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By making use of a recently proposed framework for the inference of thermodynamic irreversibility
in bosonic quantum systems, we experimentally measure and characterize the entropy production rates in
the nonequilibrium steady state of two different physical systems—a micromechanical resonator and a
Bose-Einstein condensate—each coupled to a high finesse cavity and hence also subject to optical loss.
Key features of our setups, such as the cooling of the mechanical resonator and signatures of a structural
quantum phase transition in the condensate, are reflected in the entropy production rates. Our work
demonstrates the possibility to explore irreversibility in driven mesoscopic quantum systems and paves the
way to a systematic experimental assessment of entropy production beyond the microscopic limit.
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Entropy is a crucial quantity for the characterization of
dynamical processes: it quantifies and links seemingly
distant notions such as disorder, information, and irrevers-
ibility across different disciplinary boundaries [1,2]. Every
finite-time transformation results in some production of
entropy, which signals the occurrence of irreversibility.
Quantifying the amount of irreversible entropy produced by
a given process is a goal of paramount importance: entropy
production is a key quantity for the characterization of
nonequilibrium processes, and its minimization improves
the efficiency of thermal machines. The second law of
thermodynamics can be formulated in terms of a universal
constraint on the entropy production, which can never be
negative [3,4]. In turn, this leads to the following rate
equation for the variation of the entropy S [5]:

dS
dt

¼ ΠðtÞ −ΦðtÞ; ð1Þ

whereΠðtÞ andΦðtÞ are the irreversible entropy production
rate and the entropy flux from the system to the environ-
ment, respectively. When the system reaches a nonequili-
brium steady state (NESS), these quantities take values Πs
and Φs respectively, such that Πs ¼ Φs > 0 [see Fig. 1(a)].

Under these conditions, entropy is produced and exchanged
with the local baths at the same rate. Only when both terms
vanish (Πs ¼ Φs ¼ 0) does one recover thermal equilib-
rium. The entropy production rate directly accounts for the
irreversibility of a process and uncovers the nonequilibrium
features of a system.
The link between the entropy production rate Πs and

irreversibility becomes particularly relevant in small sys-
tems subjected to fluctuations for which a microscopic
definition of entropy production based on stochastic
trajectories of the system has been given [6].
Experimentally, this notion has been used to test fluctuation
theorems in a variety of classically operating systems such
as a single-electron box [7], a two-level system driven by a
time-dependent potential [8], and a levitated nanoparticle
undergoing relaxation [9]. However, in order to harness the
working principles of thermodynamic machines working at
the quantum level, and pinpoint the differences between
their performances and those of their classical counterparts,
it is important to analyze the entropy generated through
genuine quantum dynamics [10]. Moreover, while so far
nanoscale systems have been used for the experimental
study of classical out-of-equilibrium thermodynamics,
irreversible entropy production arising from quantum

PHYSICAL REVIEW LETTERS 121, 160604 (2018)
Editors' Suggestion Featured in Physics

0031-9007=18=121(16)=160604(6) 160604-1 © 2018 American Physical Society

https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.121.160604&domain=pdf&date_stamp=2018-10-17
https://doi.org/10.1103/PhysRevLett.121.160604
https://doi.org/10.1103/PhysRevLett.121.160604
https://doi.org/10.1103/PhysRevLett.121.160604
https://doi.org/10.1103/PhysRevLett.121.160604


dynamics in mesoscopic quantum systems has not been
experimentally investigated yet.
Recently, progress towards the theoretical characteriza-

tion of entropy production in bosonic systems brought
out of equilibrium has been made [11–13]. In this Letter,
we make use of such theoretical framework to quantify
experimentally the amount of irreversibility in the NESS of
two different driven-dissipative quantum systems, realized
by coupling bosonic systems to high-finesse cavities. The
light field mode of a cavity allows us to infer the entropy
production in terms of relevant controllable parameters of
the coupled system. In particular, in this study, we inves-
tigate the influence of different dynamical regimes and
sources of environmental noise on the quantum fluctuations
of a quantum system, and thus the corresponding entropy
production rate. In order to address such influences,
we assess two distinct experimental setups: a cavity-
optomechanical (cavity-OM) device and a Bose-Einstein
condensate (BEC) with cavity-mediated long-range inter-
actions [14–16]. The required measurements are based on
the spectra of the light fields leaking out of the respective
cavities. Remarkably, the entropy production reflects the
specific features of the two experimental platforms, which
are very different in nature despite the common description

provided here. As such, our results show how a key
indicator of irreversibility is fully within the grasp of
dynamically controlled quantum dynamics.
In cavity-OM systems, the cavity photon number is

coupled to the position of the mechanical oscillator
[cf. Figs. 1(b) and 1(c)]. Our specific implementation
uses a Fabry-Perot cavity. One of its mirrors is a doubly
clamped, highly reflective, mechanical cantilever.
Radiation pressure couples the intracavity photon number
to the position of the cantilever. The mechanical support of
the cantilever provides a local heat bath at room temper-
ature. The optical cavity is driven by a laser that is red
detuned by the mechanical frequency from the optical
cavity resonance. For a driving laser without classical
noise, the cavity mode is coupled to a zero-excitation heat
bath. We observe sideband cooling of the mechanical
motion [17–20] and, for large drive powers, strong opto-
mechanical coupling [21–23]. To analyze the entropy
production rate of the cavity-OM system, we measure
the light reflected off the cavity via homodyne detection.
Also in the second implementation, the two coupled

harmonic oscillators correspond to a light field mode
coupled to a mechanical degree of freedom [cf. Figs. 1(b)
and 1(d)]. We load a BEC into a high-finesse optical cavity
and illuminate the atoms with a standing-wave transverse
laser field. Far-off resonant scattering of photons from the
laser field into a near-detuned, initially empty cavity field
mode, couples the zero-momentum mode of the BEC to an
excited momentum mode. The scattering process mediates
effective atom-atom interactions, which are long range, since
the photons are delocalized in the cavity mode [16]. This
interaction is tunable in strength via the power of the
transverse laser beam. The long-range interaction can be
brought to competition with the kinetic energy of the atoms,
resulting in a structural phase transition [24]. In the spatially
homogeneous phase, for increasing interaction, the energy of
the excited momentum mode softens until, at a critical
interaction, the strength of the system breaks a discrete
symmetry and the atoms arrange in a spatially modulated
density distribution. The equivalence of this system to a
Dicke model has been demonstrated in Ref. [15]. We
measure the cavity light field leaking through the mirrors
with a heterodyne detection setup. The spectral analysis of
this signal is used to infer the diverging amount of atomic
density fluctuations accompanying the structural phase
transition [24].
In both cases, the effective interaction between the

oscillators is obtained by a harmonic expansion of the
field operators around their mean values, resulting in two
linearly coupled quantum oscillators [cf. Fig. 1(b)]. We
denote with δq̂a;b and δp̂a;b the position and momentum
fluctuation operators around the mean-field values of the
two oscillators. In what follows, a and b refer to the optical
and mechanical or atomic oscillators, respectively. In a
frame rotating at the frequency ωp of the respective pump

(a) (b)

(c) (d)

FIG. 1. (a) The driven-dissipative system, consisting of the
coupled subsystems a and b, reaches a nonequilibrium steady
state (NESS) with an associated entropy production rate Πs and
an entropy flux Φs from the system to the environment. (b) The
systems can be modelled as two quantum harmonic oscillators
at frequencies ωa and ωb, linearly coupled with a strength gab.
Each oscillator is coupled to independent local baths at temper-
ature Ta and Tb, respectively. The corresponding coupling rates
are κa and γb. The oscillators can be pumped by an external
field (purple and orange arrows in the figure). (c) Optomechan-
ical setup: a micromechanical oscillator (δq̂b) is coupled to the
field mode of an optical Fabry-Perot cavity (δq̂a). For this setup
only the cavity is pumped. (d) Cavity-BEC setup: the external
degree of freedom of a BEC (δq̂b) is coupled to the field mode
of a cavity (δq̂a). For this setup only the atoms are pumped. Red
and blue wiggly lines indicate heating or cooling of the
subsystems via coupling to the baths. In both setups the
number of excitations in the optical bath is zero, i.e., nTa

¼ 0.
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fields, the oscillators have frequencies ωa ¼ ωc − ωp and
ωb (here ωc is the frequency of the cavity field). Their
interaction is described by the Hamiltonian

Ĥ ¼ ℏωa

2
ðδq̂2a þ δp̂2

aÞ þ
ℏωb

2
ðδq̂2b þ δp̂2

bÞ þ ℏgabδq̂aδq̂b;

ð2Þ

where gab is the coupling strength between the modes. In
the superradiant phase of the Dicke model, an additional
squeezing term of the atomic mode must be included in the
Hamiltonian [16]. For the derivation of the models and the
values of the parameters in the two setups, we refer to
Ref. [25] and to Table I. The systems are inherently open:
each harmonic oscillator is independently coupled to a local
bath. This provides both a dissipation channel and extra
quantum fluctuations in addition to those present in the
closed systems. The optical cavity mode is coupled to the
surrounding electromagnetic vacuum with a decay rate κa.
On the other hand, the nature of the mechanical or atomic
bath is specific to the setup being considered. In the cavity-
OM system, the coupling of the vibrating mirror to the
background of phonon modes is described in terms of
quantum Brownian motion. In the cavity-BEC system,
dissipation is due to the collection of excited Bogolioubov
modes, which provides a bath for the condensate. In both
cases, we assume oscillator b to be in contact with a
Markovian bath at temperature Tb and rate γb. The average
number of excitations in the equilibrium state of oscillator b
is thus nTb

¼ ðeℏωb=kBTb − 1Þ−1 (cf. Ref [31]). The driven-
dissipative nature of the systems is such that a NESS is
eventually reached [14,32].
The linear dynamics undergone by the coupled oscil-

lators allows us to exploit a framework developed for linear
stochastic processes [11–13]. In particular, the situation
that we face is perfectly suited to the use of the framework
for the quantification of entropy production proposed in
Ref. [12], where the entropy S of an arbitrary bosonic
quantum system prepared in a Gaussian state is written in
terms of the Shannon entropy of the Wigner function

SðtÞ ¼ −
Z

Wðu; tÞ logWðu; tÞdu; ð3Þ

whereWðu; tÞ is the Wigner function at time t correspond-
ing to the state of the two oscillators, and u is the

corresponding vector of complex phase-space variables.
The quadratic nature of Eq. (2) and the initial thermal
state of the oscillators in both setups ensures the positivity
ofWðu; tÞ and allows us to write it in terms of the variances
of the fluctuation operators of the oscillators, which
enormously simplifies the explicit calculation of ΠðtÞ.
In the NESS, all entropy produced in the system flows
to the environments so that Πs ¼ Φs. Following the lines
sketched in Ref. [25], the entropy production rate in the
NESS due to the quantum fluctuations takes the form

Πs ¼ Φs ¼ 2γb

�
nb þ 1=2
nTb

þ 1=2
− 1

�
þ 4κana ¼ μb þ μa; ð4Þ

where na¼hðδq̂2aþδp̂2
a−1Þis=2 and nb ¼ hðδq̂2b þ δp̂2

b −
1Þis=2 are the average number of excitations in the NESS
of the two oscillators in excess of the zero-point motion
of the respective harmonic oscillator. In the cavity-OM
expression for μb, instead of the full phonon number nb,
only the momentum variance hδp̂2

bis enters as we assume
Brownian motion damping.
Equation (4) represents our main theoretical result: it

quantifies the entropic contribution, ascribable to the
quantum fluctuations that the system has to pay to remain
in its NESS. It thus directly quantifies the irreversibility of
the driven-dissipative dynamics of two linearly coupled
quantum oscillators, well beyond the linear-response limit.
For vanishing coupling, the systems reach thermal equi-
librium (i.e., na ¼ 0 and nb ¼ nTb

), and Πs vanishes.
Moreover, there is no dependence on the correlations
between the oscillators, since in a NESS the entropy
production rate Πs equals the flux rate Φs. Thus, the
entropy flux from the system to the overall environment
determines the amount of irreversibility produced within
the driven-dissipative model, and is directly linked to the
breaking down of the microscopic detailed balance [10].
The previous considerations also allow us to identify two
contributions to Πs, linked to the mechanical or atomic and
optical oscillator, referred to as μa and μb, respectively.
They are the individual entropy flows to each environment
and show how the entropy produced in the NESS is split
into two distinct fluxes. We note that the explicit form of
Eq. (4) in terms of the sum of such independent terms
strongly relies on the local nature of the environments that
we have considered, and we expect it not to hold in more
general situations. The dissipative evolution arising from

TABLE I. Physical parameters for the two experimental setups. The damping rate γb is constant in the cavity-OM
experiment, while in the cavity-BEC setup it depends on the actual working point (cf. Ref. [25] for details). Here, m
is the effective mass of the mechanical oscillator, and N is the number of 87Rb atoms in the BEC.

ωa=2π [MHz] κa=2π [kHz] ωb=2π [kHz] γb=2π [Hz] Tb [K] Other parameters

cavity-OM 1.27815 435.849 1278.15 264.1 292 m ¼ 176 ng
cavity-BEC 15.13 1250 8.3 [25] 38 × 10−9 N ¼ 105
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the contact with the environments is manifested explicitly
in Eq. (4) by the presence of the rates γb and κa. In both
settings, the mechanical or atomic damping rate γb is much
smaller than the cavity decay rate κa, as can be appreciated
from Table I.
A general formulation of entropy production demands

the knowledge of the global state of the system [33–37].
However, Πs evaluated for the linearized dynamics in
Eq. (2) only involves the mean excitations of the oscillators
[11,13]. For the experimental regime of interest, the
dynamics of the cavity field adiabatically follows the
mechanical or atomic mode. By measuring the light field
leaking out of the cavity, we thus can infer about both μa
and μb. For both experimental setups, the coupling gab is
varied by increasing the power of the pump. The density
noise spectrum (DNS) of the cavity field quadratures is
recorded [24,38]. Typical examples of the experimental
DNS, together with the fitting curves used for their
analysis, are shown in Fig. 2. In the cavity-OM experiment,
the data sets are taken for ωa ¼ ωb, which is the working
point where the cooling of the mechanical resonator is most
effective in the resolved-sideband regime. In the cavity-
BEC experiment, on the other hand, the parameters are
ωa ≫ ωb, resulting in only a tiny admixture of the optical
subsystem. A further difference between the two platforms
is in the way the two oscillators are populated: in the
optomechanical case, we have nb ≫ na for the lowest
coupling values, while they become comparable in size for
the maximum cooling achieved. In the cavity-BEC setup,
the cavity field is considerably less populated than the
atomic mode. Finally, the mechanical bath is at room
temperature, while the temperature of the atomic reservoir
is below the condensation point and in the nK range
(cf. Table I). This highlights and reinforces the diversity
of the experimental platforms that we have addressed

within a unique framework for the quantification of
irreversible entropy.
Following the technical approach illustrated in

Refs. [11–13] and sketched in [25], we have separately
reconstructed the two terms μa and μb that determine
quantitatively Πs. Figure 3 displays the experimental data
together with the theoretical model, demonstrating a very
good quantitative agreement. Besides the influences of the
environments, the entropy production rates depend on the
interplay between the mutual dynamics of the oscillators.
For the cavity-OM system, the contribution to Πs we

(b)(a)

FIG. 2. Experimental density noise spectra. Panel (a): Density
noise spectrum (DNS) of the phase quadrature of the output
cavity field, attenuated before detection, for the cavity-OM
setup. The jagged blue curve refers to a value of the rescaled
coupling gab=κa ¼ 0.49, while the jagged light-blue curve to
gab=κa ¼ 2.29. The fits of the DNS are shown as smooth lines.
Notice that the power spectrum is originally dimensionless, and
has been here converted to SI units for uniformity of notation.
Panel (b): DNS of the extra-cavity field for the cavity-BEC
system at a coupling ðgab=gcrabÞ2 ¼ 0.93. A fit of the DNS is
shown as a smooth line.
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FIG. 3. Experimental assessment of the irreversible entropy
production rate Πs at the NESS for (a) the cavity-OM system and
(b) the cavity-BEC system. In the cavity-OM system, gab is twice
the standard optomechanical coupling rate [14,25]. For the
cavity-BEC setup, the control parameter gab is renormalized
with respect to the critical parameter gcrab ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðκ2a þ ω2

aÞωb=4ωa

p
.

The insets show the behavior of μb in each of the settings
considered. In both panels, the solid black lines show the
theoretical predictions based on the values given in Table I.
The blue and red dots show the experimental data for the cavity-
OM and cavity-BEC experiment, respectively. In panel (a), the
vertical error bars report statistical errors extracted from the fit,
while the horizontal ones show experimental error on the values
of the parameter. In panel (b), the vertical and horizontal error
bars report the statistical errors from the fit and the determination
of the critical point, respectively [24].
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observe from the mechanical oscillator is much smaller
than the one coming from the optical field. On the contrary,
μa ≃ μb in the atomic setup. For each of the two experi-
ments Πs is positive, in agreement with the second law. In
the cavity-OM setup, μa is an increasing function of the
coupling: the stronger the pump, the further the system
operates away from thermal equilibrium and the more
entropy is generated. At the same time, μb takes negative
values, whose magnitude increases for increasing values
of gab. This is legitimate as μb is not per se an entropy
production rate, but represents an individual flux, which
can thus take negative values (while μa þ μb has to be
positive). The observed behavior of μb is a signature of
optomechanical cooling: its growth, in absolute value, with
gab shows the increase of the entropy flow from the
mechanical resonator to the cavity field, corresponding
to lowering of the effective temperature of the resonator. As
for the cavity-BEC system, the divergent behavior of the
entropy production rate at the critical point reflects the
occurrence of the structural phase transition: at gcrab, the
known divergence of the populations of the two oscillators
at the steady state [39] results in the singularity of both μa
and μb separately. The irreversible entropy production rate
thus diverges at criticality.
We have experimentally determined the entropy pro-

duction rate, a key indicator of irreversibility, in driven-
dissipative quantum systems operating at the steady state.
The two experimental setups, being instances of meso-
scopic systems undergoing quantum dynamics, allowed
us to link the phenomenology of the entropy production
rate to the salient features of their physics. We have thus
assessed architectures that could embody the building
blocks of a generation of future thermodynamic machines
working out of equilibrium, and thus subjected to irre-
versible processes. For such devices, the quantification of
irreversibility will be very relevant for the characterization
of their efficiency, as it will provide useful information to
design protocols able to quench it, thus optimizing their
working principles.
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