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Many neurodegenerative diseases are related to the propagation and accumulation of toxic proteins
throughout the brain. The lesions created by aggregates of these toxic proteins further lead to cell death and
accelerated tissue atrophy. A striking feature of some of these diseases is their characteristic pattern and
evolution, leading to well-codified disease stages visible to neuropathology and associated with various
cognitive deficits and pathologies. Here, we simulate the anisotropic propagation and accumulation of
toxic proteins in full brain geometry. We show that the same model with different initial seeding zones
reproduces the characteristic evolution of different prionlike diseases. We also recover the expected
evolution of the total toxic protein load. Finally, we couple our transport model to a mechanical atrophy
model to obtain the typical degeneration patterns found in neurodegenerative diseases.
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Introduction.—Age-related neurodegenerative disorders
are complex and multifaceted pathologies. In many cases,
their evolution is closely associated with the progression of
particular protein aggregates, commonly referred to as prions
[1]. Prions are corruptive templates or infectious seeds that
initiate a chain reaction of protein misfolding and aggrega-
tion, creating conformational autocatalysis [2]. Over time,
these pathogenic protein assemblies grow, fragment, and
spread, preventing proper cell function. Unless they are
removed, the accumulation of toxic proteins disrupts the
proper function of the nervous system and causes necrosis,
brain atrophy, and ultimately death [3]. The concept of
prionlike growth, fragmentation, and spreading of toxic
proteins has been put forward as the key to Alzheimer’s
disease, Parkinson’s disease, and amyotrophic lateral scle-
rosis [4,5]. Similar mechanisms could also explain secon-
dary injuries following traumatic brain injury [6]. For
instance, it is known that the amyloid-f protein can form
aggregates with a distribution of sizes from small soluble
groups to large insoluble fibrils. Their accumulation as
plaques is closely associated with Alzheimer’s disease.
Tau proteins also play an important role in these diseases
[7]. Tau is known to stabilize microtubules within the axon;
however, when hyperphosphorylated, it forms neurofibril-
lary tangles that can act as seeds for further misfolding and
aggregation. Tau aggregates are found within the axon and
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are rapidly transported by interneuronal transport mecha-
nisms [8]. They are also transported into the extracellular
space where they diffuse through secretion and damage of
the host cell and into cells by endocytosis [9]. Protein
aggregates are subject to biological clearance slowing down
or arresting the overall spreading process. Neuronal path-
ways may provide an explanation for the observation that the
spreading of neurofibrillary tangles follows a characteristic
topographic pattern.

Independent of their molecular origin or specific actions
prionlike diseases share the same macroscopic spatiotem-
poral evolution [10]. The progression is believed to include
the following steps: (i) seeding of misfolded proteins,
(ii) templated misfolding and aggregation of native pro-
teins, (iii) growth of aggregates, (iv) fragmentation and
spatial propagation of aggregates of different sizes,
(v) assembly of misfolded proteins into secondary struc-
tures (protofibrils and fibrils), and (vi) formation of larger
tertiary structures (lesions) at the tissue level. A striking
feature of each particular pathology is its systematic
evolution pattern. We posit that the main reason for such
reproducibility is that the overall progression of the disease
is governed by generic transport processes and that the
key difference between individual diseases, aside from the
particular set of proteins involved, is the original location of
the seeds, leading to a spatiotemporal evolution (Fig. 1)
characteristic for (a,b) Alzheimer’s disease, (c) Parkinson’s
disease, and (d) amyotrophic lateral sclerosis.

An essential feature of the dynamics is that proteins are
preferentially transported transynaptically and can diffuse
from the extracellular space to the cells [11]. These effects
lead to fast transport along neuronal pathways and slow
diffusion away from the axon bundles. Here, we couple an
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FIG. 1. Typical spatial progression of protein aggregates in
various neurodegenerative diseases (from Jucker and Walker [1]).

anisotropic transport process with a mechanical atrophy
model to study the relative effects of seed location,
anisotropy, and brain geometry on the toxic protein con-
centration and the resulting atrophy of brain tissue [12,13].
We show that a minimal model for transport and atrophy is
sufficient to recover the main qualitative spatial features of
different neurodegenerative diseases as well as the char-
acteristic overall increase of key biomarkers.

The model.—We couple a transport model to a mechani-
cal model. The brain is taken to be a connected domain Q
in either R? (2D simulations) or R (3D simulations) with
volume V, composed of gray (€2,,y) and white (€2ypic)
matter with distinct material properties. Different models for
the aggregation and propagation process have been pro-
posed ranging from graph Laplacian diffusion on simplified
structural networks [14] to Smoluchowski-type equations
[15,16] tracking the aggregate-size distribution. Here, we
use a minimal model for the propagation of a toxic protein
that captures the basic characteristics of the problem, for
which the concentration c¢(X, t) € Qi follows the Fisher—
Kolmogorov-Petrovsky-Piskunov equation

%:V-(DVC)—I—ac(l—c), (1)
where D=d 1+ (dj—d,)y®y is a transversely
anisotropic diffusion tensor with a preferential direction
along the axon bundle characterized by the unit vector
y=7(x,1), a>0 is the growth rate, d, is the tissue
diffusion, and d| > d, is the diffusion along the axons.
This model describes the overall increase of toxic protein

concentration, assuming that the pool of proteins in the
native form is sufficiently large. The nonlinearity pro-
vides a saturation term expressing the maximal concen-
tration of toxic proteins (taken to be one without loss of
generality). In one dimension (along the axonal bundles),
the system supports traveling fronts with a velocity v =
2,/ad| leading to a complete invasion in a characteristic
time 7 = L/v, where L is a length scale for the brain,
which is on the order of 16 cm in humans. In the gray
matter, for X € (2, We assume pure isotropic diffusion
[Eq. (1) with dj =d, and a = 0].

We track two quantities related to the concentration: the
time 7(x, Coy;) at which the concentration first reaches a
critical level close to the saturation level C.y = (1 —¢),
defined implicitly by ¢(x,7) = C.;, and the “biomarker
abnormality” defined as

C(r) :ééc(x,t)dx. (2)

We couple transport to atrophy by assuming that brain
tissues are morphoelastic materials [17,18] and assigning
an isotropic shrinking factor 0 < <1 at each point,
depending on the concentration of toxic proteins. Given
an initial reference configuration, atrophy is characterized
by a deformation x(X,?) = @(X,) from the reference
brain Q to the aged brain after shrinking Q,. Here, x(X, 1)
is the position at time ¢ of the material point originally
located at X at time ¢ = 0. This deformation defines the
deformation gradient F = Vx¢ and we assume that it has
the form F = 8'/3A. The elastic deformation tensor A is
computed by solving the Cauchy equation div(T) = 0 for
the stress tensor T = J'A -9, W associated with the
strain-energy density W = W(A, x) and J = det(A). The
relative rate of shrinking is proportional to the total
exposure of the tissue to the toxic proteins, so that
0,8 = —6cY, where 6§ > 0 is an overall parameter that
describes the rate of material removal.

Computational investigation.—We create finite element
models from T2-weighted magnetic resonance images of
a 32-yr-old male using Simpleware (Synopsis Inc.,
Mountain View, CA): a two-dimensional sagittal model,
a two-dimensional coronal model, and a fully three-dimen-
sional, anatomically accurate whole brain model. The
sagittal model has 13442 linear triangular elements and
7216 nodes; the coronal model has 38 223 linear triangular
elements and 19 813 nodes; and the three-dimensional
whole brain model has 401 940 linear tetrahedral elements
and 80233 nodes. We tested different levels of mesh
refinement and found that these discretizations provide
the best balance between computational cost, efficiency,
and accuracy. To model anisotropic toxic protein propa-
gation, we register the axonal fiber orientation y from
diffusion tensor magnetic resonance images and create an
element-based fiber-orientation map.
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For the initial seeding, we assume a concentration
c(x) =1 for all x € Qq C Q and ¢(x) = 0 otherwise.
Then, using Eq. (1) we propagate the toxic protein across
the brain with a ratio of dj:d; = 100 to ensure a faster
propagation along the axonal fiber direction. In the white
matter, we use d|| = 100 mm?/yr and a = 0.5/yr. In the
gray matter, we use dy =d; = 10 mm?/yr.

Motivated by Fig. 1, we postprocess the concentration
field ¢ to extract the activation time z(x, C ). From those
activation times, we create the activation maps corre-
sponding to Fig. 1. At any given time ¢, we display
activation time a single color and a linear shading
intensity between 0 and 1 that is equal to (r —7)/t for
7 < t and zero for all = > 7 (the shading is maximal in the
initial seeding zone and there is no shading in non-
activated regions with 7z > r). Using Eq. (2), we compute
the biomarker abnormality C(¢) to create a temporal map
of the toxic protein concentration averaged over the entire
brain [19].

Finally, using the tissue atrophy model with different
atrophy rates § in the gray and white matter tissue, we use
our two-dimensional coronal model to create atrophy maps.
Since atrophy takes place primarily in locations with
elevated concentrations of toxic proteins, the change of
volume does not significantly affect the time evolution of
the concentration since it is already close to maximal in
these locations. We take advantage of this property to
compute tissue shrinking as a postprocessing step based on
the values of the concentration at different time points.
Since we assume that, after each step of shrinking, there is
total relaxation of the stresses, the mechanical stresses
generated are small during shrinking and we can use a
standard compressible neo-Hookean model valid in small
deformations with parameters fitted to experimental data:
W = c[tr(AT - A) = 3] + ¢, (J = 1)? with ¢; = 666.56 Pa
and ¢, = 1777.5 Pa [20]. For the relative shrinking rate, it
is known that the gray matter tissue shrinks and loses more
volume than the white matter tissues [21] and we use a
ratio 9yay i ypie = 41 1.

2D simulations.—We begin with 2D simulations by
restricting our domain to a sagittal slice (Fig. 2). The
region includes the ventricle but, through no-flux boundary
conditions, it is assumed that no progression takes place
into this region. Based on the description of the evolution of
tau inclusions in Alzheimer’s disease, we place an initial
seeding of toxic protein close to the entorhinal cortex
[Fig. 2(a)]. We calculate the spatiotemporal evolution of the
toxic protein concentration and extract the activation map
in Fig. 2. We observe the quick progression into the brain
stem and the hippocampus [Fig. 2(a)], to paralimbic and
adjacent medial-basal temporal cortex [Fig. (2b)], to
cortical association areas [Fig. 2(c)], and eventually reach-
ing primary sensory-motor and visual areas. The relatively
rapid progression along the hippocampus is associated with
a strong anisotropy along the axonal pathways tangent to

(a) (b)
\\entri%e
initial seeding

()

FIG. 2. Activation maps of tau inclusions in brains of patients
with Alzheimer’s disease simulated across a 2D sagittal slice at
time t =0, 5, 10, 15 (yr), Figs. 2(a)—(d) respectively.

the ventricles. This progression is consistent with the well-
established Braak stages of Alzheimer’s disease [22]:
stages I and II “transentorhinal” [Fig. 2(a)]; stages III
and IV “limbic” [Fig. 2(b)]; stages V and VI “isocortical”
[Figs. 2(c) and 2(d)].

3D simulations.—The 2D analysis uses a high-resolution
model, but ignores the truly 3D character of the brain. To
study the effect of the initial seeding regions of amyloid-f,
tau, a-synuclein, and TDP-43, we prescribe a nonzero
toxic protein concentration as an initial condition,
c(x,t=0) >0, in the four seeding regions illustrated in
Fig. 1, while keeping the geometry and all other parameters
the same for all four simulations. We then advance the
system in time, calculate the spatiotemporal evolution of
the toxic protein concentration, extract the four activation
maps in Fig. 3, and compare them against the literature [1].
We observe generic progression trends in all four cases.
(i) As soon as a sufficient level of toxic proteins reaches the
area close to the ventricles, there is a fast progression in the
limbic system (around the ventricles) leading to a rapid
invasion of the temporal and occipital lobes. (ii) Once a
sufficient level of toxic protein is reached within the cortex,
further invasion through the cortex takes place. (iii) If the
parietal lobe is not directly involved initially, it only
becomes invaded in the last stages of the disease.

An indirect way to follow the evolution of neurodegen-
erative diseases is to look at the averaged concentration of
toxic proteins or associated biomarkers. The paradigm for
this evolution is based on the so-called Jack’s curves. These
curves are the expected, mostly hypothetical, evolution of a
typical biomarker concentration as a function of time [23].
They take the shape of sigmoidlike functions: a slow
evolution at first during incubation, followed by a sharp
increase during the outbreak, and leading to saturation
when the disease is fully established [16,19]. The variation
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(d) TDP-43 inclusions in amyotrophic lateral sclerosis

FIG. 3. Activation maps for the spatial progression of toxic
protein for various initial seeding regions, associated with (a,b)
Alzheimer’s disease, (c) Parkinson’s disease, and (d) amyotrophic
lateral sclerosis, simulated across a 3D brain at time ¢ = 0, 10, 20
(yr), left to right column respectively.

of the typical parameters entering the sigmoids are used to
represent physiological quantities such as time of outbreak
and rate of spreading. These curves serve as a general
guideline to understand the variations between individuals,
pathologies, and the effect of various stimuli or therapeutics
[24]. We can extract these curves from the simulation using
(2), as shown in Fig. 4. Our simulations recover the
predicted behavior for this type of disease integrated over
the entire brain with typical timescales similar to the ones
obtained from front solutions of Eq. (1) in one dimension.
Indeed, using the typical wave speed of front propagation in
one dimension, we obtain a lower and upper bound for the
total invasion time of 11.3 and 35.8 yr (using either the fast
axonal diffusion constant dj; ~ 100 mm?*/yr or the slow

gray matter diffusion constant d ~ 10 mm?/yr). Figure 4
also highlights a parametric study of the main parameters in
Eq. (1) with the 2D baseline parameters (blue), a twofold
increase of the growth parameter o (green), a fourfold
increase of isotropic diffusion through the parameters
d, and d| (orange), and an eightfold increase of only
the anisotropic parameter d| (red). We observe an interest-
ing trend for the “outbreak time,” defined as the time at
which the biomarker abnormality reaches a certain level
1/2 < Cyuipreak < 1. The outbreak time decreases when the
growth rate a increases. But, counterintuitively, the out-
break time increases with the diffusion coefficients. This is

100

== baseline 3D
== baseline 2D

== twofold o 1

== fourfold d., d.
== eightfold du

biomarker abnormality C [%]

o

30 time[yrs]

FIG. 4. Biomarker abnormality C as the concentration c¢
integrated over the 3D brain (dashed line) and 2D sagittal slice
(solid lines). Parametric study with 2D baseline parametrization
(blue), twofold growth a (green), fourfold diffusion d, and d|
(orange), and eightfold diffusion d| along the axons (red)
compared to 3D brain (dashed black).

due to the fact that diffusion tends to spread out the toxic
protein concentrations over the entire brain, hence reduc-
ing the effect of growth. However, once initiated, the
biomarker C increases more rapidly with increasing o and
d (as indicated by the slope of the curves), which is in line
with a faster spreading of toxic proteins as predicted by
v = 2,/ad|. While both parameters a and d have similar
effects in an integral sense, the concentration maps of the
four different parametrizations in Fig. 4 clearly show
distinct activation patterns. Specifically, increasing the
anisotropic diffusion d| (second concentration map)
triggers a faster spreading of toxic proteins along the
fiber direction around the ventricle. The fully 3D brain
model (dashed black) follows the same global trend of a
progressive invasion [24].

Atrophy.—We now turn to the effect of elevated toxic
proteins on the tissue. It is known that the formation of
large aggregates or high concentration of toxic proteins
prevents the proper function of neuronal cells, leading to
ischemia and eventually tissue removal. For instance, in the
top row of Fig. 5, there is a marked and rapid atrophy
associated with the disease. We use our propagation model
for the coronal slice to compute the toxic protein concen-
tration at four consecutive points in time (middle row). At
each time point, we simulate the toxic protein-induced
atrophy across the coronal slice. Our simulated atrophy
patterns (bottom row) agree well with the atrophy pattern
observed in Alzheimer’s disease (top row): they display
pronounced hippocampal atrophy, ventricular enlargement,
and a widening of the cortical sulci and suggest that
pronounced atrophy is a result of high toxic protein
concentrations.
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FIG. 5. Atrophy. (Top) Magnetic resonance images of Alz-
heimer’s patient; annual examination reveals increasing hippo-
campal atrophy, ventricular enlargement, and widening of the
cortical sulci [25]. (Middle) Annual evolution of toxic protein
concentration based on an initial seeding in the brain stem.
(Bottom) Simulated annual atrophy patterns based on activa-
tion time and toxic protein concentration with an atrophy ratio

of lggmy :’9white =4:1.

Conclusions.—Neurodegenerative diseases are known
for their extreme complexity, and medical science has
wrestled with this major challenge by amassing a consid-
erable amount of information, despite few therapeutic
successes. One of the remarkable features that appear in
these diseases is their highly reproducible topographic
propagation pattern. Each disease has a well-defined spa-
tiotemporal evolution that has been documented over the
years and cataloged into stages, each associated with typical
symptoms. This evolution appears much more controlled
than other diseases such as cancer and has led to three main
hypotheses in recent years. First, it has been proposed that
diseases share the same characteristics as prion diseases and
are based on the seeding, propagation, and accumulation of
toxic proteins involved in regular subcellular functions such
as a synucleins or tau proteins. Second, it has been proposed
that the overall evolution of a typical biomarker follows
regular sigmoidlike curves. Third, a given disease is asso-
ciated with typical atrophy patterns.

There have been multiple mathematical models proposed
for neurodegenerative diseases, but most of them focus on
biochemical pathways, cellular interactions, and the for-
mation of amyloids [26-28]. Our approach here is different
as we study the problem at the largest possible scale of the
brain. Our minimal model takes into account the main
microscopic features of these diseases, but incorporates the
full brain geometry and axonal directions from diffusion
tensor imaging. Despite the complexity of these diseases,
our model recovers the three aforementioned key features
of neurodegenerative disease progression and suggests that
brain geometry, transport anisotropy, and mechanics play a

central role in neurodegeneration and atrophy pattern
formation.
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