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An analysis of a single-domain magnetic needle (MN) in the presence of an external magnetic field B is
carried out with the aim of achieving a high-precision magnetometer. We determine the uncertainty ΔB of
such a device due to Gilbert dissipation and the associated internal magnetic field fluctuations that give rise
to diffusion of the MN axis direction n and the needle orbital angular momentum. The levitation of the MN
in a magnetic trap and its stability are also analyzed.
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A rigid single-domain magnet with large total spin,
e.g., S ≃ 1012ℏ, can be used as a magnetic needle magne-
tometer (MNM). Recently, Kimball et al. [1] predicted that
the sensitivity of a precessing MNM can surpass that of
present state-of-the-art magnetometers by orders of mag-
nitude. This prediction motivates our present study of
MNM dynamics in the presence of an external magnetic
field B. Such analysis requires inclusion of dissipation of
spin components perpendicular to the easy magnetization
axis (Gilbert damping). It is due to interactions of the spin
with internal degrees of freedom such as lattice vibrations
(phonons), spin waves (magnons), thermal electric cur-
rents, etc. [2,3]. Once there is dissipation, fluctuations are
also present [4] and result in a source of uncertainty that can
affect the accuracy of the magnetometer. Here, we deter-
mine the uncertainty in the measurement of the magnetic
field by a MNM. We also analyze a related problem
concerning the dynamics of the needle’s levitation in an
inhomogeneous magnetic field, e.g., an Ioffe-Pritchard
trap [5].
The Hamiltonian for a magnetic needle (MN), treated

as a symmetric top with body-fixed moments of inertia
IX ¼ IY ≡ I ≠ IZ, subject to a uniform magnetic
field B is

H¼ 1

2I
L̂2þ

�
1

2IZ
−

1

2I

�
L̂Z

2

|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
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−ðω0=ℏÞðŜ · n̂Þ2|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}
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−μ̂ ·B|fflffl{zfflffl}
HB

; ð1Þ

where a hat denotes a quantum operator. In the rotational
Hamiltonian HR, L̂ is the orbital angular momentum

operator, and L̂Z ¼ L̂ · Ẑ is its component along the
body-fixed symmetry axis. Ŝ is the needle spin angular
momentum operator, and n̂ is the operator for n that is the
unit vector in the direction of the easy magnetization axis.
The frequency appearing in the anisotropy HamiltonianHA

[6] is ω0 ¼ 2γ2KS=V, where K is the strength of the
anisotropy, V is the needle volume, and γ ¼ gμB=ℏ is the
gyromagnetic ratio, in which μB is the Bohr magnetron, and
g is the g factor (taken to be a scalar for simplicity). In the
expression for the Zeeman Hamiltonian HB, μ̂ ¼ gμBŜ is
the magnetic moment operator. The Heisenberg equations
of motion are

_̂S ¼ −gμBB × Ŝþ 2
ω0

ℏ
ðŜ × n̂ÞðŜ · n̂Þ; ð2Þ

_̂L ¼ −2
ω0

ℏ
ðŜ × n̂ÞðS · n̂Þ; ð3Þ

_̂J ¼ −gμBB × Ŝ; ð4Þ

_̂n ¼ I−1

ℏ
½L̂ × n̂þ iℏn̂�; ð5Þ

where Ĵ ¼ L̂þ Ŝ is the total angular momentum operator
and I is the moment of inertia tensor.
The dynamics of a MN can be treated semiclassically

because S is very large. A mean-field approximation [7–9]
is obtained by taking quantum expectation values of
the operator equations and assuming that, for a given

operator Â, the inequality
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hÂ2i − hÂi2

q
≪ jhÂij holds (an
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assumption warranted for large S). Hence, the expectation
values of a product of operators on the rhs of Eqs. (2)–(5)
can be replaced by a product of expectation values. The
semiclassical equations are equivalent to those obtained in a
classical Lagrangian formulation. Dissipation is accounted
for by adding the Gilbert term [2,6] −αS×ð _S=ℏ−Ω×S=ℏÞ
to the rhs of the expectation value of Eq. (2) and subtracting
it from the rhs of Eq. (3). Here α is the dimensionless
friction parameter, and the term Ω × S transforms from
body- to space-fixed frames. Note that Gilbert damping is
due to internal forces; hence J is not affected and Eq. (4)
remains intact.
It is useful to recast the semiclassical dynamical equa-

tions of motion in reduced units by defining dimensionless
vectors: the unit spinm≡ S=S, the orbital angular momen-
tum l≡L=S, the total angular momentum j ¼ mþ l,
and the unit vector in the direction of the magnetic field
b ¼ B=B,

_m ¼ ωBm× bþω0ðm× nÞðm · nÞ− αm× ð _m−Ω×mÞ;
ð6Þ

_l ¼ −ω0ðm × nÞðm · nÞ þ αm × ð _m −Ω ×mÞ; ð7Þ

_n ¼ Ω × n; ð8Þ

_j ¼ ωBm × b; ð9Þ

where the angular velocity vector Ω is given by

Ω ¼ ðω3 − ω1Þðl · nÞnþ ω1l

¼ ðω3 − ω1Þ½ðj −mÞ · n�nþ ω1ðj −mÞ: ð10Þ

Here, ωB ¼ γjBj is the Larmor frequency, ω1 ¼ S=IX, and
ω3 ¼ S=IZ. Similar equations were obtained in Ref. [10],
albeit assuming that the deviations of nðtÞ andmðtÞ from b
are small. We show below that the dynamics can be more
complicated than simply precession of the needle about the
magnetic field, particularly at high magnetic fields where
nutation can be significant.
For the numerical solutions presented below, we are

guided by Ref. [1], which uses parameters for bulk cobalt,
and take ω1 ¼ 100 s−1, ω3 ¼ 7000 s−1, anisotropy fre-
quency ω0 ¼ 108 s−1, Gilbert constant α ¼ 0.01, temper-
ature T ¼ 300 K, and N ¼ S=ℏ ¼ 1012. First, we elucidate
the effects of Gilbert dissipation and consider the short-time
behavior in a weak magnetic field, ωB ¼ 1 s−1. The initial
spin direction is intentionally chosen not to be along the
easy magnetic axis: nð0Þ ¼ ð1=2; 1= ffiffiffi

2
p

; 1=2Þ, mð0Þ ¼
ð1= ffiffiffi

2
p

; 1=
ffiffiffi
2

p
; 0Þ, lð0Þ ¼ ð0; 0; 0Þ. Figure 1(a) shows the

fast spin dissipation as it aligns with the easy axis of the
needle, i.e., mðtÞ → nðtÞ after a short time, and Fig. 1(b)
shows relaxation of the oscillations in lðtÞ, while lxðtÞ and

lyðtÞ approach finite values. Figure 1(c) shows the inner
productm · n, which clearly tends to unity on the timescale
of the figure. Increasing α leads to faster dissipation of
mðtÞ, but the short-time saturation values of bothmðtÞ and
lðtÞ are almost independent of α.
We consider now the long-time dynamics (still in the

weak-field regime) and take the initial value of the spin
to coincide with the easy magnetization axis, e.g.,
mð0Þ ¼ nð0Þ ¼ ð1= ffiffiffi

2
p

; 1=
ffiffiffi
2

p
; 0Þ, with all other parame-

ters unchanged. The spin versus time is plotted in Fig. 2(a).
The unit vectors mðtÞ and nðtÞ are almost identical, and
since their z component is nearly zero, they move together
in the x-y plane. In this weak-field case, the nutation is
small, and the fast small oscillations due to nutation are
barely visible. The orbital angular momentum dynamics is
plotted in Fig. 2(b) [note the different timescales in
Figs. 2(a) and 2(b)] and shows that lðtÞ oscillates with
a frequency equal to that of the fast tiny oscillation ofmðtÞ
[the oscillation amplitude is 0.02jmðtÞj]. Figure 2(c) shows

(a)

(b)

(c)

FIG. 1. (a) The normalized spin vector m versus time for the
low-field case at short times (5 orders of magnitude shorter than
in Fig. 2) when the initial spin is not along the fast axis. (b) The
reduced orbital angular momentum vector lðtÞ. (c) The inner
product mðtÞ · nðtÞ (the projection of the spin on the fast
magnetic axis of the needle).
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a parametric plot of mðtÞ versus time. The nutation is
clearly very small; the dynamics of mðtÞ consists almost
entirely of precession at frequency ωB.
Figure 3 shows the dynamics at high magnetic field

(ωB ¼ 105 s−1) with all the other parameters unchanged.
Figure 3(a) shows m versus time, and now the nutation is
clearly significant. For the high magnetic field case,mðtÞ is
also almost numerically equal to nðtÞ. lðtÞ is plotted in
Fig. 3(b). Its amplitude is very large, lðtÞ ≈ 40mðtÞ.
However, its oscillation frequency is comparable with that
of mðtÞ. In contrast with the results in Fig. 2, here, in
addition to precession of the needle, significant nutation is
present, as shown clearly in the parametric plot of the
needle spin vector mðtÞ in Fig. 3(c).
We now determine the uncertainty of the MNM due to

internal magnetic field fluctuations related to the Gilbert
damping. A stochastic force ξðtÞ, whose strength is
determined by the fluctuation-dissipation theorem [4], is

added to Eq. (6), in direct analogy with the treatment of
Brownian motion, where both dissipation and a stochastic
force are included [11],

_m ¼ m × ðωBbþ ξÞ þ ω0ðm × nÞðm · nÞ
− αm × ð _m −Ω ×mÞ: ð11Þ

ξðtÞ is internal to the needle and therefore it does not affect
the total angular momentum j directly; i.e., ξðtÞ does not
appear in Eq. (9) [since the term −m × ξ is also added to
the rhs of (7)]. However, as shown below, ξðtÞ affects l as
well as m, causing them to wobble stochastically. This, in
turn, makes j stochastic as well via the Zeeman torque
[see Eq. (9)].

(a)

(b)

(c)

FIG. 2. Dynamics for the low-field case (ωB ¼ 1 s−1), over
relatively long timescales relative to those in Fig. 1. (a) m versus
time in units of seconds (note that n is indistinguishable from m
on the scale of the figure). (b) lðtÞ (note that it stays small
compared to S). (c) Parametric plot of the needle spin vectormðtÞ
showing that nutation is almost imperceptible for small fields
[contrast this with the large-field result in Fig. 3(c)]; only
precession is important.

(a)

(b)

(c)

FIG. 3. High-field case (ωB ¼ 105 s−1). (a) mðtÞ [which is
almost numerically equal to nðtÞ]. (b) lðtÞ (note the ordinate axis
scale is ½−40; 40�). (c) Parametric plot of the needle spin vector
mðtÞ showing that strong nutation occurs for large fields in
addition to precession.
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The fluctuation-dissipation theorem [4] implies

hξαξβiω ≡
Z

dthξαðtÞξβð0Þieiωt

¼ δαβ
αω cothðℏω=2kBTÞ

N
≈ δαβ

2αkBT
ℏN

; ð12Þ

where N ¼ S=ℏ, and the last approximation is obtained
under the assumption that ℏω ≪ kBT. Note that Eq. (11)
should be solved together with Eqs. (8) and (9).
The presence of the anisotropy term in Eq. (11)

makes numerical solution difficult for large ω0. Hence,
we consider a perturbative expansion in powers of
λ≡ ω1=ω0: mðtÞ ¼ n0ðtÞ þ λδmðtÞ þ � � �, nðtÞ ¼ n0ðtÞ þ
λδnðtÞ þ � � �, jðtÞ ¼ j0ðtÞ þ λδjðtÞ þ � � �. Since ω0 is the
largest frequency in the problem, the inequalities αω0 ≫
ωB;ω1;ω3 hold. Moreover, the Gilbert constant α is
large enough to effectively pin mðtÞ to nðtÞ [hence, jðtÞ ¼
lðtÞ þmðtÞ ≈ lðtÞ þ nðtÞ]. Therefore, an adiabatic
approximation to the set of dynamical stochastic equations
can be obtained. The zero order term in λ reads

_j0 ¼ ωBn0 × b; _n0 ¼ ω1j0 × n0; ð13Þ

where Ω was approximated by Ω0 ¼ ðω3 − ω1Þðj0 · n0 −
1Þn0 þ ω1ðj0 − n0Þ in Eqs. (8) and (10) in obtaining (13)
[12]. The solution to Eq. (13) [for times beyond which
Gilbert dissipation is significant so mðtÞ ≈ nðtÞ] is very
close to that obtained from Eqs. (6)–(8).
Expanding Eq. (11) in powers of λ and keeping only

the first order terms (the zeroth order term on the lhs
vanishes since m0 ¼ n0), we get ω1ðδm − δnÞ × n0 ¼
_n0 − ωBn0 × bþ αn0 × ð _n0 −Ω0 × n0Þ − n0 × ξ. Taking
Eq. (13) into account and introducing the notation
δη≡ δm − δn, we obtain

δη×n0¼ j0×n0− ðωB=ω1Þn0×b− ð1=ω1Þn0× ξ; ð14Þ

and from Eqs. (8) and (9) we find

d
dt

δj ¼ ωBðδnþ δηÞ × b; ð15Þ

d
dt

δn ¼ ω1ðj0 − n0Þ × δnþ ω1ðδj − δn − δηÞ × n0

¼ ω1j0 × δnþ ω1ðδj − δηÞ × n0: ð16Þ

To first order in λ, δn⊥n0 (since n must be a unit
vector) and δm⊥n0, hence δη⊥n0. Therefore, δη × b ¼
½j0 − ðj0 · n0Þn0� × b þ ðωB=ω1Þ½b − ðb · n0Þn0� × b þ
ω−1
1 ½ξ − ðξ · n0Þn0� × b on the rhs of Eq. (15) and

d
dt
δj¼ωBδn×bþωB½j0 − ðj0 ·n0Þn0�×b

−
ω2
B

ω1

ðb ·n0Þn0×bþωB

ω1

½ξ− ðξ ·n0Þn0�×b: ð17Þ

Equations (13), (16), and (17) form a closed system of
stochastic differential equations [upon using Eq. (14) to
substitute for δη × n0 on the rhs of Eq. (16)]. With the
largest frequency ω0 eliminated, a stable numerical solution
is obtained. Moreover, for small magnetic field (where ωB
is the smallest frequency in the system), an analytic
solution of these equations is achievable. To obtain an
analytic solution to Eq. (13), let us transform to the frame
rotating aroundBwith frequency ωB to get equations of the
form ðd=dτÞv ¼ ðd=dtÞv þ ωBb × v (which defines τ),

d
dτ

n0 ¼ −ω1n0 ×

�
n0 − j0 þ

ωB

ω1

b

�
; ð18Þ

d
dτ

j0 ¼ ωBb ×

�
n0 − j0 þ

ωB

ω1

b

�
: ð19Þ

If the initial condition is n0ð0Þ − j0ð0Þ þ ðωB=ω1Þb ¼ 0,
then, in the rotating frame, j0ðτÞ and n0ðτÞ are constant
vectors. Note that this initial condition is only slightly
different from the “ordinary” initial condition n0ð0Þ ¼
j0ð0Þ since ðωB=ω1Þ ≪ 1 for small magnetic fields. Hence,
in the rotating frame,

d
dτ

δn ¼ ω1n0 × ðδn − δjþ δηÞ; ð20Þ

d
dτ

δj ¼ −ωBb × ðδn − δjþ δηÞ: ð21Þ

With the special initial condition being satisfied, Eq. (14)
becomes δη × n0 ¼ −ð1=ω1Þn0 × ξ, and Eqs. (20) and (21)
become a set of first order differential equations with time-
independent coefficients. Their solution for initial condi-
tions, δnðt ¼ 0Þ ¼ 0, δjðt ¼ 0Þ ¼ 0 is

�
δnðtÞ
δjðtÞ

�
¼

Z
t

0

dt1 exp ½Cðt − t1Þ�C
�
δηðt1Þ
0

�
; ð22Þ

where the constant matrix C ¼ ð A
−B

−A
B Þ has dimension

6 × 6, and the 3 × 3 matrices A and B are given by
Aij ¼ −ω1ϵijknk0, Bij ¼ −ωBϵijkbk. Without loss of
generality, we can choose n0 ¼ ẑ and b ¼
ωBðcos θẑþ sin θx̂Þ, where θ is the angle between the
easy magnetization axis and the magnetic field. In this
basis, hδηxδηxiω¼hδηyδηyiω≈ω−2

0 hξxξxiω¼ω−2
0 hξyξyiω¼

SaðωÞ, and hδηzδηziω¼0. Here hxxiω ≡ R
dteiωthxðtÞxð0Þi

and [see Eq. (12)] SaðωÞ ¼ ½αω cothðℏω=2kBTÞ=ðω2
0NÞ�≈

ð2αkBT=Nℏω2
0Þ.

PHYSICAL REVIEW LETTERS 121, 160801 (2018)

160801-4



We are particularly interested in the quantities
hδn2yðtÞi≡ hδnyðtÞδnyðtÞi and hδj2yðtÞi≡ hδjyðtÞδjyðtÞi
because, in the basis chosen above, the y axis is the
direction of precession of n0 around b. Using Eq. (22),
we obtain hδn2yðtÞi ≈ tω2

1Saðω ∼ ω1Þ. Assuming the pre-
cession of n is measured [or, equivalently, the precession
of m, since they differ only for short timescales of
order ðαω0Þ−1], the uncertainty in the precession angle
is hðΔφÞ2i ≈ tω2

1Saðω ∼ ω1Þ. We thus arrive at our
central result: the precision with which the precession
frequency can be measured is ΔωB ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hðΔφÞ2i

p
=tÞ≈

ðω1=ω0Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffið2αkBT=ℏNÞp ð1= ffiffi

t
p Þ. Equivalently, the mag-

netic field precision is

ΔB ¼ ΔωB

γ
≈

ℏ
gμB

ω1

ω0

ffiffiffiffiffiffiffiffiffiffiffiffiffi
2αkBT
ℏN

r
1ffiffi
t

p : ð23Þ

For the parameters used in this Letter, we find ΔB≈
fð5 × 10−18Þ=ð ffiffiffiffiffiffiffi

t½s�p Þg T (independent of ωB). This result
should be compared with the scaling ΔB ∝ t−3=2 obtained
in Ref. [1]. Therein, the initial uncertainty of the spin
direction relative to the needle axis was estimated from the
fluctuation-dissipation relation and the deterministic pre-
cession resulted in the t−3=2 scaling of the precession angle
uncertainty (in addition, this angle was assumed to be
small). In contrast, we consider the uncertainty acquired
due to Gilbert dissipation during the precession, allowing
the precession angle to be large. Thus, the standard 1=

ffiffi
t

p
diffusion scaling is obtained and dominates for times that
are even much longer than those considered in Ref. [1].
In the Supplemental Material [13], we discuss three

relevant related issues: (a) The time at which diffusion stops
because equipartition is reached (we estimate the timewhen
the energy stored in stochastic orbital motion becomes of
order kBT). (b) The uncertainty of the magnetic field for
experiments in which the fast precession of n around j is
averaged out in the measurement, and the diffusion of j
determines ΔB. (c) We consider the related problem of the
dynamics and stability of a rotating MN in an inhomo-
geneous field (e.g., Levitron dynamics in a Ioffe-Pritchard
trap [18,19]).
In conclusion, we show thatΔB due to Gilbert damping is

very small; external noise sources, as discussed in Ref. [1],
will dominate over the Gilbert noise for weak magnetic
fields. A closed system of stochastic differential equations,
(13), (16), and (17), can be used to model the dynamics and
estimate ΔB for large magnetic fields. A rotating MN in a
magnetic trap can experience levitation, although themotion
does not converge to a fixed point or a limit cycle; an
adiabatic-invariant stability analysis confirms stability [13].
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