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We investigate the use of jets to measure transverse-momentum-dependent distributions (TMDs). The
examplewe use to present our framework is the dijetmomentumdecorrelation at lepton colliders. Translating
this momentum decorrelation into an angle θ ≪ 1, we analyze the factorization of the cross section for the
cases θ ≫ R, θ ∼ R, and θ ≪ R, whereR is the jet radius. Critically, for thewinner-take-all axis, the jet TMD
has the same double-scale renormalization group evolution as TMD fragmentation functions for all radii R.
TMD fragmentation functions in factorization theorems may then simply be replaced by the jet TMDs we
calculate, and all ingredients to perform the resummation to next-to-next-to-leading logarithmic accuracy are
available. Our approach also applies to semi-inclusive deep inelastic scattering, where a jet instead of a
hadron is measured in the final state, and we find a clean method to probe the intrinsic transverse momentum
of quarks and gluons in the proton that is less sensitive to final-state nonperturbative effects.
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Introduction.—The precision of the large hadron collider
(LHC) and the advent of the electron-ion collider (EIC) have
focused attention on differential cross sections that probe
transverse-momentum-dependent distributions (TMDs).
These nonperturbative momentum distributions of quarks
and gluons in hadrons (TMD parton distribution functions),
and converselyof hadrons fragmenting fromquarksorgluons
(TMD fragmentation functions), are expressed in terms of a
collinear momentum fraction and a momentum transverse to
it. Universal TMDs describe important kinematic regions for
a diverse set of observables in Drell-Yan type processes,
semi-inclusive deep inelastic scattering (SIDIS), and the
production of two hadrons in eþe− collisions [1–8].
We will concentrate on transverse-momentum-dependent

distributions involving jets. This is a natural extension for
the LHC, where measurements generically involve jets. The
measurement of dijets is also part of the program at the
relativistic heavy ion collider (RHIC). At the EIC jets are
possibly measured, so that the question of how one can
extract TMDs using jets in a SIDIS experiment is relevant;
see, e.g., Refs. [9,10].
One possible direction is to study hadrons inside jets.

The factorization analysis in Refs. [11–13] showed that the
standard TMD fragmentation functions enter when the

transverse momentum of a hadron is measured with respect
to the standard jet axis (SJA). If instead the winner-take-all
(WTA) axis [14,15] is used, a new and rather different
TMD is obtained: it is insensitive to soft radiation and has a
Dokshitzer-Gribov-Lipatov-Altarelli-Parisi-like evolution
equation [16].
Here we explore a different direction, by considering the

transverse momentum of the jet itself. The example that
will be discussed in detail is the dijet momentum decorre-
lation, defined in Eq. (2). This is closely related to the
azimuthal decorrelation measured at the Tevatron [17],
RHIC [18], and LHC [19,20], and calculated to next-to-
leading logarithmic accuracy in Refs. [21–23]. These
calculations use the SJA and treat θ ≪ R, and the
Sudakov logarithms they resum differ from the standard
TMD case that we are interested in.
We are particularly interested in how TMD jet measure-

ments can shed light on the intrinsic transverse momentum
of quarks and gluons in the proton. To this end, we extend
our framework to SIDIS, with a hadron in the initial state,
but where the final state is a jet. We will present the relevant
factorization theorem in Eq. (16). The use of jets provides a
clean way to extract the intrinsic transverse-momentum
distributions inside the initial hadron. Contrary to the case
of fragmentation functions, the momentum fraction of a jet
is perturbatively calculable. The nonperturbative effect on
the transverse momentum is formally of the same size, but
we find it to be more suppressed for jets with the WTA axis.
All ingredients necessary for resummation at next-to-next-
to-leading logarithmic accuracy in our framework are now
available.
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We will consider the anti-kt jet algorithm [24], exploring
the dependence on the jet energy, radius R, and choice of jet
axis (SJA or WTA). We are particularly interested in the
conditions for which the jet TMDs have the same evolution
as TMD fragmentation functions, as this puts them on equal
footing. The evolution of TMDs can be derived from the
soft function,

SðbÞ ¼ 1

Nc
Trch0j½ST†n S̃Tn̄ �ð0þ; 0−; b⊥Þ½S̃T†n̄ STn �ð0Þj0i; ð1Þ

where STn and S̃Tn̄ denote soft Wilson lines along (almost)
back-to-back light-cone directions n and n̄, including a
transverse Wilson line [25–30]. TMD calculations involve
rapidity divergences, that require a regulator in addition to
dimensional regularization. The soft function in Eq. (1) has
been calculated to higher orders in perturbative QCD in
several rapidity regularization schemes [31–35], and it is
responsible for the double scale renormalization group
(RG) evolution typical of TMDs [4–7,36–40]. As is clear,
Eq. (1) is independent of any jet specifics, like R or the jet
algorithm, and in the following we will see under which
conditions this soft function can also be used when dealing
with jets, instead of hadrons.
We will first discuss the factorization theorems for the

momentum decorrelation, then treat the renormalization
and resummation, calculate the TMD jet function, and
conclude with a discussion of the implications and inter-
esting extensions of our work.
Factorization.—We consider the momentum decorrela-

tion of inclusive dijet production in eþe− collisions.
Inclusive means that each pair of jets contributes, with
soft jets kept at bay by measuring the energy fraction of the
jets zi ¼ 2Ei=Q, whereQ is the center-of-mass energy. The
momentum decorrelation is [62]

q ¼ p1
z1

þ p2
z2

: ð2Þ

In direct analogy to the hadron case, we divide the
transverse momentum pi of each jet by its energy fraction.
Then q has a direct correspondence to the dijet angular
decorrelation θ ≈ tan θ ¼ 2jqj=Q, where in the absence of
additional QCD radiation θ ¼ 0. The parameter θ is

generally assumed to be small; however it can compete
with other small quantities like the jet radius R, leading us
to study each case in Fig. 1 separately.
First, we consider the case θ ∼ R ≪ 1, for which the

interplay between θ and Rmust be taken into account in the
jet TMD. However, since R ≪ 1, the wide-angle soft
radiation does not resolve individual collinear emissions
in the jet, so the soft function is the same as for TMD
fragmentation. This leads to

dσðee→JJXÞ
dz1dz2dq

¼ HðQ2;μÞ
Z

db
ð2πÞ2 e

−ib·qJaxisq ðz1;b;QR;μ; ζ1Þ

× Jaxisq̄ ðz2; b;QR;μ; ζ2Þ
�
1þO

�
q2

Q2

��
: ð3Þ

The hard function H encodes the short-distance scattering,
eþe− → qq̄, and is the same as for TMD fragmentation.
The quark TMD jet function Jaxisq encodes the inclusive
production of jets in one direction, where the axis is either
WTA or SJA, and b is Fourier conjugate to the jet transverse
momentum. In soft-collinear effective theory [41–44] it is
defined as (note that our TMD jet function Jaxisq differs from
a TMD fragmentation function by an overall factor of z2)

Jaxisq ¼ z
2Nc

Tr

�
=̄n
2
h0j½δðn̄ · pJ=z − n̄ · PÞe−ib·P⊥χnð0Þ�

×
X
X

jJaxisanti-kt;R
XihJaxisanti-kt;R

Xjχ̄nð0Þj0i
�
: ð4Þ

Here χn is the collinear quark field in the lightlike direction
nμ, n̄μ is a conjugate lightlike vector with n̄ · n ¼ 2, P is the
momentum operator, and the delta function and exponential
encode the measurement of the large- and transverse-
momentum components (note that the total jet momentum
is not integrated over, and has zero transverse momentum
for our choice of frame). We have eliminated the soft
function in Eq. (1) from Eq. (3), by absorbing a square root
of it into each jet function. The jet depends on the jet
algorithm (anti-kt), radius R, and choice of jet axis, but the
anomalous dimension of the jet function does not. The
logarithms of q2=Q2 ∼ θ2 ∼ R2 are resummed by evaluat-
ing each ingredient at its natural μ and ζ scale and evolving

FIG. 1. Various hierarchies between the jet radius R and angular decorrelation θ, θ ≫ R (left), θ ∼ R (middle), and θ ≪ R (right). For
θ ≫ R the dependence on the jet axis vanishes, while for θ ≪ R it even modifies the factorization structure.
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them to a final scale using the μ and ζ renormalization
group evolution, as will be discussed in more detail below.
Second, for R ≪ θ ≪ 1, additional large logarithms of

q2=ðQRÞ2 ∼ ðθ=RÞ2 are induced. The form of the cross
section is the same as in Eq. (3) with the substitution

Jaxisi ðz; b; QR; μ; ζÞ ¼
X
j

Z
dz0

z0
½ðz0Þ2Ci→jðz0; b; μ; ζÞ�

× J j

�
z
z0
; QR; μ

�
½1þOðb2Q2R2Þ�:

ð5Þ

The axes choice no longer affects the jet function because
of the limit R ≪ θ. The semi-inclusive jet functions J j

describe inclusive production of jets, and are given to
OðαsÞ in Refs. [45,46]. (To use the expressions in Ref. [45],
note that ωJ ¼ 2z0Q.) The matching coefficients Ci→j are
the same as for TMD fragmentation, and are given toOðα2sÞ
in Refs. [47,48]. The fact that the same coefficients appear
is not surprising, since in the fragmentation limit R → 0,
the semi-inclusive jet function reduces to the fragmentation
function summed over hadron species h, J jðz;QR; μÞ →P

hdj→hðz; μÞ [49].
Last of all, we consider θ ≪ R, where the choice of jet

axis directly affects the factorization theorem. This case is
probably the most relevant for studying the small intrinsic
transverse momentum of quarks and gluons in the proton
using SIDIS. Interestingly, for the winner-take-all axis we
find

JWTA
i ðz; b; QR; μ; ζÞ ¼ δð1 − zÞJWTA

i ðb; μ; ζÞ

×

�
1þO

�
1

b2Q2R2

��
; ð6Þ

where

JWTA
q ðb; μ; ζÞ ¼ 1

2Ncðn̄ · pJÞ
Tr

�
=̄n
2
h0j½e−ib·P⊥χnð0Þ�

× jJWTA
anti-kt

ihJWTA
anti-kt

j χ̄nð0Þj0i
�
: ð7Þ

The jet function JWTA
q differs from JWTA

q in Eq. (4),
because all collinear radiation has been clustered into
the jet, implying that there is no dependence on the jet
radius in this limit.
Although the factorization in Eq. (3) was derived for

R ≪ 1, we find that for the WTA axis it also holds for
θ ≪ R ∼ 1, as we now discuss: for the collinear radiation
with typical angle θ, the jet boundary seems infinitely far
away, so it does not depend on R, as in Eq. (7). The soft
radiation does resolve the jet boundary, but since it does not
affect the position of the WTA axis, there is no distinction

between soft radiation inside or outside of the jet (we
assume zi is measured in sufficiently large bins, as 1−zi≪1
is sensitive to whether soft radiation is in or outside the jet).
We thus obtain the same soft function as before, which
accounts for the total recoil due to soft radiation.
By contrast, in the same θ ≪ R limit, this statement is

not true for the SJA. The SJA is aligned with the total
momentum in a jet, implying that the total transverse
momentum q is only sensitive to soft radiation outside
the jets. Assuming R ∼ 1, hard splittings with typical angle
R are allowed inside the jet, each generating a Wilson line
sourcing this soft radiation. Thus, we can describe this
cross section by [50] (see also Refs. [51,52])

dσSJAðee→JJXÞ
dq

¼
X∞
m¼2

Trc½HmðQ; fnig; R; μÞ

⊗ Smðq; fnig; R; μÞ�
�
1þO

�
q2

Q2

��
; ð8Þ

where the trace is over color indices and ⊗ denotes
integration over the directions ni (with i ¼ 1;…; m) of
hard splittings inside the jets. Instead of the rather simple
result in Eq. (6), the observable is now intrinsically
sensitive to nonglobal logarithms [53].
Renormalization group evolution.—The double-scale

RG equations for the jet TMDs are the same as for the
TMD fragmentation functions,

μ2
d
dμ2

Jaxisi ðz; b; QR; μ; ζÞ ¼ 1

2
γiFðμ; ζÞJaxisi ðz; b; QR; μ; ζÞ;

ζ
d
dζ

Jaxisi ðz; b; QR; μ; ζÞ ¼ −Diðμ; bÞJaxisi ðz; b; QR; μ; ζÞ;

ð9Þ

and are independent of axis. For the θ ≪ R limit,JWTA has
the same evolution, but there is no analogue for the SJA.
The TMD anomalous dimensions γF and D are known up
to Oðα3sÞ [34,35,54]. Solving these RG equations is
straightforward in impact parameter space:

Jaxisi ðz; b; QR; μf; ζfÞ

¼ exp

�Z ðμf;ζfÞ

ðμi;ζiÞ

�
γiFðμ; ζÞ

dμ
μ

−Diðμ; bÞ dζ
ζ

��

× Jaxisi ðz; b; QR; μi; ζiÞ: ð10Þ

A study of evolved jet TMDs and their phenomenology will
be presented in Ref. [55].
TMD jet function.—The final point we discuss is the

next-to-leading order (NLO) calculation of the TMD jet
function. It also receives nonperturbative corrections, but
these are suppressed by powers of b2Λ2

QCD. We use
dimensional regularization (in the MS scheme) and the
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modified δ regulator, which alters the Wilson lines in the
operator definition [47,56]. With the δ regulator, the over-
lap of soft and collinear modes [57] coincides with the soft
function in Eq. (1). We therefore account for both the
absorption of the soft function and this overlap by including
a factor S−1=2 in the TMD jet function. This operation
replaces rapidity divergences by logarithms of the rapidity
scale ζ [48].
We performed independent calculations in both

impact parameter and transverse-momentum space,
providing a cross-check. Writing Jaxisi ðz; b; QR; μ; ζÞ ¼P

ka
k
sJ

½k�axis
i ðz; b; QR; μ; ζÞ with as ¼ g2s=ð4πÞ2, our result

for the case θ ∼ R (or equivalently jbjQR ∼ 1) is given by

J½0�axisi ðz;b;QR;μ;ζÞ¼ δð1− zÞ;
J½1�axisi ðz;b;QR;μ;ζÞ
¼ δð1− zÞ½2C0iLR−CiL2

μþ2CiLμlζ

þ2d̃axisi ðbQRÞ�þ2

�X
j

cjipjiðzÞ
�

×

�
LR−Lμ−2 lnð1− zÞþ1

4
jbj2Q2R2ð1−zÞ2

× 2F3

�
f1;1g;f2;2;2g;−1

4
jbj2Q2R2ð1− zÞ2

��
; ð11Þ

where

LR ¼ ln

�
μ2

Q2R2

�
; lζ ¼ ln

μ2

ζ
; Lμ ¼ ln

� jbj2μ2
4e−2γE

�
: ð12Þ

The group theory factors are given by Cq ¼ cqq ¼ cgq¼CF,
Cg ¼ 1

2
cgg ¼ CA, C0q ¼ 3

2
CF, 2C0g ¼ β0 ¼ 11

3
CA − 4

3
nfTF,

cqg ¼ 2nfTF. We use the convention for the well-known
splitting functions pij of Refs. [58,59], including their plus
prescription at z ¼ 1 when a splitting function multi-
plies lnð1 − zÞ.
We report d̃axis of Eq. (11) in momentum space

q ¼ jqj, because they are much more compact, deferring
complete expressions in b space to Ref. [55]. These are
given by

dWTA
q ¼ CF

π

�
δðq2Þ

�
7

2
−
5π2

12
− 2ln22

�

−
�
3

2
− 2 ln 2

�
L0þ

�
q;
QR
2

�
− L1þ

�
q;
QR
2

�

þ θ

�
QR
2

− q

�
1

q2

�
3

q
QR

þ 2 ln

�
1 −

q
QR

���
;

dWTA
g ¼ 1

π

�
δðq2Þ

�
CA

�
131

36
−
5π2

12
− 2ln22

�
−
17

18
nfTR

�

−
�
β0
2
− 2CA ln 2

�
L0þ

�
q;
QR
2

�
− CAL1þ

�
q;
QR
2

�

þ θ

�
QR
2

− q

�
1

q2

�
2nfTR

�
−

q
QR

þ
�

q
QR

�
2

−
2

3

�
q
QR

�
3
�
þ CA

�
4

q
QR

−
�

q
QR

�
2

þ 2

3

�
q
QR

�
3

þ 2 ln

�
1 −

q
QR

����
: ð13Þ

The auxiliary plus distributions that enter here are

Lnþðq; q0Þ ¼ θðq0 − qÞ 1

q20

�
lnnðq2=q20Þ
q2=q20

�
þ
: ð14Þ

Interestingly, as a direct calculation reveals, the corre-
sponding dSJAi for the standard jet axis are simply the
q ≫ QR limits of Eq. (13). This is consistent with our
earlier statement that for θ ≫ R, the TMD jet functions are
independent of the jet axis. We have also verified Eq. (5),
describing the factorization in this limit.
Finally, it is interesting to take the q ≪ QR limit of

Eq. (11) for the WTA, which yields

J½1�WTA
i ðb; μ; ζÞ ¼ 2

�
Ni þ Lμ

�
C0i þ Ci

�
lζ −

1

2
Lμ

���
;

Ng ¼ CA

�
131

36
−
5π2

12

�
−
17

18
nfTR − β0 ln 2;

Nq ¼ CF

�
7

2
−
5π2

12
− 3 ln 2

�
: ð15Þ

As anticipated in Eq. (6), when θ ≪ R, the dependence on
the momentum fraction z is trivial and the result becomes
independent of R.
Discussion and conclusions.—We propose to use the

measurements of jet momenta to study TMDs, and for this
purpose we have investigated the factorization of the cross
section and calculated the TMD jet functions at NLO.
Although most of the discussion is centered on the
momentum decorrelation in eþe− collisions, our studies
reveal how to define jet TMDs that share the same
evolution as TMD fragmentation functions. A particularly
promising application is represented by SIDIS experiments,
for which the factorization theorem is

dσðeN→eJXÞ
dQ2dxdzdq

¼
X
a

HaðQ2; μÞ
Z

db
ð2πÞ2 e

−ib·q

× fa=Nðx; b; μ; ζÞJaxisq ðz; b; QR; μ; ζÞ; ð16Þ
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enabling a clean extraction of the nonperturbative TMD
parton distributions from this process. This factorization
only holds for all R when the WTA axis is used.
Our predictions show how the factorization of the cross

section using TMD distributions depends on the size of the
jet radius. To illustrate this effect and provide additional
evidence, we show in Fig. 2 the angular decorrelation
obtained from PYTHIA 8.2 [60] for various jet radii. We have
included the fragmentation limit (R ¼ 0) and the case
where all particles are clustered until there are two jets
(R ¼ 2) for completeness. By integrating over z1 and z2,
taking the second Mellin moment, the dependence on
fragmentation for R ¼ 0 is removed by the momentum
sum rule. First of all, we note that for small R, the
distributions are indeed the same for the WTA and SJA.
For the WTA the dependence on R is fairly mild, whereas
for the SJA the distribution blows up at small θ for large R.
This is consistent with our finding that only for the WTA
axis the cross section is well behaved in the large R limit.
We have also investigated the size of hadronization effects
for the WTA axis, finding that these are smaller for larger
values of R (even though we are using the momentum sum
rule). As θ ≪ R is the regime relevant for constraining
nonperturbative physics in the initial state from Eq. (16),
the smallness of hadronization effects in the final state is an
important benefit. Last of all, we point out that one may
consider jets defined solely on charged particles to over-
come the limited angular resolution of calorimetry, by, e.g.,
using the computing framework developed in Ref. [61].
A dedicated phenomenological study is forthcoming [55].
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