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We study the driven Brownian motion of hard rods in a one-dimensional cosine potential with a large
amplitude compared to the thermal energy. In a closed system, we find surprising features of the steady-
state current in dependence of the particle density. The form of the current-density relation changes greatly
with the particle size and can exhibit both a local maximum and minimum. The changes are caused by an
interplay of a barrier reduction, blocking, and exchange symmetry effect. The latter leads to a current equal
to that of noninteracting particles for a particle size commensurate with the period length of the cosine
potential. For an open system coupled to particle reservoirs, we predict five different phases of
nonequilibrium steady states to occur. Our results show that the particle size can be of crucial importance
for nonequilibrium phase transitions in driven systems. Possible experiments for demonstrating our
findings are pointed out.
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A minimal model for studying fundamental questions of
nonequilibrium physics is the asymmetric simple exclusion
process (ASEP) [1,2], which is sometimes referred to as the
“Isingmodel of nonequilibrium statistical mechanics” [3]. In
this model, particles with exclusion interaction hop between
neighboring sites of a one-dimensional lattice with a bias in
one direction.Many intriguing findingswere reported for this
ASEP, as exact results for microstate distributions in non-
equilibrium steady states (NESSs) [4], phase transitions of
NESSs [5–7], condensation transitions in systems with
random [8] and non-Poissonian hopping rates [9], and
singular points in rate functions characterizing large devia-
tions of fluctuations in time-averaged currents [10–12].
Most applications of the ASEP are found in the modeling

of biological traffic [13,14], where the model was first
introduced to describe protein synthesis by ribosomes [15]
and where it is frequently used now in studies of molecular
motor motion [16,17]. Clearly, refinements of the core
model are needed for corresponding applications, such as
inhomogeneous hopping rates, particles occupying several
sites, internal states of particles, and multilane variants
[13,14,16,17]. A direct comparison of models and
experiments in this area, however, is difficult to realize
and hampered by the complexity of biological transport
phenomena.
Here, we consider a Brownian motion of particles with

the following ingredients resembling features of the ASEP:
(i) an exclusion interaction between particles over a range
σ, (ii) a periodic potential UðxÞ with period length λ,
giving rise to an effective hopping motion of the particles
between the potential wells, and (iii) a constant drag force f
acting on the particles. This Brownian ASEP (BASEP) is a

broadly applicable model for one-dimensional transport
processes [18] with their ubiquitous occurrence in, e.g.,
zeolites [19], nanotubes [20,21], and membrane channels
and pores [22–24]. It can be realized in laboratory study
using recently proposed combinations of microfluidics
and optical micromanipulation techniques [25–27].
Such experiments have a potential to probe and verify
fundamental theoretical predictions for nonequilibrium
collective phenomena. The lattice ASEP may, due to its
discreteness, not be a correct model for such continuous-
space dynamics.
Indeed, we show in this Letter that the BASEP exhibits

surprising features that have no counterpart in the ASEP.
These features are a consequence of the length scale σ,
which enters the problem as a parameter in addition to the
particle density ρ. The site blocking effect associated with
the exclusion interaction dominates the steady-state particle
current jðρ; σÞ in a limited σ range only. Because of a
barrier reduction effect, jðρ; σÞ can be larger than the
current j0ðρÞ of noninteracting particles. An exchange
symmetry effect emerges when σ becomes commensurate
with the period length λ. In this case jðρ; σ ¼ λÞ ¼ j0ðρÞ, as
if there were no interactions. The interplay of the barrier
reduction, blocking, and exchange symmetry effects leads
to changes of the form of the current-density relation with
the particle size. This in turn leads to the appearance of five
different nonequilibrium phases in open BASEPs coupled
to particle reservoirs.
Figure 1 illustrates interacting particles of size σ that are

driven by a drag force f through a cosine potential UðxÞ ¼
ðU0=2Þ cosð2πx=λÞ with barrier height U0. Their center of
mass positions xi, i ¼ 1;…; N, are considered to perform
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an overdamped Brownian motion according to the coupled
Langevin equations

dxi
dt

¼ μ½fextðxiÞ þ finti � þ
ffiffiffiffiffiffiffi
2D

p
ηiðtÞ; ð1Þ

where fextðxÞ ¼ f − dUðxÞ=dx is the external force, finti ¼
finti ðx1;…; xNÞ is the interaction force on the ith particle,
and ηiðtÞ are independent Gaussian white noise processes
with zero mean and hηiðtÞηjðt0Þi ¼ δijδðt − t0Þ; μ and D ¼
kBTμ are the bare mobility and diffusion coefficient,
respectively, and kBT is the thermal energy. In the
BASEP, finti is solely determined by the hard-core exclu-
sion between neighboring particles, i.e., a contribution
upon particle contact. The system size L is taken to be
an integer multiple of λ and periodic boundary conditions
are imposed. As units for length, time, and energy, we
choose λ, λ2=D, and kBT, respectively. The density, or
filling factor, is ρ ¼ N=L. We set U0 ≫ kBT to generate an
effective hopping motion of the particles and focus first on
the case where both ρ and σ lie in the range [0, 1].
To determine jðρ; σÞ in the nonequilibrium steady

state (NESS), we have carried out Brownian dynamics

simulations, which we corroborate by analytical consid-
erations. The barrier height and the drag force are fixed by
setting U0 ¼ U0=ðkBTÞ ¼ 6 and f ¼ fλ=ðkBTÞ ¼ 1. In
most of the simulations, we have chosen L ¼ 100. For ρ
and σ close to one, simulations were performed also for
larger L to check that our results are not affected by the
finite system size. The hard-core interaction force between
neighboring particles was simulated according to the
algorithm developed in [28]. For σ close to one, we also
used the method proposed in [29].
For noninteracting particles, the current increases lin-

early with ρ, j0 ¼ v0ρ, where v0 is the mean velocity of a
single particle and can be calculated analytically [30]; for
our parameters, v0 ≅ 0.043. By the hard-core interaction,
this linear current-density relation is modified in quite
different ways for different particle sizes σ, as can be seen
from Fig. 2(a). As reference curves, we included the line
j0 ¼ v0ρ for noninteracting particles (solid black line) and
the corresponding one for the ASEP [1,2], jASEPðρÞ ¼
j0ðρÞð1 − ρÞ ¼ v0ρð1 − ρÞ (dashed line). Remarkably, the
parabolic curve of the ASEP is resembled in a quite limited
σ range only.
To understand the nonlinear current-density relation for

different particle sizes, it is helpful to first consider the
relative current change Δjðρ; σÞ ¼ ½jðρ; σÞ − j0ðρÞ�=j0ðρÞ
due to the interactions as a function of σ for several fixed ρ.
Corresponding curves plotted in Fig. 2(b) show a similar
behavior for all ρ. For small σ, Δj increases with σ up to a
maximum and then it decreases until crossing the zero
line at a value σ×ðρÞ. Hence, for 0 < σ < σ×ðρÞ, jðρ; σÞ
becomes enhanced compared to j0ðρÞ. When increasing σ
beyond σ×ðρÞ, Δj first decreases, then remains approx-
imately constant in a plateaulike regime, and eventually
increases again, where Δj ¼ 0 for σ ¼ 1 and all ρ. Hence,

FIG. 1. Driven Brownian motion of interacting particles of size
σ in a cosine potential with barrier height U0 and period length λ
under drag force f.
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FIG. 2. (a) Current-density relations for various fixed particle sizes σ. The solid and dashed black lines mark the currents j0ðρÞ and
jASEPðρÞ for noninteracting particles and the corresponding ASEP, respectively. (b) Particle size dependence of the current change
Δjðρ; σÞ ¼ ½jðρ; σÞ − j0ðρÞ�=j0ðρÞ due to hard-core interactions for different fixed densities ρ. (Inset) The curve σ×ðρÞ, which separates
the region of current enhancement (blue area) and reduction (red area) and the dependence of ρ∼, ρmax, and ρmin on σ.
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jðρ; σÞ becomes reduced compared to j0ðρÞ for
σ×ðρÞ < σ < 1, and it becomes equal to j0 for σ ¼ 1.
The crossover value σ×ðρÞ increases with ρ and the full
curve shown in the inset of Fig. 2(b) divides the σ − ρ plane
in two regions of current enhancement and reduction.
The enhancement of the current is caused by a barrier

reduction effect, which occurs if a potential well is
occupied by more than one particle [31]. Inside a multi-
occupied well, the mutually excluding particles exhibit, on
average, higher potential energies than a particle in a single-
occupied well. They need to surmount a lower barrier for
escaping the well, which causes the current enhancement.
This enhancement is stronger with larger ρ [see Fig. 2(b)],
because the probability of multioccupancies rises with
increasing ρ. Also, clusters of neighboring occupied wells
become larger on average. This facilitates a cascade-
like propagation of multioccupations, as demonstrated in
Fig. 3(a).
With increasing σ, the formation of multiple occupancies

requires higher energies and becomes less likely. For
σ > σ×ðρÞ, the blocking effect, known from the ASEP,
prevails. It means that an effective particle hopping to a
neighboring well is suppressed if the target well is
occupied. Typical particle trajectories in this regime,
displayed in Fig. 3(b), show that clusters of neighboring
particles frequently move in a manner where wells are
sequentially vacated and filled. Hence, the particle motion
becomes similar to a hopping on a lattice with forbidden
multioccupation of sites. The current then is nearly inde-
pendent of σ, as reflected in the plateaulike σ intervals in
Fig. 2(b).

To understand why the current increases again for σ
approaching one, let us consider a coordinate transforma-
tion xi → x0i ¼ xi − iσ in the Langevin equations (1), which
for σ ¼ λ ¼ 1 leaves them invariant because of the λ
periodicity of fextðxÞ. After this transformation, the dynam-
ics of the x0i correspond to that of point particles. However,
for point particles with hard-core interaction, collective
properties, like the current, become invariant under
particle exchange [32] and, accordingly, jðρ; 1Þ ¼ j0ðρÞ
for all ρ. Refining this line of reasoning, we show in the
Supplemental Material [33] that the current for general
σ ≥ λ can be inferred from that for σ < λ.
All results are further supported by analytical calcula-

tions when starting from the Smoluchowski equation for
the joint probability density pNðx1;…; xN; tÞ of finding the
particles at positions x1;…; xN at time t [33]. In the NESS,
we obtain

jðρ; σÞ ¼
�
μðfextðxÞ þ hfintðxÞiÞ −D

d
dx

�
ρlocðxÞ; ð2Þ

where ρlocðxÞ is the local density and

hfintðxÞi ¼ kBT½ψ−ðxÞ − ψþðxÞ� ð3Þ

is the mean interaction force on a particle at position x.
Here, ψ−ðxÞ ¼ Ψ−ðxÞ=ρlocðxÞ and ψþðxÞ ¼ ΨþðxÞ=ρlocðxÞ
are the conditional probability densities that, given a
particle at position x, a neighboring particle is in contact
(at distance σ) with it in counterclockwise and clockwise
directions, respectively; Ψ�ðxÞ are the respective joint
probability densities. Because Ψ−ðxÞ ¼ ΨþðxÞ for σ ¼ λ,
it holds that hfintðxÞi ¼ 0 for σ ¼ λ ¼ 1 from Eq. (3), and it
follows that jðρ; 1Þ ¼ j0ðρÞ from Eq. (2).
Moreover, multiplying Eq. (2) with 1=ρlocðxÞ and inte-

grating over one period λ, we obtain, when utilizing the λ
periodicity of ρlocðxÞ in the NESS and of UðxÞ in
fextðxÞ ¼ f − dUðxÞ=dx,

jðρ; σÞ ¼ μðf þ f̄intÞλR
0
λ dx
ρlocðxÞ

; ð4Þ

where f̄int ¼ λ−1
R
λ
0 dxhfintðxÞi is the period-averaged

mean interaction force. This exact expression for the
current is analogous to the corresponding one for a single
particle [30], but here it refers to a many-body system with
hard-core interactions, where f̄int gives an additional
contribution to the driving force. In fact, Eq. (4) is valid
also for other interaction forces if the corresponding
mean interaction force is used. We further give in the
Supplemental Material [33] an approximate treatment of
Eq. (4) for weak bias, which reproduces qualitatively the
behavior shown in Figs. 2(a) and 2(b).
Let us now discuss the curves in Fig. 2(a) with increasing

σ. For small σ ¼ 0.25, jðρ; σÞ is larger than j0ðρÞ and
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FIG. 3. Particle trajectories in the BASEP for ρ ¼ 0.75, and
(a) σ ¼ 0.25 and (b) σ ¼ 0.75. The horizontal dotted lines
indicate the positions of the potential minima. (a) A cascadelike
propagation of double occupancies marked by the circles is
demonstrated by the arrows. (b) Potential wells are vacated and
filled in a sequential process.
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increases monotonically due to the barrier reduction effect.
Enlarging σ, the blocking effect becomes more relevant,
which causes the curves to approach more and more
jASEPðρÞ. First, this leads to a change of curvature of
jðρ; σÞ from concave to convex at a density ρ ¼ ρ∼ (see the
curve for σ ¼ 0.5). Then, when σ exceeds a critical value
σc ≅ 0.55, a local maximum at ρ ¼ ρmax and a local
minimum at ρ ¼ ρmin occurs (see the curves for σ ¼
0.58 and σ ¼ 0.62). Upon further increasing σ, a range
of particle sizes appears, where jðρ; σÞ ≃ jASEPðρÞ.
Eventually, the exchange symmetry effect becomes notice-
able, which causes jðρ; σÞ to approach j0ðρÞ. Going along
with this is a shift of the local maximum ρmax and of
jðρmax; σÞ towards larger values (see the curve for
σ ¼ 0.98). The dependence of ρ∼, ρmax, and ρmin on σ is
shown in the inset of Fig. 2(b).
The different forms of the current-density relation lead to

a versatile emergence of NESS phases in an open BASEP
in contact with two particle reservoirs at its left and right
end. In this open BASEP, the period-averaged densities
ρ̄i ¼ λ−1

R
iλ
ði−1Þλ dxρlocðxÞ in each well i ¼ 1;…; L=λ are no

longer equal, but approach a constant “bulk value” ρb in the
system’s interior, far from the boundaries. This bulk density
ρb or its derivative can change abruptly upon variation of
the system-reservoir couplings, i.e., the parameters con-
trolling the particle exchange with the reservoirs. The
corresponding sets of phase transition points separate
NESS phases, in which the order parameter ρb varies
smoothly with the system-reservoir couplings.
Independent of the details of the couplings, all possible

NESS phases can be uncovered from jðρ; σÞ by considering
just two control parameters ρL, ρR ∈ ½0; 1�, which for bulk-
adapted couplings represent the particle densities in the left
and right reservoir, respectively [41–43]. The different
phases are obtained by applying the extremal current
principles [5,44], which state that ρb assumes the value
at which jðρ; σÞ becomes minimal (for ρL < ρR) or
maximal (for ρR < ρL) in the ρ intervals enclosed by ρL
and ρR,

ρb ¼
�
argminρL≤ρ≤ρRfjðρ; σÞg; ρL ≤ ρR;

argmaxρR≤ρ≤ρLfjðρ; σÞg; ρR ≤ ρL:
ð5Þ

For σ < σc, the extremal current principles in Eq. (5)
imply that no phase transitions occur in the open BASEP,
because jðρ; σÞ exhibits no local minima or maxima. For
σ > σc, by contrast, phase transitions occur and we show in
Fig. 4 different examples of phase diagrams of NESSs.
Dashed and solid lines in these diagrams indicate phase
transitions of first and second order, respectively.
In Fig. 4(a), σ ¼ 0.58 is close to σc and in total five

NESS phases appear. For the left-boundary induced phases
I and V, ρb ¼ ρL, and for the right-boundary induced phase
III, ρb ¼ ρR; phase II is a maximal current phase with ρb ¼
ρmax ≅ 0.60 and phase IV is a minimal current phase with

ρb ¼ ρmin ≅ 0.83 [see Fig. 2(a)]. With increasing σ, the
phase regions II–IV extend, while the regions I and V
shrink [see Fig. 4(b)]. We note that the topology of
the phase diagrams in Figs. 4(a) and 4(b) resembles
features seen in corresponding phase diagrams of driven
lattice gases with repulsive nearest-neighbor interactions
[41,43,44]. For the phase diagram in Fig. 4(b), we
demonstrate the occurrence of different NESS phases in
simulations of an open BASEP in the Supplemental
Material [33].
When entering the σ regime, where jðρ; σÞ ≃ jASEPðρÞ,

the phase diagram resembles that of the ASEP with phases
I–III, as shown in Fig. 4(c) [45]. Finally, when the exchange
symmetry effect causes ρmax to approach one, phase regions
II and III shrink at the expense of region I [see Fig. 4(d)].
To conclude, the interplay of the barrier reduction,

blocking, and exchange symmetry effects gives rise to a
surprisingly versatile form of the current-density relation in
the BASEP in dependence of the particle size. This leads us
to predict the appearance of in total five different phases of
NESS states in the open BASEP coupled to particle
reservoirs. Only for a quite limited range of particle sizes
is the behavior of the BASEP resembled by the ASEP.
Similar nonequilibrium phase transitions as in the

BASEP are expected to occur for particles with soft
repulsive interactions of short range. Indeed, we could
identify these in simulations with a Yukawa interaction. For
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FIG. 4. Phase diagrams of the open BASEP for particle sizes
(a) σ ¼ 0.58, (b) σ ¼ 0.62, (c) σ ¼ 0.75, and (d) σ ¼ 0.98.
Dashed and solid lines indicate phase transitions of first and
second order, respectively. The regions labeled I–V in (a) mark
two left-boundary induced phases (I and V), a right-boundary
induced phase (III), a maximal current phase (II), and a minimal
current phase (IV). These phases are equally colored in all graphs.
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a power-law soft core, just an ASEP-like behavior was
reported earlier [46].
Besides its relevance in biology, where confined transport

processes through channels with binding sites [22–24] are
mediated by driven Brownian motion, we believe that the
BASEP is an ideal in situ tunable model system for an
experimental exploration of nonequilibrium phase transi-
tions. Current experimental micromanipulation techniques
allow precise engineering and fine tuning of relevant aspects
of the model: the external tilted periodic potential and the
confinement. The precise control of the potential may be
achieved with high precision using holographic optical
tweezers as it was done in a related experimental work
[25]. The confinement can be realized within microfluidic
chips. Combining microfluidics with optical tweezers
already proved to be a realizable method to probe funda-
mentals of facilitated diffusion in confined spaces [47,48]
and of escape times in single-file transport [49]. Another
intriguing recent option is to consider a nanofluidic ratchet
[26,27], where the periodic potential landscape is shaped by
the geometry of a nanofluidic slit and an additional electro-
static interaction between particles and walls.
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