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An analysis of a single-domain magnetic needle (MN) in the presence of an external magnetic field B is
carried out with the aim of achieving a high-precision magnetometer. We determine the uncertainty AB of
such a device due to Gilbert dissipation and the associated internal magnetic field fluctuations that give rise
to diffusion of the MN axis direction n and the needle orbital angular momentum. The levitation of the MN
in a magnetic trap and its stability are also analyzed.
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A rigid single-domain magnet with large total spin,
e.g., S~ 10?a, can be used as a magnetic needle magne-
tometer (MNM). Recently, Kimball ez al. [1] predicted that
the sensitivity of a precessing MNM can surpass that of
present state-of-the-art magnetometers by orders of mag-
nitude. This prediction motivates our present study of
MNM dynamics in the presence of an external magnetic
field B. Such analysis requires inclusion of dissipation of
spin components perpendicular to the easy magnetization
axis (Gilbert damping). It is due to interactions of the spin
with internal degrees of freedom such as lattice vibrations
(phonons), spin waves (magnons), thermal electric cur-
rents, etc. [2,3]. Once there is dissipation, fluctuations are
also present [4] and result in a source of uncertainty that can
affect the accuracy of the magnetometer. Here, we deter-
mine the uncertainty in the measurement of the magnetic
field by a MNM. We also analyze a related problem
concerning the dynamics of the needle’s levitation in an
inhomogeneous magnetic field, e.g., an loffe-Pritchard
trap [5].

The Hamiltonian for a magnetic needle (MN), treated
as a symmetric top with body-fixed moments of inertia
Ix=Zy=71 #71,, subject to a uniform magnetic

field B is
Heof2 4 lﬁz(/h)(Sﬁ)zAB (1)
27 27, 27)"% /BT

H, Hy

where a hat denotes a quantum operator. In the rotational
Hamiltonian Hp, I. is the orbital angular momentum
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operator, and L, =L -Z is its component along the
body-fixed symmetry axis. S is the needle spin angular
momentum operator, and 1i is the operator for n that is the
unit vector in the direction of the easy magnetization axis.
The frequency appearing in the anisotropy Hamiltonian H 4
[6] is wy = 2y>KS/V, where K is the strength of the
anisotropy, V is the needle volume, and y = gug/# is the
gyromagnetic ratio, in which yp is the Bohr magnetron, and
g is the g factor (taken to be a scalar for simplicity). In the
expression for the Zeeman Hamiltonian Hpg, fi = g,uBS is
the magnetic moment operator. The Heisenberg equations
of motion are

éz—gﬂBBXS—FZ%(SXﬁ)(S'ﬁ)a (2)

i - _z%s x 1)(S - ), (3)

j = —g'uBB xS, (4)
I

i ==L x i + ind]. (5)

where J = L. + 8§ is the total angular momentum operator
and Z is the moment of inertia tensor.

The dynamics of a MN can be treated semiclassically
because S is very large. A mean-field approximation [7-9]
is obtained by taking quantum expectation values of
the operator equations and assuming that, for a given

operator A, the inequality 1/ (A%) — (A)2 < |(A)| holds (an
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assumption warranted for large S). Hence, the expectation
values of a product of operators on the rhs of Egs. (2)-(5)
can be replaced by a product of expectation values. The
semiclassical equations are equivalent to those obtained in a
classical Lagrangian formulation. Dissipation is accounted
for by adding the Gilbert term [2,6] —aS x (S/A—QxS/h)
to the rhs of the expectation value of Eq. (2) and subtracting
it from the rhs of Eq. (3). Here « is the dimensionless
friction parameter, and the term Q x S transforms from
body- to space-fixed frames. Note that Gilbert damping is
due to internal forces; hence J is not affected and Eq. (4)
remains intact.

It is useful to recast the semiclassical dynamical equa-
tions of motion in reduced units by defining dimensionless
vectors: the unit spin m = S/, the orbital angular momen-
tum € = L/S, the total angular momentum j =m + 2,
and the unit vector in the direction of the magnetic field
b = B/B,

m = wzm x b+ oy(mxn)(m-n)—om x (m—-Qxm),

(6)
£ =—-wy(m xn)(m-n)+amx (m-QLxm), (7)
n=Qxn, (8)
j=wsmxb, 9)

where the angular velocity vector € is given by

Q= (03— w)(€ -n)n+w ¥
= (@3 —))[(j—m)-njn + o (j-m). (10)

Here, wp = y|B| is the Larmor frequency, w; = S/Zx, and
w3 = S/T,. Similar equations were obtained in Ref. [10],
albeit assuming that the deviations of n(7) and m(z) from b
are small. We show below that the dynamics can be more
complicated than simply precession of the needle about the
magnetic field, particularly at high magnetic fields where
nutation can be significant.

For the numerical solutions presented below, we are
guided by Ref. [1], which uses parameters for bulk cobalt,
and take w; = 100 s !, @3 = 7000 s™!, anisotropy fre-
quency @, = 10% s~!, Gilbert constant & = 0.01, temper-
ature 7 = 300 K, and N = §/h = 10'2. First, we elucidate
the effects of Gilbert dissipation and consider the short-time
behavior in a weak magnetic field, wz = 1 s~!. The initial
spin direction is intentionally chosen not to be along the
easy magnetic axis: n(0) = (1/2,1/v/2,1/2), m(0) =
(1/v/2,1/+/2,0), £(0) = (0,0,0). Figure 1(a) shows the
fast spin dissipation as it aligns with the easy axis of the
needle, i.e., m(#) — n(¢) after a short time, and Fig. 1(b)
shows relaxation of the oscillations in #(¢), while £ () and

(a) {lxs lys lZ’ l}
10|

“W”‘H

(e
o

(b) {L, 1y, I}
0.010

—l Ly — L, — 1

i
Hﬂﬁﬁnns‘i._”

5
0567055 050 107

\
|
HHIMH\HH‘

u HHHH;{ H(mi

_gg?ngHH

—0.020
© {mn}
1.00t

0.95¢

0.90+

10°¢

005 0.10 0.15 020 025 030

FIG. 1. (a) The normalized spin vector m versus time for the
low-field case at short times (5 orders of magnitude shorter than
in Fig. 2) when the initial spin is not along the fast axis. (b) The
reduced orbital angular momentum vector £(z). (c) The inner
product m(¢) -n(r) (the projection of the spin on the fast
magnetic axis of the needle).

Z\(t) approach finite values. Figure 1(c) shows the inner
product m - n, which clearly tends to unity on the timescale
of the figure. Increasing a leads to faster dissipation of
m(7), but the short-time saturation values of both m(7) and
?(t) are almost independent of a.

We consider now the long-time dynamics (still in the
weak-field regime) and take the initial value of the spin
to coincide with the easy magnetization axis, e.g.,
m(0) =n(0) = (1/v/2,1/+/2,0), with all other parame-
ters unchanged. The spin versus time is plotted in Fig. 2(a).
The unit vectors m(z) and n(z) are almost identical, and
since their z component is nearly zero, they move together
in the x-y plane. In this weak-field case, the nutation is
small, and the fast small oscillations due to nutation are
barely visible. The orbital angular momentum dynamics is
plotted in Fig. 2(b) [note the different timescales in
Figs. 2(a) and 2(b)] and shows that £(¢) oscillates with
a frequency equal to that of the fast tiny oscillation of m(z)
[the oscillation amplitude is 0.02|m(7)|]. Figure 2(c) shows
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FIG. 2. Dynamics for the low-field case (wg = 1 s™!), over
relatively long timescales relative to those in Fig. 1. (a) m versus
time in units of seconds (note that n is indistinguishable from m
on the scale of the figure). (b) £(z) (note that it stays small
compared to ). (¢) Parametric plot of the needle spin vector m(7)
showing that nutation is almost imperceptible for small fields
[contrast this with the large-field result in Fig. 3(c)]; only
precession is important.

a parametric plot of m(z) versus time. The nutation is
clearly very small; the dynamics of m(#) consists almost
entirely of precession at frequency wp.

Figure 3 shows the dynamics at high magnetic field
(wp = 10° s7') with all the other parameters unchanged.
Figure 3(a) shows m versus time, and now the nutation is
clearly significant. For the high magnetic field case, m(7) is
also almost numerically equal to n(7). #(t) is plotted in
Fig. 3(b). Its amplitude is very large, £(¢) =~ 40m(t).
However, its oscillation frequency is comparable with that
of m(z). In contrast with the results in Fig. 2, here, in
addition to precession of the needle, significant nutation is
present, as shown clearly in the parametric plot of the
needle spin vector m(¢) in Fig. 3(c).

We now determine the uncertainty of the MNM due to
internal magnetic field fluctuations related to the Gilbert
damping. A stochastic force &(r), whose strength is
determined by the fluctuation-dissipation theorem [4], is
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FIG. 3. High-field case (wz = 10° s7"). (a) m(¢) [which is
almost numerically equal to n(7)]. (b) £(¢) (note the ordinate axis
scale is [—40,40]). (c) Parametric plot of the needle spin vector
m(¢) showing that strong nutation occurs for large fields in
addition to precession.

added to Eq. (6), in direct analogy with the treatment of
Brownian motion, where both dissipation and a stochastic
force are included [11],

m=m x (wgh + &) + wy(m x n)(m - n)

—om X (m—Q xm). (11)

&(7) is internal to the needle and therefore it does not affect
the total angular momentum j directly; i.e., () does not
appear in Eq. (9) [since the term —m x € is also added to
the rhs of (7)]. However, as shown below, &(¢) affects € as
well as m, causing them to wobble stochastically. This, in
turn, makes j stochastic as well via the Zeeman torque
[see Eq. (9)].
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The fluctuation-dissipation theorem [4] implies

o= [ a0 0) e

aw coth(hw/2kyT)
= a[J’ N ~

Z(XkBT
TUP AN

(12)

where N = S/h, and the last approximation is obtained
under the assumption that 7w < kzT. Note that Eq. (11)
should be solved together with Eqgs. (8) and (9).

The presence of the anisotropy term in Eq. (11)
makes numerical solution difficult for large @,. Hence,
we consider a perturbative expansion in powers of
A=w/wy: m(t) =ny(t) +6m(r) + - - -, n(r) = ny(r) +
Adn(t) + -+, j(r) = jo(t) + A8j(t) + - - -. Since wy is the
largest frequency in the problem, the inequalities awg >
wpg, w1, w3 hold. Moreover, the Gilbert constant « is
large enough to effectively pin m(7) to n(z) [hence, j(7) =
€(t)+m(t)~€(t) +n(r)]. Therefore, an adiabatic
approximation to the set of dynamical stochastic equations
can be obtained. The zero order term in A reads

Jo = wpng x b, ny = @ jo X Ny, (13)
where © was approximated by Qy = (w3 — @1)(jo - ng —
1)ng + ; (jo —ng) in Egs. (8) and (10) in obtaining (13)
[12]. The solution to Eq. (13) [for times beyond which
Gilbert dissipation is significant so m(¢) ~n(¢)] is very
close to that obtained from Egs. (6)—(8).

Expanding Eq. (11) in powers of 1 and keeping only
the first order terms (the zeroth order term on the lhs
vanishes since my = n;), we get @;(dm —én) X ng =
Ny — wgng X b + any x (g — Qy x ny) —ny x €& Taking
Eq. (13) into account and introducing the notation
on = é6m — 6n, we obtain

M xng=joxnyg—(wg/w;)ngxb—(1/w)ng <&  (14)

and from Egs. (8) and (9) we find

d
105 = wp(dn + 1) x b, (15)

d
Eén = w(jo—np) X én + w,(5j — én — én) x n,

= wjo X N + @, (6j — &n) X ny. (16)

To first order in 4, onlny (since n must be a unit
vector) and dm_Lny, hence dnLn,. Therefore, oy x b =
[io = (Jo - mo)no] X b + (wp/@;)[b — (b - ng)ng| x b +
7' (€ — (€ - ny)ng] x b on the rhs of Eq. (15) and

d . . .
Eé‘l = wpdn x b +wp[jo— (jo-no)ne] x b

2
_Z))_?(b-no)noXb+z))_?[§—(§'no)no] xb. (17)

Equations (13), (16), and (17) form a closed system of
stochastic differential equations [upon using Eq. (14) to
substitute for on x ny on the rhs of Eq. (16)]. With the
largest frequency @, eliminated, a stable numerical solution
is obtained. Moreover, for small magnetic field (where wp
is the smallest frequency in the system), an analytic
solution of these equations is achievable. To obtain an
analytic solution to Eq. (13), let us transform to the frame
rotating around B with frequency wp to get equations of the
form (d/dr)v = (d/dt)v + wgb x v (which defines 7),

d . w

ano = —wny X (no—‘]o—f—a)—?b), (18)
d

—Jo = wpb x <n0—j0+@b>. (19)
dr (O]

If the initial condition is ny(0) — jo(0) + (wg/w;)b =0,
then, in the rotating frame, j,(z) and ny(z) are constant
vectors. Note that this initial condition is only slightly
different from the “ordinary” initial condition ny(0) =
jo(0) since (wp/w;) < 1 for small magnetic fields. Hence,
in the rotating frame,

di&n = wngy X (511 - 5] + 571)7 (20)

T

d . ;

d_é‘] = —wgh x (6n — 5j + on). (21)
T

With the special initial condition being satisfied, Eq. (14)
becomes 6 X ng = —(1/w;)ng x €, and Egs. (20) and (21)
become a set of first order differential equations with time-
independent coefficients. Their solution for initial condi-
tions, sn(t =0) =0, 5j(t =0) =0 is

(:8) :Atdﬁ eXP[C(t—tl)]C<5"(()“)>, (22)

where the constant matrix C = (“, ") has dimension

6 x 6, and the 3 x 3 matrices A and B are given by
Aij = ij = _G)Bel’jkbk. Without loss of
generality, we can choose ny=2Z and b=
wp(cos 0Z + sin6X), where 6 is the angle between the
easy magnetization axis and the magnetic field. In this
basis, (dn7,0,),= <5']y5’7y>a; “0)62 (Eér)o= w62 <§y§y>w =
S, (), and (5n,6n,),,=0. Here (xx),, = [ dte" (x(1)x(0))
and [see Eq. (12)] S,(w) = [aw coth(hw/2kpT)/(@jN)]~
(2aksT/Nhaj).

k
—wi€;jng, B
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We are particularly interested in the quantities
(5n2(0)) = (on,(0)on, (1)) and {872(1)) = (5),(1)8],(1)
because, in the basis chosen above, the y axis is the
direction of precession of ny around b. Using Eq. (22),
we obtain (6n3(1)) & tw}S,(w ~ w;). Assuming the pre-
cession of n is measured [or, equivalently, the precession
of m, since they differ only for short timescales of
order (awy)~'], the uncertainty in the precession angle
is ((Ap)?) ~ tw?S,(w~w,). We thus arrive at our
central result: the precision with which the precession

frequency can be measured is Awg = (\/((Ag)?)/t) ~
(w,/wy)+\/(2akgT/AN)(1/+/t). Equivalently, the mag-

netic field precision is

Ag Ao h o

DakyT 1
v gu @

AN /t

(23)

For the parameters used in this Letter, we find AB~
{(5 x 107'8)/(1/t[s])} T (independent of wg). This result

should be compared with the scaling AB  t—3/2 obtained
in Ref. [1]. Therein, the initial uncertainty of the spin
direction relative to the needle axis was estimated from the
fluctuation-dissipation relation and the deterministic pre-
cession resulted in the #~3/2 scaling of the precession angle
uncertainty (in addition, this angle was assumed to be
small). In contrast, we consider the uncertainty acquired
due to Gilbert dissipation during the precession, allowing
the precession angle to be large. Thus, the standard 1/+/7
diffusion scaling is obtained and dominates for times that
are even much longer than those considered in Ref. [1].

In the Supplemental Material [13], we discuss three
relevant related issues: (a) The time at which diffusion stops
because equipartition is reached (we estimate the time when
the energy stored in stochastic orbital motion becomes of
order kgT). (b) The uncertainty of the magnetic field for
experiments in which the fast precession of n around j is
averaged out in the measurement, and the diffusion of j
determines AB. (c) We consider the related problem of the
dynamics and stability of a rotating MN in an inhomo-
geneous field (e.g., Levitron dynamics in a loffe-Pritchard
trap [18,19]).

In conclusion, we show that AB due to Gilbert damping is
very small; external noise sources, as discussed in Ref. [1],
will dominate over the Gilbert noise for weak magnetic
fields. A closed system of stochastic differential equations,
(13), (16), and (17), can be used to model the dynamics and
estimate AB for large magnetic fields. A rotating MN in a
magnetic trap can experience levitation, although the motion
does not converge to a fixed point or a limit cycle; an
adiabatic-invariant stability analysis confirms stability [13].
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