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The Clausius inequality has deep implications for reversibility and the arrow of time. Quantum theory is
able to extend this result for closed systems by inspecting the trajectory of the density matrix on its
manifold. Here we show that this approach can provide an upper and lower bound to the irreversible
entropy production for open quantum systems as well. These provide insights on how the information on
the initial state is forgotten through a thermalization process. Limits of the applicability of our bounds are
discussed and demonstrated in a quantum photonic simulator.
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Introduction.—Irreversibility in physical processes is
strictly related to the idea of energy dissipation. This
concept is one of the cornerstones of thermodynamics
since it came to the stage in the second half of the 19th
century. The second law of thermodynamics allows us to
give a quantitative characterization to the interplay between
the irreversibility and the exchange of energy, introducing a
state function, the entropy, that is always nondecreasing in
macroscopical processes [1]. The generality of this prin-
ciple is a key feature in establishing thermodynamics as one
of the fundamental branches of classical theories and plays
a role also in the connections between physics and
information science [2-4]. A better understanding of the
implication of the second law at the quantum level is one of
the main issues of the actual research in the field of
quantum thermodynamics [5-10] and is fundamental in
the construction of a solid theoretical ground for a wide
class of applications such as computation [11], metrology
[12-15], quantum control [16—-18], and quantum thermal
engines [19-21].

In this Letter, we examine the thermalization process of a
quantum system .4 in contact with a reservoir, as pictorially
represented in Fig. 1. For this significant example of out-of-
equilibrium evolution, we manage to bound the irreversible
entropy production both from above and below, facing the
problem within an informational-geometric setting [22,23].
While the upper bound obtained here is completely general,
the lower bound holds only under certain conditions,
satisfied, for example, in the single-qubit scenario.

We will treat the Hilbert space of the system A as a
Riemannian manifold. This allows us to establish relations
between the irreversible entropy production and the
geodesic distances corresponding to metrics that are
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contractive under complete positive and trace preserving
maps. Following a similar approach, S. Deffner and E. Lutz
[24] determined a lower bound to the irreversible entropy
production for a closed quantum system driven by an
external field, in terms of the Bures length. However, it
results that the latter is not the only contractive Riemannian
metric on the system Hilbert space, as there exists an
infinite family of such metrics as characterized by the
Morozova-Cencov-Petz theorem [25,26]. Within this “mare
magnum,” the only Riemannian metrics whose geodesics
are analytically known are the Bures and the Wigner-
Yanase one. Quite recently, Pires et al. [27] proved that the
Bures metrics for the case of any single-qubit unitary
dynamics effectively provides a tighter bound on the
transformation speed at least when compared to the
Wigner-Yanase one; these transformations encompass
those considered in [24]. In general, establishing which
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FIG. 1. Principal features of our scheme: (a) the quantum system
is initialized in a given state p, then interacts with a reservoir at
temperature 7. The evolution induced by the interactions brings
the system in a state p(r) and produces irreversible entropy.
(b) Studying the trajectory on the state space allows for informa-
tion-geometric considerations delivering a lower bound on the
produced entropy in terms of the geodesic length L.
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metrics returns the smallest geodesic distance between
states is still an open question [27,28]. In our Letter, we
compare the two above mentioned metrics for the case of a
qubit thermalization process described by the so-called
generalized amplitude damping map and show that in this
case the Wigner-Yanase one provides the sharper bounds to
the irreversible entropy production. Our results are sup-
ported by experimental evidence, gained by simulating the
thermalization of a qubit in contact with a bosonic bath,
using quantum photonics [29,30]. We have compared the
performances of two states: (i) the quantum superposition
state of the ground and the excited levels of .4 and (ii) the
ground state of A: we have found that only the former is
able to efficiently distinguish the performances of the two
metrics. On a more practical ground, our bounds can be
simply computed by performing the tomography of the
state of the system at fixed time instants. In some cases, this
represents a less demanding task than directly measuring
thermodynamic functionals due to the nonlinear expres-
sions of the latter.

Geometrical  bounds  for  irreversible  entropy
production.—Let us consider an arbitrary system A weakly
coupled with a thermal bath at temperature 7. Without loss of
generality, let us fix as # = 0 the initial time ¢ of the process,
and let p, be the associated density matrix of the system. If we
keep the system Hamiltonian H unchanged, the system will
thermalize with the reservoir, thus asymptotically reaching
the canonical equilibrium state pe, = ¢7/Z;, where
B =1/kgT, kg =1 is the Boltzmann constant, and Zj is
the partition function. This represents a prototypical example
of an irreversible thermodynamic evolution, which, for
instance, finds applications also in the context of quantum
thermometry [12—14,29-32]. From a mathematical point of
view, this process can be described by a two-parameters
family of quantum channels {®!}, such that for all ¢
associates the density matrix p(t) :== ®![pg] of the system
to the initial state p,. This map admits a unique stationary
state corresponding to the (unique) equilibrium state of the
map, i.e., D (peq) = peq- The thermodynamically irrevers-
ible component of the entropy variation AS"y produced due
to evolution from ¢ = 0 to a generic time ¢ is given by

AQ

AST = AS 4 — —,
A A T

(1)
where the first term on the right-hand side is the entropy
variation of the system AS 4 = S [p(7)] — S4(po), being
Sa(p) = =Tr(pInp) the von Neumann entropy of the
density matrix p, and the second term is the heat AQ =
Tr[Hp(t)] — Tr[Hp,) absorbed by the system and corre-
sponds to the thermodynamically reversible contribution to
the entropy production. The Clausius inequality, AS&{ >0,
provides a process-independent lower bound to AS'}. In this
Letter, we will write both a sharper lower bound and also
an upper bound to this thermodynamic functional, by
recasting it as [33-35]

AS(1) = S(pollpeq) = S(p(1)llpeq)- (2)

where S(p||p2) = Tr(p; Inp;) — Tr(p; Inp,) is the so-
called relative entropy of p; to p,. Notice that in this case
the Clausius inequality can be easily proved from (2), by
exploiting the monotonicity of the relative entropy under
quantum channels, i.e., completely positive trace preserving
operations. Our interest for this relation stems from an
inequality of geometrical nature that links the quantum
relative entropy with the unitarily invariant norms on the
Hilbert space. More precisely, calling £ the distance induced
on the Hilbert space by a given unitarily invariant norm, we
have S(p|lo) >2L%(p.o)/L*(e1.ez,), Where ¢;; is the
matrix, with the 7, j element equal to 1 and all other elements
0 [36]. We require the distance L to be contractive under the
action of any map A, i.e., L(A(p),A(c)) < L(p, ). The
latter condition is crucial in order to interpret £ as a measure
of the distinguishability between p and o. This is satisfied by
an infinite family of metrics explicitly characterized by the
Morozova-Cencov-Petz theorem [25,26,37]. It follows that
each of such metrics will provide a different consistent bound
to the relative entropy. The only cases in which an analytical
expression for the geodesic distance is known [27,28]
are the quantum Fisher information metric Log(p. o) =
arccos[Tr[,/\/po./p]] and the Wigner-Yanase metric
Lywy(p, o) = arccos[Tr[,/p\/c]]. Notice that, if p and o
commute, the two geodesic distances coincide. We can
use these properties to obtain a sharper geometrical bound
to the irreversible component of the entropy during a
thermalization process as

. 8
AST (1) < S(pollpeq) — P{xi&?‘(’”}

Ly (p(1).peq).  (3)
where we exploited that £%(e |, e;,) = 7°/4, X = QF,
WY. This is the upper bound to ASij} we are looking for: the
geometrical distance establishes how much entropy is
dissipated during a generic transformation of a quantum
open system. Notice that asymptotically, i.e., for t — oo, the
inequality above becomes trivially strict, as both members
reduce to S(py|[peq) [see expression (2)].

The same technique can be exploited to determine a
lower bound for ASij}. However, in this case, an additional
step that restricts our analysis to a specific class of
dynamical maps is required. In the specific, we say that
a dynamical map @, satisfies a (reverse) triangle inequality
for the relative entropy if, taken an initial state p, and two
instants of time #; and t, > t;, we have

Slpoll @y, (po)] = Slpol| @, (po)] + S[®;, (po) [Py, (P0)]- (4)

Let us remark that the relation above is not valid, in
general. For instance, it can be shown to hold when
®@,(py) = (1 = A)po + Apeqs A being an increasing func-
tion of time ¢ (see the Supplemental Material [38],
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FIG.2. Quantum simulation via quantum logic gates. (a) Experimental apparatus. The system and the ancilla photons are generated via
a spontaneous parametric down-conversion (SPDC) process through a f barium-borate (BBO) crystal pumped with a cw laser (80 mW at
405 nm). The SPDC is type I, frequency degenerate (bandwidth of the parametric fluorescence greater than 30 nm). To ensure
indistinguishability of the photons, these are spectrally filtered to a narrow bandwidth (7.5 nm) and selected by single-mode fibers. The
qubits are injected in the photonic setup which performs the logical operations depicted in (b) and (c) representing, respectively, an
amplitude damping (AD) and an inverse amplitude damping (IAD) channel. Their combination allows for reconstructing a generalized
amplitude damping (GAD) channel, simulating the thermalization dynamics of the qubit illustrated in the main text [29]. The measured
nonclassical interference visibility is 0.78, to be compared with the expected value 0.80. List of abbreviations: polarizing beam splitter
(PBS), partially polarizing beam splitter (PPBS), half wave plate (HWP), quarter wave plate (QWP), quantum state tomography (QST).

Appendix A). A less trivial case is provided by the
generalized amplitude damping channel for qubit systems,
specifically considered in the following part of the manu-
script. However, if (4) is satisfied by the dynamical process
®! and we choose t; =t and t, = oo, we find

8
— L2 (py, p(1)). 5
2 o). ()

AST (1) >
Equation (5) represents a tighter version of the Clausius
inequality and generalizes to the open system framework
the results obtained in [24].

From now on, we will focus on the specific case in
which the reference system is a qubit with Hamiltonian
H=o0,/2 [40] in thermal contact with a bosonic
reservoir. Its evolution can be formally described in
terms of the GAD channel, p(t) = ®7(p,), with Kraus
operators [39]: E; = \/p(|0)(0] + /T —=n,|1)(1]), E; =
VPVIl0) (1l By = V1= p(v/T=n,0){0] + [1)(1]),
Ey = /T—p./i]1)(0|, in the canonical basis {|0),|1)}
corresponding, respectively, to the excited and the ground
state of the system. Here p € [0,1/2] and 5, € [0, 1] are
the time- and temperature-dependent probability and
damping coefficient, respectively, related to the average
boson occupation number N = 1/(e!/T — 1) [40] for the
bath and to the (dimensionless) time ¢ as (1 —2p) =
(14+2N)""and 5, = 1 — =2V [29,31]. As anticipated

above, such thermalizing map can be shown to satisfy the
triangle inequality (4); thus, the geometrical lower bound
(5) can be enforced [38]. Notice that the GAD map can
be realized by combing an IAD map described by E; and
E, with an AD map described by E; and E4. The
extension to a GAD channel in which the energy gap
A(r) between the two energetic levels is externally
modulated is discussed in the Supplemental Material
[38] (Appendices B and C).

Quantum photonic simulation.—We have simulated the
thermalization dynamics of a qubit via a GAD channel to
test inequalities (3) and (5). Our experiment is based on a
quantum photonics logic gate, as a method to implement
general quantum channels [41,42] (other approaches still in
the framework of quantum photonics can be found in
[43,44]). Our setup is shown in Fig. 2(a) and allows us to
realize the following steps. (i) The canonical basis is
encoded in the horizontal and vertical polarization states,
ie., [0)=|H) and |1)=|V). An ancilla qubit B is
initialized in |H), while the target qubit A is prepared in
a linear polarization state. (ii) The qubits .4 and B interact
through a controlled-sign (C-Z) gate, acquiring a z phase
on the |V) 4|V) 5 component only [45-50]; 13 undergoes the
same rotation R(6) before and after the C-Z, transmitted by
HWPs set at an angle 0: this controls the damping rate as
1 = sin®(46). (iii) The H/V component of B is measured
and the outcomes control a Pauli transformation on 4. The
arrangements in Figs. 2(b) and 2(c) implement the AD and

160602-3



PHYSICAL REVIEW LETTERS 121, 160602 (2018)

1.5

y 8 .
S(pnllpes) = 25 L (0(0). )

1.0

0.5
0.0 5 Livy (p(0), p(t)) (a)
0 2 4 6 8 10 12
T
FIG. 3.

0.05 8 . * ]

) S(p(]Hqu) - FEPVY(p(t)vpuq) 1

0.04 — ' :

ASir'r 1

0.03 A !

0.02 .

8 "9

0.01 5 Ly (p(0), p(t)) ]

0.00 (b)
0 2 4 6 8 10 12

Lower (green line) and upper (red line) bounds to the irreversible entropy production for a GAD channel induced by a bosonic

reservoir, as a function of time 7. The initial state is |D) = 1/v/2(|H) + |V)) in (a) and |V) in (b). The solid lines are theoretical
predictions; experimental points have been obtained from the density matrices retrieved through quantum state tomography. Vertical
errors have been obtained through a Monte Carlo routine that takes into account the Poissonian statistics of the measured counts, while
horizontal errors depend on the uncertainty on the rotation R(6) [29].

IAD maps, respectively. (iv) The density matrix p(z) of the
target A at time ¢ is determined collecting coincidence
counts for the quantum state tomography in the two
configurations, including the controlled-Pauli operations
in postprocessing. We then run the state reconstruction
algorithm on data weighted with p and 1—p [29].
Examples of the reconstructed states are reported in the
Supplemental Material [38], Appendix D.

From the knowledge of the full density matrix of the
target qubit, we have been able to determine the relevant
quantities in the bounds (3) and (5), reported in Fig. 3 for
T = 0.34. It can be numerically proved that the Wigner-
Yanase metric, compared to the Bures one, provides a
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FIG. 4. Asymptotic irreversible entropy production as a func-
tion of the temperature 7 for the thermalization of the system A.
The dotted curves show the predictions associated to different
pure states |H) (red), |D) (green) and |V) (blue). The solid curves
show the geometric lower bound (5) in the thermalization limit
for the same three cases, with the same color code, which
provides a quite a good prediction for ASij{( t — oo) for almost all
values of T.

sharper bound to the irreversible entropy, for arbitrary
choices of the initial state p (the two metrics give the same
result when p, is diagonal in the chosen basis). An
experimental test for the state |[D) = 1/v2(|H) + |V)),
analyzed in Fig. 3, is provided in the Supplemental Material
[38]. For this reason, in Fig. 4 we report the experi-
mental points associated with the Wigner-Yanase metric.
The upper bound captures more closely the behavior
of ASijlr . Data closely follow the predictions with a
small systematic overestimation of the entropies. The
fidelity of the simulated states with the ideal ones are
Fry =0.996 £0.003, Fp=0.9954+0.005, and Fy =
0.998 +0.002 for the three inputs, averaged over all
simulated times.

In the limit # — oo, the bound (5) gives insights on the
entropy produced for losing the initial information on qubit
A by thermalization [51,52]. Our generalization allows us
to distinguish specific instances: the theoretical curves in
Fig. 4 indicate that different entropies are dissipated for
distinct initial pure states, and the lower bound (5) reflects
such behavior. Our results confirm that the excited state |H)
asymptotically demands more entropy dispersion to be
forgotten via thermalization.

Conclusions.—We have shown that the entropy produc-
tion in open quantum systems can be bounded, both from
above and below, with quantities that depend on purely
geometrical features of the Hilbert space. Such bounds have
been retrieved by explicitly comparing the quantum Fisher
metrics with the Wigner-Yanase one, representing the only
two examples for which an analytic expression of the
associated geodesic length is known. According to our
analysis, supported by experimental evidence provided in a
quantum optics experiment, the Wigner-Yanase metrics
yields the tighter bound. Finally, this study, based on the
comparison between different metrics on the Hilbert space
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of the system, shows explicit connections with the com-
putation of the geometrical quantum speed limits [27], thus
offering an interesting connection between entropy and
time in irreversible physical phenomena.
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