼
5772 (where Re ¼ 3LŪ=4ν and Ū is the flow rate) [17] and
streamwise localization of the traveling wave at Re < Rec
[16]. To the best of our knowledge, the largest, Re ¼ 104,
was achieved in Refs. [15,18], where transitional turbu-
lence was observed and fully developed turbulence was
estimated to appear around 2 × 105, which was beyond
computer resources back then. Here we explore higher
Re never treated before; we also add uniform friction to
relate to real fluid layers.
We focus on a solution that appears from a generic initial

condition in a wide interval of Re. To much surprise, we

(a)

(b)

(c)

FIG. 1. Vorticity snapshot for pressure-driven flows at (a) Re ¼
1.42 × 104 with streamlines. (b) Vorticity at Re ¼ 2.94 × 105.
(c) Vorticity averaged over 7000 snapshots (distance 1400L) in
the frame of the negative vortex for Re ¼ 2.94 × 105.
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find that in relatively short channels with periodic boundary
conditions, a periodic traveling wave is a long-time
attractor at intermediate Re, and even a strongly turbulent
state at high Re has the mean profile of such a form (Fig. 1).
The transition to the steady state is slow and can be
nonmonotonic. In all cases, pressure-driven flows relax
to either of two states: the laminar unidirectional flow or a
“snake” traveling wave. In the latter case, most of the flux
occurs along a sinusoidal jet meandering between two sets
of counterrotating vortices rolling along the walls. An
example of quite turbulent evolution which results in a
remarkably simple flow is shown in Fig. 2. While we
cannot rule out switches between the states (as in 3D pipe
flow) on an astronomical time scale, we have not seen them
once the statistical steady state is established.
The time of transients can be reduced by starting with a

low-amplitude perturbation to mimic the naturally devel-
oping instability of the laminar flow [2,17]. Then the
early evolution shows well-defined exponential growth.
Modeling a 12L channel, we applied perturbations with
the wavelengths λpert ¼ 3, 4, 6, 12L for ReA ¼ 894 and
RuA ¼ 179. The largest growth rate γ was found for
λpert ¼ 4L and is shown in Fig. 3(a). In the ReA-RuA
plane, the γ ¼ 0 line separates laminar and sinuous flows
in Fig. 3(b). The inset in Fig. 3 shows the Reynolds
number as a function of RuA for ReA ¼ 894. When
friction is large, the flow is laminar. As friction is
reduced, the laminar flow becomes faster until it tran-
sitions to the sinuous state at RuA ≈ 100 when the flow
rate drops. So, one can speed up the flow by increasing
friction, facilitating transition from the sinuous to the
laminar regime.
Close to the threshold ReA, RuA, the saturated sinuous

flow in the 4L and 12L channels has the wavelength,
λ ¼ 4L, of the fastest-grown perturbation. At higher ReA,
RuA levels, the initial growth of the 4Lmode is followed by
the transition to a shorter wavelength: as ReA and RuA
increase, we observe λ ¼ 3L, 2.4L, and eventually 2L.
Reducing dissipation further, we observe a sinuouslike flow
with strong fluctuations, which we call “turbulence.”
Figure 3(a) shows the growth rates for 4L perturbations,

where the marks “4L,” “2L,” and “T” indicate long-term
saturated states in the 4L domain.
Let us now take a closer look at these long-term states for

frictionless systems. Traveling waves in short channels at
intermediate Re were observed before [15,19,20]. Right
above Rec [17], in the interval 5 × 103 ≲ Re≲ 3 × 104

(ReA ≲ 1500), all saturated flows in the 4L channel have a
form of sinuous traveling wave with small temporal
variations. In the longer 12L channel, the moderate-Re
runs (Re¼14200, ReA ¼ 894 and Re ¼ 6320, ReA ¼ 447)
saturate at channel-filling periodic trains, which fit six and
five wavelengths, respectively. Closer to the laminar thresh-
old, for Re ¼ 4620 (ReA ¼ 316), we have observed stream-
wise localization or train breakdown [16,21], where one
out of four pairs of counterrotating vortices was periodi-
cally disappearing (see the Supplemental Material [14] for
details).
For 400≲ ReA ≲ 1500, the spatially periodic mean flow

in a comoving reference frame has a beautifully simple
structure: The jet is sinusoidal with an approximately
parabolic velocity profile, while vorticity is essentially
constant across each vortex, which appears as a plateau
in the vorticity cross sections in Fig. 4(a). Constant vorticity
inside the vortices can be explained in the spirit of Ref. [22]
as a consequence of viscosity being very small and yet
finite: The former means that vorticity must be constant
along the (closed) streamlines, while the latter means
constancy across the streamlines in a stationary flow.
The same argument suggests the vorticity flux constancy
across the jet, so that vorticity changes linearly between
opposite values at the separatrices.
At ReA ≈ 1500, the flow becomes turbulent. Chaotic

small vortices are created at the walls and swept into a big
vortex of the same sign, thus feeding the large-scale flow.
For ReA ≳ 2000 and up to 8000 (Re ¼ 2.94 × 105), the
relative level of velocity and vorticity fluctuations remains
constant within our accuracy. All turbulent flows observed
in the 4L channel have a pronounced large-scale structure
of a jet and a 2L periodic chain of vortices, similar to the

(a)

(b)

(c)

(d)

(e)

FIG. 2. (a)–(e) Evolution of 12L perturbation for ReA ¼ 894 at
tUlam=L ¼ 312, 370, 764, 2199, and 5079, respectively.
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sinuous flow. This is seen from the comparison of Fig. 1(a)
with Fig. 1(c) averaged in the frame of the stronger negative
vortex (the other vortices are blurred by fluctuations).
While horizontally averaged Ū,Ω for sinuous and turbulent
flows are of similar shape, time averaging exposes a
qualitative difference: in the turbulent vortex, the mean
vorticity has a peak rather than a plateau; see Figs. 4 and 1.
From the topology of the mean flow, seen in Fig. 1(a),

we now derive the relation between the applied force A and
the flow rate Ū in the limit of large ReA. The transfer of
momentum (or equivalently vorticity) from the center to the
walls encounters two separatrices: one separating the vortex
from the jet, and one separating it from the wall layer.
Vorticity is diffused by viscosity across the separatrix, and
then is carried fast by advection inside the vortex, and then
transferred by viscosity towards the wall. There are thus
two viscous bottlenecks (transport barriers) in this transfer:
on the jet-vortex separatrix and on the wall boundary layer.
The width l of the separatrix layer can be estimated by
requiring the diffusion time l2=ν to be comparable to the
turnover time L=U, which gives l ≃ ðνL=UÞ1=2 and the
effective viscosity νe ≃ Ul ≃

ffiffiffiffiffiffiffiffiffiffi
νUL

p
(we do not distinguish

U and Ū in the estimates). The momentum flux due to
force must be carried by the viscosity towards the walls,
A ≃ νeU=L2, which gives the flow rate and turbulent
viscosity:

Re ≃
UL
ν

≃
L2A2=3

ν4=3
¼ Re4=3A ; νe ≃ νRe2=3A : ð3Þ

To describe the wall layer, note that v≡ 0 at a wall.
Integrating Eq. (2) over y from wall to wall, we obtain
that ΩðL=2Þ ¼ −U0ðL=2Þ ¼ AL=2ν is always equal to the
laminar value; see the inset in Fig. 4(b). Now we estimate
the width of the wall layer, U=U0ðLÞ ≃ LA2=3ν−1=3=
ALν−1 ≃ ν2=3=A1=3 ≃ l, which confirms that Eq. (3) is
self-consistent. Alternatively, one derives Eq. (3) by stating

that the momentum flux is proportional to the velocity
difference across the layer: AL ≃UUl ≃U2l=L.
The appearance of thin boundary layers at large Re

(revealed in detail in the Supplemental Material [14]) must
lead to a sharp maximum of the vorticity derivative:
maxΩy ≃ΩðL=2Þ=l ≃ LA4=3ν−5=3, which is much larger
than ΩyðL=2Þ ¼ A=ν, derived from Eq. (2) at a wall.
Away from the wall layer, turbulence suppresses the mean
vorticity gradient, as seen in the insets in Figs. 4(b)
and 5(b).
Numerical simulations support Eq. (3); see Fig. 5. The

scaling Re ∝ Re4=3A continues through both weakly and
strongly fluctuating regimes, even though the proportion-
ality constant slightly changes at the transition [see the
inset in Fig. 5(a)]. The mean vorticity at the boundary layer
also follows the scaling in Eq. (3), as seen in the inset
in Fig. 5(b) plotted for the rescaled quantity Ω̃y ¼ ΩyðyÞ=
maxΩy ¼ νΩy=ARe

2=3
A . Since Eq. (3) follows from the

spanwise structure, it holds approximately even for the
broken train [the leftmost cross in Fig. 5(a)]; the breakdown
increases the flow rate a bit, apparently by widening the jet.
Let us discuss the role of the turbulent fluctuations.

Flow dissipates energy and enstrophy, and the viscous
dissipation rate of the former is proportional to the latter:
νhj∇vj2i ¼ νhω2i. Law (3) gives the same estimate for the

pressure work and the dissipation rate: νΩ2 ≃ νU2=lL≃
A5=3Lν−1=3 ≃ AŪ—that is, the mean flow is able to dis-
sipate energy by itself. Indeed, the DNS data in Fig. 4 show
that turbulent enstrophy fluctuations are smaller than mean,
while velocity fluctuations are negligible. Enstrophy dis-
sipation is determined by the vorticity gradients shown
in Fig. 5(b). The mean gradient follows Eq. (3), while
variance (and the enstrophy dissipation) near the wall is
much larger and grows with Re faster than the mean.
The numerics thus confirm that the enstrophy is dissipated
by turbulence rather than by the mean flow.
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According to Eq. (3), the friction factor of the 2D
channel, AL=U2, decays as Re−2=3A ∼ Re−1=2, faster than
in 3D, where one finds the empirical Blasius law
Re−1=4 for moderate Re and the logarithmic decay
for large Re. Such Re−1=2 scaling was actually observed
in decaying grid-generated turbulence in soap film
experiments and hypothesized to be related to ens-
trophy cascade [23]. Here we have shown that this law
is quite universal.
The law (3) is expected to hold when the time of the

momentum transfer to the wall, U=A ≃ LðAνÞ−1=3, is
shorter than the friction time α−1; otherwise friction
imposes a linear regime with U ∝ A. This requires a
force exceeding both viscous and friction thresholds:
A ≫ ν2L−3, ðαLÞ3=ν. We discuss briefly the role of the
third dimension and the layer thickness h. For planar
flows with an open top and no-slip bottom, α ¼ 3ν=h2,
while vertical motions invalidate the very notion of α. An
ability of moving walls to excite turbulence must depend on
h: we expect turbulence when the wall Reynolds number
Vh=ν becomes large. How wall-generated 3D turbulence
will be distributed over a wide, thin channel deserves future
studies, particularly on account of strong planar flows
suppressing vertical motions [24]. For pressure-driven
flows, the validity of Eq. (3) requires l ≃ LRe−2=3A ¼
LRe−1=2 ≫ h. As Re approaches ðL=hÞ2, we expect the
decay of the friction factor with Re to slow down and
eventually converge to the 3D values observed in rectan-
gular ducts [25].
A traveling wave pattern thus enhances effective vis-

cosity and suppresses the flow rate compared to the laminar
regime. It is instructive to compare Eq. (3) with the
enhancement of diffusivity κ by the factors Pe1=2 for
cellular [26,27] and Pe1=3 for wall-attached flows [28],
where Pe ¼ UL=κ. That enhancement leads to acceleration
of flame fronts [29] and other phenomena. Similar to
Eq. (3), interplay between small noise and advection
universally leads to the 1=3 scaling with noise amplitude:
for the tumbling frequency of a polymer in a shear flow
[30], or for the Lyapunov exponent of an integrable system
under stochastic perturbation [31].
To conclude, wall-driven 2D flows relax to laminar at all

values of viscosity and friction used. We described the
traveling wave which replaces the pressure-driven laminar
flow. In distinction from 3D, as the Reynolds number
grows, the fluctuations increase, yet the mean flow pre-
serves its traveling-wave “snake” form. A remarkable
property of 2D snakes are separatrices, which modify
momentum transport to the walls, leading to a new scaling
law for the friction factor.
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