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We observe the joint spin-spatial (spinor) self-organization of a two-component Bose-Einstein
condensate (BEC) strongly coupled to an optical cavity. This unusual nonequilibrium Hepp-Lieb-Dicke
phase transition is driven by an off-resonant Raman transition formed from a classical pump field and the
emergent quantum dynamical cavity field. This mediates a spinor-spinor interaction that, above a critical
strength, simultaneously organizes opposite spinor states of the BEC on opposite checkerboard
configurations of an emergent 2D lattice. The resulting spinor density-wave polariton condensate is
observed by directly detecting the atomic spin and momentum state and by holographically reconstructing
the phase of the emitted cavity field. The latter provides a direct measure of the spin state, and a spin-spatial
domain wall is observed. The photon-mediated spin interactions demonstrated here may be engineered to
create dynamical gauge fields and quantum spin glasses.
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The strong interaction between quantum matter and
light provided by cavity quantum electrodynamics (QED)
provides unique opportunities for exploring quantum
many-body physics away from equilibrium [1–3]. One
particularly rich setting in which to explore such physics is
provided by systems realizing the driven-dissipative (Hepp-
Lieb) Dicke model of two atomic states strongly coupled to
an optical cavity field [1,3]. In this work, we present the
observation of a nonequilibrium Dicke superradiant phase
transition involving the spontaneous ordering of coupled
atomic spin and spatial motion [4]. While previous work
used atom-photon interactions to engineer spatial [5] or
spin [6] self-organization, this work combines the two in a
demonstration of spinor self-organization. Moreover, in
this present system, cavity photons mediate an effective
position-dependent spin-spin interaction; the resulting
transverse Ising model that is realized opens future direc-
tions toward the study of artificial quantum spin glasses and
neural networks in a driven-dissipative setting [7–16].
Moreover, with minor modification, this system could
manifest dynamical gauge fields [17–22], resulting in
topological superfluids and exotic quantum Hall states.
As originally proposed [23], the nonequilibrium Dicke

model describes an Ising (Z2) symmetry-breaking transi-
tion of a spin-1=2 system coupled to a single cavity mode.
The phase transition of the nonequilibrium Dicke model is
closer to a classical than a quantum transition, though
distinct from both [3,24–27]. Experimentally, the non-
equilibrium Dicke model could be realized by freezing
the spins in a 2D lattice of period λ=2, where λ is
approximately the wavelength of both the pump and cavity

fields. The spins are disordered below the transition thresh-
old and the cavity field is in a near-vacuum state. Above a
pump threshold, the spins order in a λ-periodic checker-
board pattern [either up (down) on the black (white) sites or
vice versa] allowing the atoms to superradiantly scatter
photons into the cavity mode. The emergent coherent field
further orders the spins in a self-reinforcing manner. Cavity
dissipation stabilizes the driven, emergent spin order, and
the phase of the cavity emission locks to either 0 or π
relative to the pump phase depending on the symmetry-
broken state. Superradiant cavity emission of a spin-1
Dicke transition was observed with thermal atoms coupled
to a cavity [6,28].
Both pseudospin organization and superradiant emission

have been observed in an alternative form of the non-
equilibrium Dicke transition [5,29,30]. In that version, a
Bose-Einstein condensate (BEC) matter wave is coupled to
a cavity, where two different motional states play the role of
up and down spin components. The atoms occupy either
the black or white checkerboard sites (spaced λ apart) of the
emergent 2D lattice. The pseudospin organization was
detected by observing Bragg peaks at a momentum con-
sistent with a checkerboard lattice together with detection
of the relative phase locking of the pump and superradiant
cavity emission [5]. The organized state may be called a
“density-wave polariton condensate” in recognition of the
joint light-matter-wave nature of the quasiparticles in the
macroscopically occupied and coherent density-photon
mode [31]. Roton instabilities and the extended Bose-
Hubbard model have been realized [32–34], and simi-
lar systems employing a few degenerate cavity modes
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have created a supersolid [35], an intertwined spatial
order [36], and supermode-density-wave polariton conden-
sates [31]. A superradiant motional transition also occurs in
cavities with spinless thermal atoms [37–39]. Self-organi-
zation of cold thermal gases and laser arrays due to optical
feedback from a single mirror have also been observed
[40–44].
What type of nonequilibrium phase transition arises when

the pump and cavity fields couple atomic motion and spin?
Reference [4] describes such a system as a nonequilibrium
spin-spatial Dicke superradiant phase transition in which
atomic spins can flip while scattering photons into the
cavity, picking up recoil momentum in the process [45].
This creates a spin-decorated checkerboard lattice, whose
state is a “spinor density-wave-polariton condensate.”
The spinor density wave is described by the superposition
of spinor operators ψ̂↑;↓ðrÞ described below, and arises
due to a spinor-spinor interaction proportional to
ψ̂†
↑ðr0Þψ̂†

↓ðrÞψ̂↓ðr0Þψ̂↑ðrÞ. We note that this scenario is
distinct from an emergent texture of a two-component
BEC recently observed in a miscible-immiscible transition
created by a state-dependent optical lattice arising from a
nonequilibriumDicke transition [57]. In this experiment, the
cavity mediated a density-density interaction ρþ1ðrÞρ−1ðr0Þ
between two Zeeman states m ¼ �1 of a BEC and the
two-component texture emerged above a critical ratio
of the relative scalar and vector polarizabilities of the light
fields.
We now describe the experimental system before report-

ing our observations of the superradiant spinor phase
transition. Figure 1(a) shows the experimental configura-
tion; see Refs. [58,59] for details. We trap within the cavity
a BEC of 4.1ð3Þ × 105 87Rb atoms in the jF;mFi ¼ j1;−1i
state with Thomas-Fermi radii ðRx; Ry; RzÞ ¼ ½10.3ð1Þ;
9.4ð1Þ; 12.8ð2Þ� μm. These are smaller than the w0 ¼
35 μm waist of the TEM0;0 cavity mode [60]. A
crossed optical dipole trap confines the BEC and
is formed by a pair of 1064-nm laser beams propa-
gating along x̂ and ẑ, respectively; its frequencies
are ðωx;ωy;ωzÞ ¼ 2π × ½58ð1Þ; 63ð1Þ; 47ð1Þ� Hz.
To engineer the spinor Dicke Hamiltonian, we couple

two internal states of 87Rb, jF;mFi ¼ j1;−1i≡ j↓i and
jF;mFi ¼ j2;−2i≡ j↑i, through two cavity-assisted (two-
photon) Raman processes; see Fig. 1(b). A bias magnetic
field of ∼2.83 G is applied along þẑ, the direction of the
quantization axis, resulting in an energy difference ωhf ≈
6.829 GHz between j↑i and j↓i due to hyperfine splitting
and Zeeman shifts. The Raman processes are created by the
cavity and transversely oriented pump fields. The cavity
field is that of the TEM0;0 mode at frequency ωc with
coupling strength g ¼ g0Ξðx; zÞ, where g0 is the maximum
single-atom coupling rate and Ξðx; zÞ is the transverse-
mode profile. The pump beams have frequency ω� such
that ωþ ¼ ω− þ 2ðωhf þ δÞ, where δ is the Raman detun-
ing. Each pump field is far detuned from the atomic excited

FIG. 1. (a) Experimental setup and detection techniques. The
two Raman pump beams (red and blue), polarized along the
cavity axis, are combined and retroreflected off the same
mirror to create a phase-stable lattice (purple). The cavity
mode (green), imaged onto an EMCCD camera, interferes with
a local oscillator at an angle (also green). This provides the
spatial heterodyne signal (blue lines) for the holographic
reconstruction of the cavity field amplitude and phase.
Momentum of the BEC (scarlet) is absorption imaged in time
of flight (scarlet beam). (b) Double Raman scheme for
coupling two 87Rb Zeeman states. (c) Real-space illustration
of the transition from randomly positioned atoms below
threshold (left) to a checkerboard spinor order in an emergent
2D optical lattice above threshold (right-hand panels). Atoms
are in a ẑ (x̂) spin-polarization state below (above) threshold,
where j⇆i ¼ j↓i � j↑i. The Z2-order breaking selects
one of two states in which j→i are at the sites colored black
(right, top) or white (right, bottom). Dashed (solid) lines in
left-hand panel are the nodes of the emergent cavity (pump)
field. Solid lines in the right-hand panels are the nodes
of the above-threshold 2D optical lattice. (d) Momentum-space
illustration of spin state after sequential photon recoils from
the pump and cavity fields. The j↑i spin component has
phase �1 depending on which Z2 state emerges above
threshold. Arrow colors depict pathway of optical transition
in (b).
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state by Δ� with coupling strengths Ω�. Their mean
frequency ω̄ ¼ ðωþ þ ω−Þ=2 is detuned by Δc ¼ ω̄ − ωc
from the cavity. The pump beams are retroreflected off the
same mirror to create a phase-stable lattice; see Ref. [46] for
details.
This coupling realizes the interaction Hamiltonian

between the two components of the spinor state ψ̂ðrÞ ¼
½ψ̂↑ðrÞ; ψ̂↓ðrÞ�⊺ given by [4,46]

Hint ¼
Z

dr 2ησ̂xðrÞðâþ â†Þ cos krx cos kry; ð1Þ

where the coupling strength η is equal for both Raman
transitions, â is the annihilation operator for the intracavity
field, and σ̂xðrÞ ¼ ½ψ̂†

↑ðrÞψ̂↓ðrÞ þ ψ̂†
↓ðrÞψ̂↑ðrÞ�=2. Given

the initial state j↓i, and within the single recoil scattering
limit [61], the spinor components take the form ψ̂↓ðrÞ ¼
ĉ↓ψ0ðrÞ and ψ̂↑ðrÞ ¼ ĉ↑ψ1ðrÞ, with the total atom number

N ¼ ĉ†↑ĉ↑ þ ĉ†↓ĉ↓. The zero- and one-recoil wave func-
tions equal ψ0 ¼ 1 and ψ1ðrÞ ¼ 2 cos krx cos kry, with the
recoil momentum ℏkr ¼ 2πℏ=λ. The form of ψ1ðrÞ is due
to the 2D optical lattice emerging from the crossed pump
and cavity standing-wave fields.
Performing the spatial integral and defining pseudospin-

1=2 operators as Ĵz ¼ ½ĉ†↑ĉ↑ − ĉ†↓ĉ↓�=2 and Ĵ� ¼ ĉ†⇅ĉ⇵, we
arrive at the spinor Dicke-model Hamiltonian [46]:

HD ¼ −Δ̃câ†âþ ð2ωr − δ̃ÞĴz þ
ηDffiffiffiffi
N

p ðĴþ þ Ĵ−Þðâþ â†Þ:

ð2Þ

The Ĵ operate on the coupled pseudospin-1=2 spin-spatial
degree of freedom. The recoil frequency is ωr ¼ ℏk2r=2m,
Δ̃c is Δc minus the dispersive light shift, δ̃ ¼ δ − ωs, where
ωs is the ac Stark shift, and ηD ¼ ffiffiffiffi

N
p

η=2. The first two
terms account for the bare cavity energy and the energy
shift between the spinor pseudospin states, respectively.
The organized system exhibits a nonzero order parameter

Θ≡ R
dr cos krx cos kryσ̂xðrÞ=N above a critical coupling

strength ηD > ηth, where ηth ¼ ½Δ̃cð2ωr − δ̃Þ�1=2=2 and
Θ ¼ �1 in the Z2-symmetry-broken state [62]. As shown
in Fig. 1(c), the organized state is one of the j⇆; bi þ
j⇄; wi states of a spin-decorated λ-periodic checkerboard,
where j⇆i ¼ j↓i � j↑i are the σ̂x eigenstates and jb=wi are
the black or white checkerboard sites. The Z2 broken
symmetry is reflected in the choice between j←i or j→i
residing on black sites.
Though staggered, the spinor pseudospin state is ferro-

magnetic. This can be seen by integrating out the cavity
field and rewriting Eq. (1) as an Ising Hamiltonian [46]:

HIsing ∝
X

Jij coskrxi coskrxj coskryi coskryjσ̂ixσ̂
j
x: ð3Þ

The cosine terms can be incorporated into the σ̂x through a
local gauge rotation. This results in a ferromagnetic,
infinite-range Jij coupling of the locally rotated spin
operators ˆ̄σix [46]. Figure 1(d) presents the momentum-
space illustration of the transition. Above threshold, coher-
ent Raman scattering creates a superposition of the atoms’
initial zero-momentum-j↓i state and the�j↑i state coupled
to a momentum-recoil state composed of the four super-
imposed k ¼ fð�kr;�krÞ; ð�kr;∓ krÞg states.
We now present the observation of this organized spinor

state in momentum space. As in previous work [5,6,31],
superradiant cavity emission heralds the nonequilibrium
Dicke phase transition; see Fig. 2(a). We first demonstrate
superradiance of the model by linearly increasing the power
in the Raman beams through the superradiant threshold
with Δc ¼ −4 MHz and δ ¼ −10 kHz [46].
We then use spin-selective absorption imaging to detect

the momentum distribution for each spin species independ-
ently during time-of-flight expansion of the gas. This
method records the momentum of both spin components
in a single realization of the experiment, allowing for
observation of the spinor state associated with the spin-
spatial self-ordering [46]. The spin-dependent time-of-
flight images are overlain in Figs. 2(b) and 2(c). Below
threshold, Fig. 2(b) shows only j↓i, zero-momentum atoms
(and Bragg peaks from the pump lattice), while above

FIG. 2. (a) Cavity emission detected by single photon counters
versus time plotted with the concomitant linear increase in lattice
depth (proportional to pump intensity). The superradiant tran-
sition threshold is at t ≈ 0.55 ms. (b),(c) Spin-sensitive absorp-
tion images of the atomic cloud in time of flight reveal the optical
density (OD) of the momentum distribution of both spin states at
the times indicated in (a). (b) All atoms are in j↓i below thres-
hold and either at zero momentum or at k ¼ ð�2kr; 0Þ due to
pump-lattice diffraction. (c) Above threshold, atoms have under-
gone a spin flip to j↑i accompanied by a k ¼ fð�kr;�krÞ;
ð�kr;∓ krÞg momentum kick. The resulting Bragg peaks are
spin colored in the same pattern as in Fig. 1(d).
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threshold, Fig. 2(c) shows that spin-decorated Bragg peaks
appear in a fashion expected from Fig. 1(d). The absence of
j↑i atoms at k ¼ 0 and j↓i atoms at the first-order
momentum peaks indicates that spinor order has emerged
in the form of a λ-periodic checkerboard pattern in the
j⇆i basis.
Above threshold, the frequency of the superradiant

cavity emission should be locked at ω̄ [23]. Moreover,
the phase of the emission should lock to either 0 or π
(depending on the Z2 broken symmetry) with respect to a
local oscillator (LO) field at ωLO ¼ ω̄þ δLO. This field is
coherently generated from one of the pump fields. To
establish that both effects occur, we measure the phase of
the cavity field emission in a spatially resolved fashion
using holographic reconstruction [46]. Briefly, the LO field
ELO is shone at an angle onto the same electron-multiplying
charge-coupled device (EMCCD) camera detecting the
cavity emission Ec, as depicted in Fig. 1(a). If the LO
has the appropriate frequency (i.e., δLO ¼ 0), the phase
locking between the superradiant emission and
the pump beam results in spatial interference fringes on
the camera, realizing a spatial heterodyne measurement of
cavity field phase and amplitude [46].
The amplitude of the fringes is proportional to

χðδLOÞjEcELOj, where the reduction of fringe contrast is
characterized by the factor χðδLOÞ and is plotted in Fig. 3.
Factors contributing to this reduction are discussed in
Ref. [46]. A distinct peak appears at δLO ¼ 0, as expected,
while a significant averaging out of fringe contrast is
manifest for detunings larger than 1=T, where T ¼ 2 ms
is the EMCCD integration time, due to a nonzero fringe
phase velocity. This demonstrates a unique feature of the
spinor Dicke model: cavity emission is detuned exactly
halfway between the transverse pump beams, not at either

or both of their frequencies. The high contrast fringes at
δLO ¼ 0 shows that the phase is both stable and spatially
constant over the superradiant emission pattern of the
TEM0;0 mode.
We now present a measurement of the relative phase

locking of the cavity and pump fields. This is determined
both by observing a π phase change of the superradiant
emission across an induced spinor domain wall and by
observing a nodal structural factor in the first-order atomic
Bragg peaks caused by this domain wall. To create adjacent
spinor domains with opposite order parameter Θ, the above
experiment is repeated, but with the cavity frequency tuned
near the first-order transverse-mode TEM1;0; ω̄ is set to
Δc ¼ −1 MHz [46]. The field profile Ξðx; zÞ1;0 of this
mode changes sign across the x ¼ 0 nodal line in the x-z
plane. The node appears in the superradiant cavity emission
amplitude and phase as shown in Fig. 4(a). The spinor order
compensates for this sign change in the cavity field by flip-
ping the Z2-symmetry-broken state from Θ ¼ �1 to ∓ 1
across the nodal line. That is, the spin-spatial checkerboard
pattern shifts by λ=2. The system does so to allow all the
atoms to superradiantly emit into the cavity in phase,
thereby minimizing the organization threshold. This effect
has been discussed for purely spatial organization [31].
Holographic reconstruction of the emitted cavity field

reveals the existence of this π phase shift on either side of

FIG. 3. Fringe amplitude factor χ as function of local oscillator
frequency detuning δLO. The cavity is pumped above threshold at
a detuning Δc ¼ −4 MHz from the TEM0;0 cavity resonance.
The camera integration time is 2 ms. Insets show the spatial
heterodyne signal—with local oscillator field subtracted for
clarity—for both a maximal χ and where fringes average out
at δLO ¼ 3 kHz. Error bars represent 1 standard deviation over
five repetitions.

FIG. 4. (a) Holographic reconstruction of cavity field amplitude
and phase for a cavity locked near the TEM1;0 mode whose
spatial profile Ξðx; zÞ exhibits a sign flip at x ¼ 0. The phase of
the right-hand lobe is defined as 0 with respect to the local
oscillator. The phase shows a jump of exactly π across the cavity
center, demonstrating the fixed relative phase difference between
the Θ ¼ �1 states with respect to the local oscillator phase.
(b) Observed spin-density structure factor. The small-k trans-
verse-mode structure appears as a node in the first-order Bragg
peaks. The combination of atomic and photonic observations
indicates the existence of a domain wall in the spinor.
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the nodal line; see Fig. 4(a). The line defect also appears in
the momentum distribution of the atoms shown in Fig. 4(b),
where a node in the first-order Bragg peaks appears due to
the structure factor in the spinor organization [31]. Together
with the phase flip of π, the nodal structure factor implies a
spinor domain wall along ð0; zÞ. In degenerate-mode
cavities, such as the adjustable-length near-confocal cavity
system of Refs. [31,58], interference among modes could
lead to topological spin-defect textures and local spin-spin
interactions [7,59].
We have observed a spinor nonequilibrium Dicke super-

radiant phase transition among spinful atoms in a BEC
coupled to a cavity. A domain wall in the resultant spinor
density-wave polariton condensate was observed. The
photon-mediated, Ising-type spin-spin interactions realized
here may enable the study of quantum spin glass physics
[7,8,10]. Such systems may lead to quantum dissipative
neuromorphic computing devices [9,11–16]. Lastly, a
simple reconfiguration of the pump fields will enable the
generation of dynamical spin-orbit coupling and gauge
fields [17–22].
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