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By applying a circularly polarized and slightly blue-detuned microwave field with respect to the first

excited rotational state of a dipolar molecule, one can engineer a long-range, shallow potential well in the

entrance channel of the two colliding partners. As the applied microwave ac field is increased, the long-

range well becomes deeper and can support a certain number of bound states, which in turn bring the value

of the molecule-molecule scattering length from a large negative value to a large positive one. We adopt an

adimensional approach where the molecules are described by a rescaled rotational constant B = B/ SE,

where sp is a characteristic dipolar energy. We found that molecules with B > 10® are immune to any

quenching losses when a sufficient ac field is applied, the ratio elastic to quenching processes can reach
values above 103, and that the value and sign of the scattering length can be tuned. The ability to control the
molecular scattering length opens the door for a rich, strongly correlated, many-body physics for ultracold

molecules, similar to that for ultracold atoms.
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Controlling the scattering length a between ultracold
particles is at the center of most modern ultracold gases
experiments. The scattering length corresponds to an
effective parameter that characterizes the range of the
particles interaction at ultralow energy. The value and
the sign of the scattering length control the interaction
strength and stability of such gases [1,2]. A weakly
interacting gas is defined when the scattering length a is
much smaller than the mean relative distance d between the
particles, |a|/d < 1. In contrast, a strongly interacting gas
is defined when |a|/d > 1 and leads to a strong correlated
state of matter [3,4]. In the unitary regime, the scattering
length diverges to an infinite value, positive or negative.
With fermionic particles, the strongly interacting regime
represents a cross over between the BEC to the BCS
weakly interacting regimes, when the very large scattering
length changes sign from positive to negative [5-8]. With
bosonic particles, few-body physics becomes strongly
universal [9] as underlined by the Efimov effect [10,11].
Finally, controlling the scattering length of particles in
optical lattices is very important to engineering tunable
many-body Hamiltonians, to simulate untractable systems
of condensed matter [12,13].

In experiments of ultracold atoms, the control of the
scattering length is usually possible in the vicinity of a
Fano-Feshbach resonance [14,15] when a magnetic field
[16-18] or an optical electromagnetic field [19-21] is
tuned to an appropriate value. However, in experiments of
ultracold molecules, for example ultracold alkali dipolar
molecules [22-28], finding a well-resolved, isolated Fano-
Feshbach resonance is a difficult task because of the very
high density of states of tetramer bound states in the
vicinity of the low-energy collisional threshold [29,30].
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Even worse, this very high density of states yields long-
lived tetramer complexes explaining losses in elastic
collisions of nonreactive molecules [31]. Therefore, the
ability to tune the scattering length seems compromised for
molecules.

In this Letter, we show how we can control the molecule-
molecule scattering length, which in this case becomes a
complex quantity a = a,, — ia;, with a;,, > 0 [32,33]. By
applying a microwave field slightly blue-detuned with
respect to the first excited rotational state of the molecule,
one can (i) bring the ratio good to bad collisions y =
Per/Pqu (elastic over quenching rate coefficient) to high
values such that evaporative cooling techniques can be
successful; (ii) suppress the imaginary part a;,, — 0 and
shield the molecules against losses; (iii) tune the real part
a,. to small or large values, positive or negative (hence,
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FIG. 1. Schematic process of a collisional shielding of ground
state rotational molecules j = 0, using a blue-detuned, circularly
polarized microwave field. A > 0 is the detuning between the
energy of the microwave field 7w and 2B, the energy level of the
first excited rotational state j = 1 of a molecule. The dipole-
dipole interaction creates an effective repulsive adiabatic curve
(plotted in red), preventing the molecules from approaching at
short range.
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tune the value of the elastic cross section o) and control
the interaction strength of an ultracold molecular gas. By
tuning in this way, the scattering length at will, one can
access with ultracold molecules the same rich and flexible,
strongly correlated many-body physics of ultracold atoms
as mentioned above. The basis of the method comes from
the idea of optical shielding [34-37]. The schematic
process is illustrated in Fig. 1. Instead of having an optical
transition slightly blue-detuned between an s to a p
electronic state of an atom, one has a microwave transition
of energy Aw [38—40] between a j = 0 to a j = 1 rotational
state of energy 2B, where B is the rotational constant of the
molecule. The detuning is given by A = 4w — 2B > 0. For
the shielding to take place, it is important for the polari-
zation of the microwave to be circular [36].

We consider bosonic 'Z* alkali dipolar molecules in the
vibrational state » = 0 with a permanent electric dipole
moment d. This study can be generalized to fermionic ones.
To describe the collisions between ultracold molecules, we
use a time-independent quantum formalism [41-43] includ-
ing the rotational structure of the molecules described
by a properly symmetrized and normalized basis set
|jim;, . jom;,) ., symmetric (+) or antisymmetric (—) under
permutation of the identical molecules. We include the
rotational states j; =0, 1 and j, =0, 1. Additionally, a
partial wave expansion of the collisional wave function
described by a spherical harmonics basis set |Im;) is used.
The partial waves taken into accountare [ = 0, 2, 4. We only
include a long-range dipole-dipole interaction and an iso-
tropic, electronic van der Waals coefficient [43]. We also
impose that when the two molecules come close to each
other at short range, they are lost with a unit probability [41—
43]. These assumptions are sufficient to reproduce available
experimental data of either reactive [44,45] or nonreactive
[31] ultracold molecular collisions. We numerically solve a
set of close-coupled Schrodinger equations and by applying
asymptotic boundary conditions, we extract the scattering
matrix S from which we can deduce the scattering length
and the experimental observables such as the cross sections
and the rate coefficients [41]. The complex scattering length
a is related to the lowest entrance channel scattering matrix
element Sy, [33] by: akf()(l/ik){[l =So0(k)]/[14Soo(k)]},

where k=+/2uE_/h? is the wave vector, E, the collision
energy and u the reduced mass between the two molecules.
To include the electromagnetic field, we employ a quantized
formalism of the field, described by a basis |72 + n) (see
Refs. [36,46,47] for more details). This corresponds to the
number of photons in the quantized field reservoir for a
given mode Aw, with |n| < 71. 72 is a mean number (and is
omitted hereafter in the notation), n represents the number
of photon lost from the quantized field and absorbed by
the molecule if n < 0 or gained by the quantized field
and emitted by the molecule if n > 0. In the numerical
calculation, we consider n =0, +1, +2. As for the
optical shielding to take place, we consider a blue-detuned

microwave with respect to the first rotational excited state of
the molecules, with a 6 circular polarization characterized
by a quantum number p = +1 [36,46,47].

As many experimental groups are now forming different
ultracold dipolar alkali molecules, we do not restrict our
study to a specific system and rather employ a general,
adimensional approach to treat the molecules on the same
basis. We study the microwave shielding and the control
of the scattering length of all possible molecules described
by their combined values of B, d, and u as a function of
the ac field E,. of the microwave for a fixed detuning A.
Simultaneously and independently, a recent study [40]
explored the microwave shielding as a function of E,
and A for three specific molecules RbCs, KCs, and CaF.
In their work, they also explored the effect of the hyperfine
structure on the shielding mechanism. We do not include
the hyperfine structure to keep our study adimensional.
Following the conclusions of Ref. [40], the assumption is
valid as far as the hyperfine quantum numbers are nearly
good quantum numbers and decoupled from the rotational
structure when a sufficient magnetic field is applied
(see also Ref. [48]). We employ the same adimensional
approach as our previous study on shielding ultracold
dipolar molecules in an electric dc field [43]. Here, the
dc field is replaced by the ac field E,.. We rescale the
Schrodinger equation using the characteristic dipolar length
s, = (2u/h*)(d*/4ne;) and the characteristic dipolar
energy sg, = (h?/2us7,) [75]. The values are reported in
the table in Ref. [48]. We then extract four key parameters
in the set of close-coupling rescaled Schrodinger equations
very similar to the ones in our previous dc field study. The
first parameter is a rescaled rotational constant

. B 8B} [ d*\?
T
SE, ) 4re

Another parameter is a rescaled ac field E,. = dE,./B.
From the usual expression of the Rabi frequency Q =
dE,./h, one can define a rescaled Rabi frequency:

=, 2)

which becomes the second parameter and identifies with
the rescaled ac field. A third parameter corresponds to a
rescaled detuning:

A=—=—0un—. (3)

In this study, we fix this third parameter to an arbitrary
positive constant of A =0.025 (blue-detuned). We
choose the values of A and Q appropriately so that the
blue-detuned microwave radiation does not lead to an
antitrapping effect of the molecules (see Ref. [48]).
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Finally, the fourth parameter is a rescaled collision energy
E.=E./s £,- To getrid of the collision energy dependence
in our study, we consider the Wigner regime as £, — 0 and
where the scattering length is independent of the collision
energy. The adimensional study entails a rescaled scattering
length:

a:arc::_iaim:i- (4)

r3

The ratio y of the elastic over the quenching rate coefficient
(see Ref. [43]) is given in terms of the rescaled scattering
length by },:(ﬂel/ﬁqu):(|a|2/aim)k:(|a|2/aim)k’ where
k= \/EZ \/ Ec/sEg'

We consider molecules initially prepared in their ground
rotational state |00, 00), and |n = 0). Only the symmetric
states exist for same, indistinguishable states and are
coupled to other symmetric states. The quantum states
|jim;,, jom;,) ,|n) get mixed by the interaction of the
molecules with the ac field [36,46,47] and give rise to
dressed asymptotic states, denoted {|j,m; , jom;,),|n)}.
This notation means that they tend to the undressed state
ljimj . jam; ). |n) when Q — 0. We use a dressed state
formalism, as the typical microwave Rabi oscillations times
in this study are much smaller than the other characteristic
times (see Ref. [48]). These states are characterized by
well-defined projection numbers Mol mol,+field = Mj, +
mj, +n X p (with n, p being signed integer numbers) of
the dressed system {molecule 1 + molecule 2 + field}. The
dipole-dipole interaction will further couple the collisional
states {[j1m;,, jom;,), |n)}|lm;) all together. The total
projection number M = M1, 4 mol,+field T 7 1S conserved
during the collision. For the study of the scattering length
at ultralow energies and given our initial state with
Mol +mol, +field = 0, We consider the lowest projection
M = 0, which implies m; = 0.

The dipole-dipole couplings result in adiabatic effective
potentials illustrated in Fig. 2(a) as a function of the
rescaled distance 7= r/s, between the molecules, for
an example at B = 10'" and Q = 0.18. Strong repulsive
curves arise in the initial entrance channel {|00, 00)_|0)}
indicated by an arrow, explaining more quantitatively the
scheme in Fig. 1. This prevents the molecules from coming
close to each other and being lost from chemical reactions
[44,45] or from long-lived tetramer complexes [31] at short
range. In addition, states of lower energy exist, correspond-
ing to the excitation of one (resp. both) of the molecules in a
specific j, m; state due to the absorption of one (resp. two)
photon lost by the quantized field with n = —1 (resp.
n = —2). When Q is increased, these states get far away
from the entrance channel thus preventing inelastic transi-
tions from occurring. The quenching collisions (short-range
losses + inelastic processes) are expected to be suppressed
with Q, explaining the mechanism of the microwave
shielding.
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FIG. 2. (a)Top panel: Long-range rescaled adiabatic energies as
a function of the rescaled distance between the molecules for
B =10 & =0.18, and 67 circularly polarized field p = +1.
The region in the red box is shown in the bottom panel. The
notation {jm; , jom;;n} is used to represent the asymptotic
dressed states. The labels in black (resp. red, blue, green, magenta)
correspond to values of Mgl 1mol, tfiela =M j, + M, +nx p=0
(resp. —1, =2, =3, —4) of the dressed system {molecule 14
molecule 2 + field}. (b) Bottom panel: Close-up of the long-range
potential well in the lowest entrance channel for B = 10'° and
Q = 0.18 (black), Q@ = 0.08 (red), Q@ = 0.03 (blue) together with
the corresponding bound state energies they can support.

In Fig. 3, we present the quantity |&|?>/&;,, which
represents the ratio y when k = 1, that is at a typical
collision energy of E. = sg,. To get the ratio at E,. > sg,,
one has to multiply this quantity by k. For evaporative
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FIG. 3. |a|*/am=y/k as a function of B and Q. The

color scale, presented at the right of the picture, goes from
10™* to 10°. The B values of some characteristic dipolar
molecules are reported on the figure.
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cooling techniques, y has to reach a factor of 10? or more
for the process to be highly efficient. Therefore, the regions
of the graph in yellow, orange, and red correspond to
favorable conditions for evaporative cooling. The regions in
green and blue correspond to unfavorable conditions. The
rescaled Rabi frequency is plotted in the abscissa and
represents the amount of the ac field applied. The rescaled
rotational constant is plotted in ordinate and uniquely
characterizes a molecule (see Table in Ref. [48]). The
values of the dipolar alkali molecules have been reported.
For indication, we also report values for >X* molecules of
current experimental interest [76-88]. Looking at the
general feature of the figure, one can distinguish two main
regions for the dipolar molecules: a region for which
B > 10% where the ratio can globally reach 10 or more,
and a region for which B < 107 where the ratio barely reach
10%. The former region includes the molecules RbCs, NaK,
KCs, LiK, NaRb, LiRb, NaCs, LiCs and determines the
good candidates for the microwave shielding. This figure
also confirms the suppressed loss rates found for the RbCs
and KCs molecules [40]. The latter region includes the
molecules KRb and LiNa for which the microwave
shielding will not be efficient for the present range of Q.
This is due to an unfortunate combination of u, d, and B
yielding a too low value of B.

In Fig. 4(a), we plot @, and &, as a function of Q for
a value B =109 (~NaRb). There are values of
hence, of the ac field, for which the real part @, can
take large positive and negative values while the

solid: @,
dashed: 4,

o 005 0.1 015

FIG. 4. (a) Top panel: Rescaled scattering length & as a function
of Q for B = 10'° (~NaRb). (b) Bottom panel: Same for B = 107
(~KRb), B = 10° (~NaK, KCs), B = 10'! (~NaCs).

imaginary part &;, remains low. Then, the elastic cross
sections which are proportional to a, [43] if a;, = 0
can be tuned to any desired values up to the maximal
value given by the unitarity limit 2 x z/k> for indis-
tinguishable molecules. The imaginary part globally
decreases when Q increases, confirming that the quench-
ing rate coefficients, which are proportional to &;, [43],
also decreases as expected from the discussion of the
adiabatic curves in Fig. 2(a). The resonant features are
explained by the apparition of a long-range, isolated
shallow potential well in the entrance channel when Q is
increased. This is illustrated in Fig. 2(b) which is a
close-up of the lowest entrance channel of Fig. 2(a). At
Q = 0.18 (black curve), the well can support three bound
states shown on the figure. If Q is decreased, the depth
of the well also decreases and those bound states can
disappear. For example, down at Q = 0.08 (red curve),
the well supports now only two bound states and at Q =
0.03 (blue curve), it supports only one. When the bound
states are localized at the zero energy threshold, typically
for values of Q slightly below 0.18, 0.08, and 0.03, @,
turns from a large and positive value to a large and
negative value, as seen in Fig. 4(a).

We present in Fig. 4(b) the trend of the scattering length
for increasing values of B = 107, 10°, 10''. For a small
value of B = 107 (~KRb, black curves), one cannot see any
resonant features of & for the present range of Q. When B
is increased, typically for B > 108, the long-range wells are
deep enough to support bound states, and resonant features
appear in the scattering length as in Fig. 4(a). This is shown
for B=10° (~NaK, KCs, red curves) and B =10
(~NaCs, blue curves). These long-range bound states are
actually reminiscent of the so-called field-linked states
[89,90] in collisions of dipolar molecules in a static electric
field. The presence of these microwave field-linked states
in the long-range wells, when the condition B > 10% is
satisfied, is therefore responsible for the control of the
scattering length of dipolar molecules.

Technological set-ups of microwave cavities [46] are
experimentally tractable nowadays [91]. Input powers of
the order of ~kW yield corresponding ac fields of
~10 kV/cm. This is already highly sufficient for what is
needed for alkali dipolar molecules (see Table in Ref. [48]).
The microwave energies available are in the range
[2-18 GHz] which also correspond well to the energies
needed (twice the rotational constant of the alkali dipolar
molecules, see Table in Ref. [48]). Finally, although
imperfect polarization could reduce the efficiency of the
shielding, better experimental control over circular polari-
zation becomes possible nowadays [92]. Therefore, with
the current improvement of the microwave technologies,
the control of the scattering length of dipolar molecules
seems experimentally realistic, and will certainly open a
new regime of strongly interacting and correlated physics
with ultracold dipolar molecules.
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